13 research outputs found

    Study on improvement of the performance parameters of a novel 0.41–0.47 THz on-chip antenna based on metasurface concept realized on 50 μm GaAs-layer

    Get PDF
    A feasibility study is presented on the performance parameters of a novel on-chip antenna based on metasurface technology at terahertz band. The proposed metasurface on-chip antenna is constructed on an electrically thin high-permittivity gallium arsenide (GaAs) substrate layer. Metasurface is implemented by engraving slot-lines on an array of 11 x 11 circular patches fabricated on the top layer of the GaAs substrate and metallic via-holes implemented in the central patch of each row constituting the array, which connects the patch to the leaky-wave open-ended feeding slot-lines running underneath the patches. The slot-lines are connected to each other with a slit. A waveguide port is used to excite the array via slot-lines that couple the electromagnetic energy to the patches. The metasurface on-chip antenna is shown to exhibit an average measured gain in excess of 10 dBi and radiation efficiency above 60% over a wide frequency range from 0.41 to 0.47 THz, which is significant development over other on-chip antenna techniques reported to date. Dimensions of the antenna are 8.6 x 8.6 x 0.0503 mm(3). The results show that the proposed GaAs-based metasurface on-chip antenna is viable for applications in terahertz integrated circuits

    Antenna on chip (Aoc) design using metasurface and siw technologies for thz wireless applications

    Get PDF
    This paper presents the design of a high-performance 0.45-0.50 THz antenna on chip (AoC) for fabrication on a 100-micron GaAs substrate. The antenna is based on metasurface and substrate-integrated waveguide (SIW) technologies. It is constituted from seven stacked layers consisting of copper patch-silicon oxide-feedline-silicon oxide-aluminium-GaAs-copper ground. The top layer consists of a 2 x 4 array of rectangular metallic patches with a row of subwavelength circular slots to transform the array into a metasurface. This essentially enlarges the effective aperture area of the antenna. The antenna is excited using a coplanar waveguide feedline that is sandwiched between the two silicon oxide layers below the patch layer. The proposed antenna structure reduces substrate loss and surface waves. The AoC has dimensions of 0.8 x 0.8 x 0.13 mm(3). The results show that the proposed structure greatly enhances the antenna's gain and radiation efficiency, and this is achieved without compromising its physical size. The antenna exhibits an average gain and efficiency of 6.5 dBi and 65%, respectively, which makes it a promising candidate for emerging terahertz applications

    High-Gain On-Chip Antenna Design on Silicon Layer With Aperture Excitation for Terahertz Applications

    Get PDF
    This article investigates the feasibility of designing a high-gain on-chip antenna on silicon technology for sub-terahertz applications over a wide frequency range. High-gain is achieved by exciting the antenna using an aperture fed mechanism to couple electromagnetics energy from a metal slot-line, which is sandwiched between the silicon and polycarbonate substrates, to a 15-element array comprising circular and rectangular radiation patches fabricated on the top surface of the polycarbonate layer. An open ended microstrip line, which is orthogonal to the metal slot-line, is implemented on the underside of the silicon substrate. When the open ended microstrip line is excited it couples the signal to the metal slot-line which is subsequently coupled and radiated by the patch array. Measured results show the proposed on-chip antenna exhibits a reflection coefficient of less than -10 dB across 0.290 THz to 0.316 THz with a highest gain and radiation efficiency of 11.71 dBi and 70.8%, respectively, occurred at 0.3THz. The antenna has a narrow stopband between 0.292 THz to 0.294 THz. The physical size of the presented sub-terahertz on-chip antenna is 20×3.5×0.126mm

    Recent Trends and Considerations for High Speed Data in Chips and System Interconnects

    Get PDF
    This paper discusses key issues related to the design of large processing volume chip architectures and high speed system interconnects. Design methodologies and techniques are discussed, where recent trends and considerations are highlighted

    High-Gain Metasurface in Polyimide On-Chip Antenna Based on CRLH-TL for Sub-Terahertz Integrated Circuits

    Get PDF
    This paper presents a novel on-chip antenna using standard CMOS-technology based on metasurface implemented on two-layers polyimide substrates with a thickness of 500μm. The aluminium ground-plane with thickness of 3μm is sandwiched between the two-layers. Concentric dielectric-rings are etched in the ground-plane under the radiation patches implemented on the top-layer. The radiation patches comprise concentric metal-rings that are arranged in a 3×3 matrix. The antennas are excited by coupling electromagnetic energy through the gaps of the concentric dielectric-rings in the ground-plane using a microstrip feedline created on the bottom polyimide-layer. The open-ended feedline is split in three-branches that are aligned under the radiation elements to couple the maximum energy. In this structure, the concentric metal-rings essentially act as series left-handed capacitances CL that extend the effective aperture area of the antenna without affecting its dimensions, and the concentric dielectric rings etched in the ground-plane act as shunt left-handed inductors LL, which suppress the surface-waves and reduce the substrates losses that leads to improved bandwidth and radiation properties. The overall structure behaves like a metasurface that is shown to exhibit a very large bandwidth of 0.350-0.385THz with an average radiation gain and efficiency of 8.15dBi and 65.71%, respectively. It has dimensions of 6×6×1mm3 that makes it suitable for on-chip implementation

    Study on Improvement of the Performance Parameters of a Novel 0.41-0.47 THz On-Chip Antenna Based on Metasurface Concept Realized on 50um GaAs-Layer

    Get PDF
    A feasibility study is presented on the performance parameters of a novel on-chip antenna based on metasurface technology at terahertz band. The proposed metasurface on-chip antenna is constructed on an electrically thin high-permittivity gallium arsenide (GaAs) substrate layer. Metasurface is implemented by engraving slot-lines on an array of 11×11 circular patches fabricated on the top layer of the GaAs substrate and metallic via-holes implemented in the central patch of each row constituting the array, which connects the patch to the leaky-wave open-ended feeding slot-lines running underneath the patches. The slot-lines are connected to each other with a slit. A waveguide port is used to excite the array via slot-lines that couple the electromagnetic energy to the patches. The metasurface on-chip antenna is shown to exhibit an average measured gain in excess of 10 dBi and radiation efficiency above 60% over a wide frequency range from 0.41 THz to 0.47 THz, which is significant development over other on-chip antenna techniques reported to date. Dimensions of the antenna are 8.6×8.6×0.0503 mm3. The results show that the proposed GaAs-based metasurface on-chip antenna is viable for applications in terahertz integrated circuits

    Antenna on chip (AoC) design using metasurface and SIW technologies for THz wireless applications

    Get PDF
    This paper presents the design of a high-performance 0.45–0.50 THz antenna on chip (AoC) for fabrication on a 100-micron GaAs substrate. The antenna is based on metasurface and substrate integrated waveguide (SIW) technologies. It is constituted from seven stacked layers consisting of copper patch–silicon oxide–feedline–silicon oxide–aluminium–GaAs–copper ground. The top layer consists of a 2 x 4 array of rectangular metallic patches with a row of subwavelength circular slots to transform the array into a metasurface. This essentially enlarges the effective aperture area of the antenna. The antenna is excited using a coplanar waveguide feedline that is sandwiched between the two silicon oxide layers below the patch layer. The proposed antenna structure reduces substrate loss and surface waves. The AoC has dimensions of 0.8 x 0.8 x 0.13 mm3. The results show that the proposed structure greatly enhances the antenna’s gain and radiation efficiency, and this is achieved without compromising its physical size. The antenna exhibits an average gain and efficiency of 6.5 dBi and 65%, respectively, which makes it a promising candidate for emerging terahertz applications

    High performance antenna-on-chip inspired by SIW and metasurface technologies for THz band operation

    Get PDF
    In this paper, a high-performance antenna-on-chip (AoC) is implemented on gallium arsenide (GaAs) wafer based on the substrate integrated waveguide (SIW) and metasurface (MTS) technologies for terahertz band applications. The proposed antenna is constructed using five stacked layers comprising metal-GaAs-metal-GaAs-metal. The conductive electromagnetic radiators are implemented on the upper side of the top GaAs layer, which has a metallic ground-plane at its underside. The metallic feedline is implemented at the underside of the bottom GaAs layer. Dual wrench-shaped radiators are framed by metallic vias connected to the ground-plane to create SIW cavity. This technique mitigates the surface waves and the substrate losses, thereby improving the antenna’s radiation characteristics. The antenna is excited by a T-shaped feedline implemented on the underside of the bottom GaAs substrate layer. Electromagnetic (EM) energy from the feedline is coupled to the radiating elements through the circular and linear slots etched in the middle ground-plane layer. To mitigate the surface-wave interactions and the substrate losses in the bottom GaAs layer, the feedline is contained inside a SIW cavity. To enhance the antenna’s performance, the radiators are transformed into a metamaterial-inspired surface (i.e., metasurface), by engraving periodic arrangement of circular slots of sub-wavelength diameter and periodicity. Essentially, the slots act as resonant scatterers, which control the EM response of the surface. The antenna of dimensions of 400 × 400 × 8 μm3 is demonstrated to operate over a wide frequency range from 0.445 to 0.470 THz having a bandwidth of 25 GHz with an average return-loss of − 27 dB. The measured average gain and radiation efficiency are 4.6 dBi and 74%, respectively. These results make the proposed antenna suitable for AoC terahertz applications
    corecore