14 research outputs found

    SiGe-based broadband and high suppression frequency doubler ICs for wireless communications

    Get PDF
    制度:新 ; 報告番号:甲3419号 ; 学位の種類:博士(工学) ; 授与年月日:2011/9/15 ; 早大学位記番号:新574

    Circuit Techniques for Multiple and Wideband Beamforming

    Get PDF
    University of Minnesota Ph.D. dissertation.June 2018. Major: Electrical Engineering. Advisor: Ramesh Harjani. 1 computer file (PDF); x, 102 pages.This thesis presents different architectures with regard to multiple beamforming and wideband phased array transceiver. Three different designs are implemented in TSMC 65nm RF CMOS to demonstrate different solutions. The design in this thesis have included major RF blocks in state-of-art wireless transceiver: RF receiver, local oscillator, and RF transmitter. First, a RF/analog FFT based four-channel four-beam receiver with progressive partial spatial ltering is proposed. This architecture is particularly well suited for MIMO systems where multiple beams are used to increase throughput. Like the FFT, the proposed architecture reuses computations for multi-beam systems. In particular, the proposed architecture redistributes the computations so as to maximize the reuse of the structure that already exist in a receiver chain. In many fashions the architecture is quite similar to a Butler matrix but unlike the Butler matrix it does not use large passive components at RF. Further, we exploit the normally occurring quadrature down-conversion process to implement the tap weights. In comparison to traditional MIMO architectures, that effectively duplicate each path, the distributed computations of this architecture provide partial spatial ltering before the final stage, improving interference rejection for the blocks between the LNA and the ADC. Additionally, because of the spatial ltering prior to the ADC, a single interferer only jams a single beam allowing for continued operation though at a lower combined throughput. The four-beam receiver core prototype in 65nm CMOS implements the basic FFT based architecture but does not include an LNA or extensive IF stages. This four-channel design consumes 56mW power and occupies an active area of 0:65mm2 excluding pads and test circuits. Second, a wideband phased array receiver architecture with simultaneous spectral and spatial filtering by sub-harmonic injection oscillators is presented. The design avoids using expensive delay elements by many conventional wideband phased array. Different from prior art of channelization which cannot solve beam-squinting issue among the sub-channels, we use sub-harmonic injection locking scheme, which make the center frequencies of all sub-channels point to the same spatial direction to overcome beam-squinting issue. The low frequency, low power and narrowband phase shifters are placed at LO in comparison to conventional way of placing delay elements or phase shifters in the signal path. This avoids receiver performance degradation from delay elements or phase shifters. The simultaneous spectral and spatial ltering dictates less ADC dynamic range requirement and further reduces power. The injection locking scheme reduces the phase noise contribution from the oscillators. The two-band prototype design realized in 65nm GP CMOS is centered at 9GHz, provides 4GHz instantaneous bandwidth, reduces beam-squinting by half, consumes 31.75mW/antenna and occupies 2.7mm2 of chip area. In the third work, a steerable RF/analog FFT based four-beam transmitter architecture is presented. This work is based on the idea of FFT based multiple beamforming in 1st work, but extended to the transmitter and make the all beams steerable. Due to the reciprocity between receiver and transmitter, decimation-in-frequency (DIF) FFT is utilized in the transmitter. All the beams are steered simultaneously by front-end phase shifters, while keep each of the beams is independent of the others. The steerability of FFT based multiple beamforming scheme makes this proposed prototype could tackle more complicated portable wireless environment. The first and second proposed architecture have been silicon veried, and the design of the third has been finished and ready for tapeout

    Simulation and Design of an UWB Imaging System for Breast Cancer Detection

    Get PDF
    Breast cancer is the most frequently diagnosed cancer among women. In recent years, the mortality rate due to this disease is greatly decreased thanks to both enormous progress in cancer research, and screening campaigns which have allowed the increase in the number of early diagnoses of the disease. In fact, if the tumor is identied in its early stage, e.g. when it has a diameter of less than one centimeter, the possibility of a cure can reach 93%. However, statistics show that more young aged women are suered breast cancer. The goal of screening exams for early breast cancer detection is to nd cancers before they start to cause symptoms. Regular mass screening of all women at risk is a good option to achieve that. Instead of meeting very high diagnostic standards, it is expected to yield an early warning, not a denitive diagnosis. In the last decades, X-ray mammography is the most ecient screening technique. However, it uses ionizing radiation and, therefore, should not be used for frequent check-ups. Besides, it requires signicant breast compression, which is often painful. In this scenario many alternative technologies were developed to overcome the limitations of mammography. Among these possibilities, Magnetic Resonance Imaging (MRI) is too expensive and time-consuming, Ultrasound is considered to be too operatordependent and low specicity, which are not suitable for mass screening. Microwave imaging techniques, especially Ultra WideBand (UWB) radar imaging, is the most interesting one. The reason of this interest relies on the fact that microwaves are non-ionizing thus permitting frequent examinations. Moreover, it is potentially lowcost and more ecient for young women. Since it has been demonstrated in the literatures that the dielectric constants between cancerous and healthy tissues are quite dierent, the technique consists in illuminating these biological tissues with microwave radiations by one or more antennas and analyzing the re ected signals. An UWB imaging system consists of transmitters, receivers and antennas for the RF part, the transmission channel and of a digital backend imaging unit for processing the received signals. When an UWB pulse strikes the breast, the pulse is re ected due to the dielectric discontinuity in tissues, the bigger the dierence, the bigger the backscatter. The re ected signals are acquired and processed to create the energy maps. This thesis aims to develop an UWB system at high resolution for the detection of carcinoma breast already in its initial phase. To favor the adoption of this method in screening campaigns, it is necessary to replace the expensive and bulky RF instrumentation used so far with ad-hoc designed circuits and systems. In order to realize that, at the very beginning, the overall system environment must be built and veried, which mainly consists of the transmission channel{the breast model and the imaging unit. The used transmission channel data come from MRI of the prone patient. In order to correctly use this numerical model, a simulator was built, which was implemented in Matlab, according to the Finite-Dierence-Time- Domain (FDTD) method. FDTD algorithm solves the electric and magnetic eld both in time and in space, thus, simulates the propagation of electromagnetic waves in the breast model. To better understand the eect of the system non-idealities, two 2D breast models are investigated, one is homogeneous, the other is heterogeneous. Moreover, the modeling takes into account all critical aspects, including stability and medium dispersion. Given the types of tissues under examination, the frequency dependence of tissue dielectric properties is incorporated into wideband FDTD simulations using Debye dispersion parameters. A performed further study is in the implementation of the boundary conditions. The Convolution Perfectly Matched Layer (CPML) is used to implement the absorbing boundaries. The objective of the imaging unit is to obtain an energy map representing the amount of energy re ected from each point of the breast, by recombining the sampled backscattered signals. For this purpose, the study has been carried out on various beamforming in the literature. The basic idea is called as "delay and sum", which is to align the received signals in such a way as to focus a given point in space and then add up all the contributions, so as to obtain a constructive interference at that point if this is a diseased tissue. In this work, Microwave Imaging via Space Time (MIST) Beamforming algorithm is applied, which is based on the above principle and add more elaborations of the signals in order to make the algorithm less sensitive to propagation phenomena in the medium and to the non-idealities of the system. It is divided into two distinct steps: the rst step, called SKin Artifact Removal (SKAR), takes care of removing the contributions from the signal caused by the direct path between the transmitter and receiver, the re ection of skin, as they are orders of magnitude higher compared to the re ections caused by cancers; the second step, which is BEAmForming (BEAF), performs the algorithm of reconstruction by forming a weighted combination of time delayed version of the calibrated re ected signals. As discussed above, more attention must be paid on the implementation of the ad-hoc integration circuits. In this scenario, due to the strict requirements on the RF receiver component, two dierent approaches of the implementation of the RF front-end, Direct Conversion (DC) receiver and Coherent Equivalent Time Sampling (CETS) receiver are compared. They are modeled behaviorally and the eects of various impairments, such as thermal, jitter, and phase noise, as well as phase inaccuracies, non-linearity, ADC quantization noise and distortion, on energy maps and on quantitative metrics such as SCR and SMR are evaluated. Dierential Gaussian pulse is chosen as the exciting source. Results show that DC receiver performs higher sensitivity to phase inaccuracies, which makes it less robust than the CETS receiver. Another advantage of the CETS receiver is that it can work in time domain with UWB pulses, other than in frequency domain with stepped frequency continuous waves like the DC one, which reduces the acquisition time without impacting the performance. Based on the results of the behavioral simulations, low noise amplier (LNA) and Track and Hold Amplier (THA) can be regarded as the most critical parts for the proposed CETS receiver, as well as the UWB antenna. This work therefore focuses on their hardware implementations. The LNA, which shows critical performance limitation at bandwidth and noise gure of receiver, has been developed based on common-gate conguration. And the THA based on Switched Source Follower (SSF) scheme has been presented and improved to obtain high input bandwidth, high sampling rate, high linearity and low power consumption. LNA and THA are implemented in CMOS 130nm technology and the circuit performance evaluation has been taken place separately and together. The small size UWB wide-slot antenna is designed and simulated in HFSS. Finally, in order to evaluate the eect of the implemented transistor level components on system performance, a multi-resolution top-down system methodology is applied. Therfore, the entire ow is analyzed for dierent levels of the RF frontend. Initially the system components are described behaviorally as ideal elements. The main activity consists in the analysis and development of the entire frontend system, observing and complementing each other blocks in a single ow simulation, clear and well-dened in its various interfaces. To achieve that the receiver is modeled and analyzed using VHDL-AMS language block by block, moreover, the impact of quantization, noise, jitter, and non-linearity is also evaluated. At last, the behavioral description of antenna, LNA and THA is replaced with a circuit-level one without changing the rest of the system, which permits a system-level assessment of low-level issues

    Advances in Integrated Circuit Design and Implementation for New Generation of Wireless Transceivers

    Get PDF
    User’s everyday outgrowing demand for high-data and high performance mobile devices pushes industry and researchers into more sophisticated systems to fulfill those expectations. Besides new modulation techniques and new system designs, significant improvement is required in the transceiver building blocks to handle higher data rates with reasonable power efficiency. In this research the challenges and solution to improve the performance of wireless communication transceivers is addressed. The building block that determines the efficiency and battery life of the entire mobile handset is the power amplifier. Modulations with large peak to average power ratio severely degrade efficiency in the conventional fixed-biased power amplifiers (PAs). To address this challenge, a novel PA is proposed with an adaptive load for the PA to improve efficiency. A nonlinearity cancellation technique is also proposed to improve linearity of the PA to satisfy the EVM and ACLR specifications. Ultra wide-band (UWB) systems are attractive due to their ability for high data rate, and low power consumption. In spite of the limitation assigned by the FCC, the coexistence of UWB and NB systems are still an unsolved challenge. One of the systems that is majorly affected by the UWB signal, is the 802.11a system (5 GHz Wi-Fi). A new analog solution is proposed to minimize the interference level caused by the impulse Radio UWB transmitter to nearby narrowband receivers. An efficient 400 Mpulse/s IR-UWB transmitter is implemented that generates an analog UWB pulse with in-band notch that covers the majority of the UWB spectrum. The challenge in receiver (RX) design is the over increasing out of blockers in applications such as cognitive and software defined radios, which are required to tolerate stronger out-of-band (OB) blockers. A novel RX is proposed with a shunt N-path high-Q filter at the LNA input to attenuate OB-blockers. To further improve the linearity, a novel baseband blocker filtering techniques is proposed. A new TIA has been designed to maintain the good linearity performance for blockers at large frequency offsets. As a result, a +22 dBm IIP3 with 3.5 dB NF is achieved. Another challenge in the RX design is the tough NF and linearity requirements for high performance systems such as carrier aggregation. To improve the NF, an extra gain stage is added after the LNA. An N-path high-Q band-pass filter is employed at the LNA output together with baseband blocker filtering technique to attenuate out-of-band blockers and improve the linearity. A noise-cancellation technique based on the frequency translation has been employed to improve the NF. As a result, a 1.8dB NF with +5 dBm IIP3 is achieved. In addition, a new approach has been proposed to reject out of band blockers in carrier aggregation scenarios. The proposed solution also provides carrier to carrier isolation compared to typical solution for carrier aggregation

    Ultra Wideband

    Get PDF
    Ultra wideband (UWB) has advanced and merged as a technology, and many more people are aware of the potential for this exciting technology. The current UWB field is changing rapidly with new techniques and ideas where several issues are involved in developing the systems. Among UWB system design, the UWB RF transceiver and UWB antenna are the key components. Recently, a considerable amount of researches has been devoted to the development of the UWB RF transceiver and antenna for its enabling high data transmission rates and low power consumption. Our book attempts to present current and emerging trends in-research and development of UWB systems as well as future expectations

    Millimeter-Wave Band Pass Distributed Amplifier for Low-Cost Active Multi-Beam Antennas

    Get PDF
    Recently, there have been a great interest in the millimeter-wave (mmW) and terahertz (THz) bands due to the unique features they provide for various applications. For example, the mmW is not significantly affected by the atmospheric constraints and it can penetrate through clothing and other dielectric materials. Therefore, it is suitable for a vast range of imaging applications such as vision, safety, health, environmental studies, security and non-destructive testing. Millimeter-wave imaging systems have been conventionally used for high end applications implementing sophisticated and expensive technologies. Recent advancements in the silicon integrated and low loss material passive technologies have created a great opportunity to study the feasibility of low cost mmW imaging systems. However, there are several challenges to be addressed first. Examples are modeling of active and passive devices and their low performance, highly attenuated channel and poor signal to noise ratio in the mmW. The main objective of this thesis is to investigate and develop new technologies enabling cost-effective implementation of mmW and sub-mmW imaging systems. To achieve this goal, an integrated active Rotman lens architecture is proposed as an ultimate solution to combine the unique properties of a Rotman lens with the superiority of CMOS technology for fabrication of cost effective integrated mmW systems. However, due to the limited sensitivity of on-chip detectors in the mmW, a large number of high gain, wide-band and miniaturized mmW Low Noise Amplifiers (LNA) are required to implement the proposed integrated Rotman lens architecture. A unique solution presented in this thesis is the novel Band Pass Distributed Amplifier (BPDA) topology. In this new topology, by short circuiting the line terminations in a Conventional Distributed Amplifier (CDA), standing waves are created in its artificial transmission lines. Conventionally, standing waves are strongly avoided by carefully matching these lines to 50 Ω in order to prevent instability of the amplifier. This causes that a large portion of the signal be absorbed in these resistive terminations. In this thesis, it is shown that due to presence of highly lossy parasitics of CMOS transistor at the mmW the amplifier stability is inherently achieved. Moreover, by eliminating these lossy and noise terminations in the CDA, the amplifier gain is boosted and its noise figure is reduced. In addition, a considerable decrease in the number of elements enables low power realization of many amplifiers in a small chip area. Using the lumped element model of the transistor, the transfer function of a single stage BPDAs is derived and compared to its conventional counter part. A methodology to design a single stage BPDA to achieve all the design goals is presented. Using the presented design guidelines, amplifiers for different mmW frequencies have been designed, fabricated and tested. Using only 4 transistors, a 60 GHz amplifier is fabricated on a very small chip area of 0.105 mm2 by a low-cost 130 nm CMOS technology. A peak gain of 14.7 dB and a noise figure of 6 dB are measured for this fabricated amplifier. oreover, it is shown that by further circuit optimization, high gain amplification can be realized at frequencies above the cut-off frequency of the transistor. Simulations show 32 and 28 dB gain can be obtained by implementing only 6 transistors using this CMOS technology at 60 and 77 GHz. A 4-stage 85 GHz amplifier is also designed and fabricated and a measured gain of 10 dB at 82 GHz is achieved with a 3 dB bandwidth of 11 GHz from 80 to 91 GHz. A good agreement between the simulated and measured results verifies the accuracy of the design procedure. In addition, a multi-stage wide-band BPDA has been designed to show the ability of the proposed topology for design of wide band mmW amplifiers using the CMOS technology. Simulated gain of 20.5 dB with a considerable 3 dB bandwidth of 38 GHz from 30 to 68 GHz is achieved while the noise figure is less than 6 dB in the whole bandwidth. An amplifier figure of merit is defined in terms of gain, noise figure, chip area, band width and power consumption. The results are compared to those of the state of the art to demonstrate the advantages of the proposed circuit topology and presented design techniques. Finally, a Rotman lens is designed and optimized by choosing a very small Focal Lens Ratio (FL), and a high measured efficiency of greater than 30% is achieved while the lens dimensions are less than 6 mm. The lens is designed and implemented using a low cost Alumina substrate and conventional microstrip lines to ease its integration with the active parts of the system.1 yea

    High Performance RF and Basdband Analog-to-Digital Interface for Multi-standard/Wideband Applications

    Get PDF
    The prevalence of wireless standards and the introduction of dynamic standards/applications, such as software-defined radio, necessitate the next generation wireless devices that integrate multiple standards in a single chip-set to support a variety of services. To reduce the cost and area of such multi-standard handheld devices, reconfigurability is desirable, and the hardware should be shared/reused as much as possible. This research proposes several novel circuit topologies that can meet various specifications with minimum cost, which are suited for multi-standard applications. This doctoral study has two separate contributions: 1. The low noise amplifier (LNA) for the RF front-end; and 2. The analog-to-digital converter (ADC). The first part of this dissertation focuses on LNA noise reduction and linearization techniques where two novel LNAs are designed, taped out, and measured. The first LNA, implemented in TSMC (Taiwan Semiconductor Manufacturing Company) 0.35Cm CMOS (Complementary metal-oxide-semiconductor) process, strategically combined an inductor connected at the gate of the cascode transistor and the capacitive cross-coupling to reduce the noise and nonlinearity contributions of the cascode transistors. The proposed technique reduces LNA NF by 0.35 dB at 2.2 GHz and increases its IIP3 and voltage gain by 2.35 dBm and 2dB respectively, without a compromise on power consumption. The second LNA, implemented in UMC (United Microelectronics Corporation) 0.13Cm CMOS process, features a practical linearization technique for high-frequency wideband applications using an active nonlinear resistor, which obtains a robust linearity improvement over process and temperature variations. The proposed linearization method is experimentally demonstrated to improve the IIP3 by 3.5 to 9 dB over a 2.5–10 GHz frequency range. A comparison of measurement results with the prior published state-of-art Ultra-Wideband (UWB) LNAs shows that the proposed linearized UWB LNA achieves excellent linearity with much less power than previously published works. The second part of this dissertation developed a reconfigurable ADC for multistandard receiver and video processors. Typical ADCs are power optimized for only one operating speed, while a reconfigurable ADC can scale its power at different speeds, enabling minimal power consumption over a broad range of sampling rates. A novel ADC architecture is proposed for programming the sampling rate with constant biasing current and single clock. The ADC was designed and fabricated using UMC 90nm CMOS process and featured good power scalability and simplified system design. The programmable speed range covers all the video formats and most of the wireless communication standards, while achieving comparable Figure-of-Merit with customized ADCs at each performance node. Since bias current is kept constant, the reconfigurable ADC is more robust and reliable than the previous published works

    Frequency Synthesizers and Oscillator Architectures Based on Multi-Order Harmonic Generation

    Get PDF
    Frequency synthesizers are essential components for modern wireless and wireline communication systems as they provide the local oscillator signal required to transmit and receive data at very high rates. They are also vital for computing devices and microcontrollers as they generate the clocks required to run all the digital circuitry responsible for the high speed computations. Data rates and clocking speeds are continuously increasing to accommodate for the ever growing demand on data and computational power. This places stringent requirements on the performance metrics of frequency synthesizers. They are required to run at higher speeds, cover a wide range of frequencies, provide a low jitter/phase noise output and consume minimum power and area. In this work, we present new techniques and architectures for implementing high speed frequency synthesizers which fulfill the aforementioned requirements. We propose a new architecture and design approach for the realization of wideband millimeter-wave frequency synthesizers. This architecture uses two-step multi-order harmonic generation of a low frequency phase-locked signal to generate wideband mm-wave frequencies. A prototype of the proposed system is designed and fabricated in 90nm Complementary Metal Oxide Semiconductor (CMOS) technology. Measurement results demonstrated that a very wide tuning range of 5 to 32 GHz can be achieved, which is costly to implement using conventional techniques. Moreover the power consumption per octave resembles that of state-of-the art reports. Next, we propose the N-Push cyclic coupled ring oscillator (CCRO) architecture to implement two high performance oscillators: (1) a wideband N-Push/M-Push CCRO operating from 3.16-12.8GHz implemented by two harmonic generation operations using the availability of different phases from the CCRO, and (2) a 13-25GHz millimeter-wave N-Push CCRO with a low phase noise performance of -118dBc/Hz at 10MHz. The proposed oscillators achieve low phase noise with higher FOM than state of the art work. Finally, we present some improvement techniques applied to the performance of phase locked loops (PLLs). We present an adaptive low pass filtering technique which can reduce the reference spur of integer-N charge-pump based PLLs by around 20dB while maintaining the settling time of the original PLL. Another PLL is presented, which features very low power consumption targeting the Medical Implantable Communication Standard. It operates at 402-405 MHz while consuming 600microW from a 1V supply

    Design and analysis of wideband passive microwave devices using planar structures

    Get PDF
    A selected volume of work consisting of 84 published journal papers is presented to demonstrate the contributions made by the author in the last seven years of his work at the University of Queensland in the area of Microwave Engineering. The over-arching theme in the author’s works included in this volume is the engineering of novel passive microwave devices that are key components in the building of any microwave system. The author’s contribution covers innovative designs, design methods and analyses for the following key devices and associated systems: Wideband antennas and associated systems Band-notched and multiband antennas Directional couplers and associated systems Power dividers and associated systems Microwave filters Phase shifters Much of the motivation for the work arose from the desire to contribute to the engineering o
    corecore