6 research outputs found

    Acceptability Study of A3-K3 Robotic Architecture for a Neurorobotics Painting

    Get PDF
    In this paper, authors present a novel architecture for controlling an industrial robot via Brain Computer Interface. The robot used is a Series 2000 KR 210-2. The robotic arm was fitted with DI drawing devices that clamp, hold and manipulate various artistic media like brushes, pencils, pens. User selected a high-level task, for instance a shape or movement, using a human machine interface and the translation in robot movement was entirely demanded to the Robot Control Architecture defining a plan to accomplish user's task. The architecture was composed by a Human Machine Interface based on P300 Brain Computer Interface and a robotic architecture composed by a deliberative layer and a reactive layer to translate user's high-level command in a stream of movement for robots joints. To create a real-case scenario, the architecture was presented at Ars Electronica Festival, where the A3-K3 architecture has been used for painting. Visitors completed a survey to address 4 self-assessed different dimensions related to human-robot interaction: the technology knowledge, the personal attitude, the innovativeness and the satisfaction. The obtained results have led to further exploring the border of human-robot interaction, highlighting the possibilities of human expression in the interaction process with a machine to create art

    Design and Optimization of a BCI-Driven Telepresence Robot Through Programming by Demonstration

    Get PDF
    https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8788527Improving the life quality of people with severe motor paralysis has a significant impact on restoring their functional independence to perform activities of daily living (ADL). Telepresence is a subfield of the robotic-assisted route, where human plays the role of an operator, sending high-level instructions to an as sistive robot while receiving sensory feedback. However, for severely motor-impaired people, conventional interaction modalities may not be suitable due to their complete paralysis. Thus, designing alternative ways of interaction such as Brain-Computer Interfaces (BCI) is essential for a telepresence capability. We propose a novel framework that integrates a BCI system and a humanoid robot to develop a brain-controlled telepresence system with multimodal control features. In particular, the low-level control is executed by Programming by Demonstration (PbD) models, and the higher-level cognitive commands are produced by a BCI system to perform vital ADLs. The presented system is based on real-time decoding of attention-modulated neural responses elicited in the brain electroencephalographic signals and generating multiple control commands. As a result, the system allows a user to interact with a humanoid robot while receiving auditory and visual feedback from the robot's sensors. We validated our system across ten subjects in a realistic scenario. The experimental results show the feasibility of the approach in the design of a telepresence robot with high BCI decoding performances

    Organizational Posthumanism

    Get PDF
    Building on existing forms of critical, cultural, biopolitical, and sociopolitical posthumanism, in this text a new framework is developed for understanding and guiding the forces of technologization and posthumanization that are reshaping contemporary organizations. This ‘organizational posthumanism’ is an approach to analyzing, creating, and managing organizations that employs a post-dualistic and post-anthropocentric perspective and which recognizes that emerging technologies will increasingly transform the kinds of members, structures, systems, processes, physical and virtual spaces, and external ecosystems that are available for organizations to utilize. It is argued that this posthumanizing technologization of organizations will especially be driven by developments in three areas: 1) technologies for human augmentation and enhancement, including many forms of neuroprosthetics and genetic engineering; 2) technologies for synthetic agency, including robotics, artificial intelligence, and artificial life; and 3) technologies for digital-physical ecosystems and networks that create the environments within which and infrastructure through which human and artificial agents will interact. Drawing on a typology of contemporary posthumanism, organizational posthumanism is shown to be a hybrid form of posthumanism that combines both analytic, synthetic, theoretical, and practical elements. Like analytic forms of posthumanism, organizational posthumanism recognizes the extent to which posthumanization has already transformed businesses and other organizations; it thus occupies itself with understanding organizations as they exist today and developing strategies and best practices for responding to the forces of posthumanization. On the other hand, like synthetic forms of posthumanism, organizational posthumanism anticipates the fact that intensifying and accelerating processes of posthumanization will create future realities quite different from those seen today; it thus attempts to develop conceptual schemas to account for such potential developments, both as a means of expanding our theoretical knowledge of organizations and of enhancing the ability of contemporary organizational stakeholders to conduct strategic planning for a radically posthumanized long-term future

    BCIs and mobile robots for neurological rehabilitation: practical applications of remote control. Remote control of mobile robots applied in non-invasive BCI for disabled users afflicted by motor neurons diseases

    Get PDF
    This project aims at testing the possible advantages of introducing a mobile robot as a physical input/output device in a Brain Computer Interface (BCI) system. In the proposed system, the actions triggered by the subject’s brain activity results in the motions of a physical device in the real world, and not only in a modification of a graphical interface. A goal-based system for destination detecting and the high entertainment level offered by controlling a mobile robot are hence main features for actually increase patients' life quality leve

    A BCI TELEOPERATED MUSEUM ROBOTIC GUIDE

    No full text
    Brain Computer Interface is a system that offers also a support to the patients with neuromuscular diseases as Amyotrophic Lateral Sclerosis. In this paper are presented some works with the aim to integrate brain computer interfaces and mobile robots. The two aim of this project are: (i) to test an improved BCI experience through the help of a physical robot, so that brain signals are stronger stimulate. (ii) to use a remote robot controlled by a highly paralyzed patient via a BCI through a friendly Graphic User. Some preliminary experiments are presented in this paper about one of the possible application: a robotic museum guide (PeopleBot and Pioneer3 robot), that can transmit remote visual perceptions to the patien
    corecore