6 research outputs found

    Design of clock and data recovery circuits for energy-efficient short-reach optical transceivers

    Get PDF
    Nowadays, the increasing demand for cloud based computing and social media services mandates higher throughput (at least 56 Gb/s per data lane with 400 Gb/s total capacity 1) for short reach optical links (with the reach typically less than 2 km) inside data centres. The immediate consequences are the huge and power hungry data centers. To address these issues the intra-data-center connectivity by means of optical links needs continuous upgrading. In recent years, the trend in the industry has shifted toward the use of more complex modulation formats like PAM4 due to its spectral efficiency over the traditional NRZ. Another advantage is the reduced number of channels count which is more cost-effective considering the required area and the I/O density. However employing PAM4 results in more complex transceivers circuitry due to the presence of multilevel transitions and reduced noise budget. In addition, providing higher speed while accommodating the stringent requirements of higher density and energy efficiency (< 5 pJ/bit), makes the design of the optical links more challenging and requires innovative design techniques both at the system and circuit level. This work presents the design of a Clock and Data Recovery Circuit (CDR) as one of the key building blocks for the transceiver modules used in such fibreoptic links. Capable of working with PAM4 signalling format, the new proposed CDR architecture targets data rates of 50−56 Gb/s while achieving the required energy efficiency (< 5 pJ/bit). At the system level, the design proposes a new PAM4 PD which provides a better trade-off in terms of bandwidth and systematic jitter generation in the CDR. By using a digital loop controller (DLC), the CDR gains considerable area reduction with flexibility to adjust the loop dynamics. At the circuit level it focuses on applying different circuit techniques to mitigate the circuit imperfections. It presents a wideband analog front end (AFE), suitable for a 56 Gb/s, 28-Gbaud PAM-4 signal, by using an 8x interleaved, master/ slave based sample and hold circuit. In addition, the AFE is equipped with a calibration scheme which corrects the errors associated with the sampling channels’ offset voltage and gain mismatches. The presented digital to phase converter (DPC) features a modified phase interpolator (PI), a new quadrature phase corrector (QPC) and multi-phase output with de-skewing capabilities.The DPC (as a standalone block) and the CDR (as the main focus of this work) were fabricated in 65-nm CMOS technology. Based on the measurements, the DPC achieves DNL/INL of 0.7/6 LSB respectively while consuming 40.5 mW power from 1.05 V supply. Although the CDR was not fully operational with the PAM4 input, the results from 25-Gbaud PAM2 (NRZ) test setup were used to estimate the performance. Under this scenario, the 1-UI JTOL bandwidth was measured to be 2 MHz with BER threshold of 10−4. The chip consumes 236 mW of power while operating on 1 − 1.2 V supply range achieving an energyefficiency of 4.27 pJ/bit

    The Efficient Design of Time-to-Digital Converters

    Get PDF

    Topical Workshop on Electronics for Particle Physics

    Get PDF
    The purpose of the workshop was to present results and original concepts for electronics research and development relevant to particle physics experiments as well as accelerator and beam instrumentation at future facilities; to review the status of electronics for the LHC experiments; to identify and encourage common efforts for the development of electronics; and to promote information exchange and collaboration in the relevant engineering and physics communities

    14th International Conference on RF Superconductivity

    Get PDF

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion

    High Energy Physics

    Get PDF
    This grant covered an umbrella program of research in high-­‐energy particle physics at Southern Methodist University during the period 2004-­‐2013. The experimental program evolved during that time. At its early stages it included research on the CLEO experiment at CESR (Coan, Stroynowski, Ye), D0 experiment at Tevatron (Kehoe), preparation for the BTEV experiment at Fermilab (Coan) and construction and commissioning of the Liquid Argon Calorimeter for the ATLAS experiment at LHC (Stroynowski, Ye). In the last three years the program concentrated on the ATLAS experiment at LHC (Kehoe, Sekula, Stroynowski, Ye), D0 experiment at Tevatron (Kehoe) and NOvA experiment at Fermilab (Coan). Professor Sekula had a short-­‐term independent grant for which he is submitting a separate report. The theoretical physics program included work on non-­‐perturbative methods in the light cone representation (McCartor (deceased)), lattice calculations (Hornbostel), and determination of parton distribution functions (Olness). A summary of the accomplishments emphasizing results from the past three years is provided separately for each of the tasks
    corecore