90 research outputs found

    Developing Android Mobile Map Application with standard navigation tools for pedestrians

    Get PDF
    Advanced features of modern mobile devices have made it possible to develop and use maps and map based applications for navigation purposes. Since most mobile map applications nowadays are developed for motor vehicles, there is a demand for portable pedestrian navigation applications. In this thesis the Android mobile map application with standard navigation tools for pedestrian navigation was developed, as a platform for facilitating the Lund Challenge location based demonstrator of the HaptiMap project. The pivotal aim of the Lund Challenge demonstrator is to make the sights of Lund city more accessible. The mobile phone application is being designed as a touristic, historical location based game which will also assist tourists to navigate themselves in the city. To enable exploration of historical and current sites of Lund the demonstrator should contain basic components of exploring and way finding. Prior to the development the OpenStreetMap (OSM) road network data and Swedish National Road Database (NVDB) were introduced. The main advantage of using the OSM data over the NVDB dataset is the completeness of the OSM data in terms of pedestrian paths. The datasets were imported to PostgreSQL spatially extended PostGIS database, where different routing algorithms provided by pgRouting were used for routing calculations. As the Lund Challenge demonstrator is intended not only for general users but also for visually impaired users, the problem of user navigation in the parks and open areas were also discussed and the feasibility study was performed. The limitation of the developed application was the problem of the user navigation in the parks and open areas. It is therefore necessary to upgrade the road database with possible path in the open areas and parks in order to implement this application.Advanced features of modern devices have made it possible to develop and use maps and map-based applications for navigation purposes. Since most mobile map applications are currently developed for motor vehicles, there is a demand for portable pedestrian navigation applications. In this thesis, a mobile map application was developed with standard navigation tools for pedestrians, which can be used with mobile phones running Android Operating System. The application will be used as a platform for facilitating the Lund Challenge location based demonstrator. Lund Challenge location based demonstrator is designed to make historical and actual maps of Lund more accessible and is a part of the HaptiMap project. This project aims to create maps and develop location-based services for all users, including elderly and visually impaired. The goal of the Lund Challenge location based demonstrator (also known as The Lund Time Machine) is to minimize the efforts of pedestrians, especially tourists, with finding interesting sites around the city. Initially, it is being designed as a historical location based game which will assist tourists to navigate themselves around the city. In order to further explore historical and current sites, the Lund Challenge should be enhanced with the basic features of exploration and navigation included in this thesis. The road network data was chosen from two available sources: 1) data from OpenStreetMap (OSM) project which provides free geographic data, and 2) The Swedish National Road Database (NVDB) authorized by the Swedish government, which includes all Swedish road network and selected cycle paths. For this thesis, analysis was performed on the datasets using different shortest path algorithms for routing calculations. A primary advantage of using OSM over NVDB is the completeness of data relating to pedestrian paths. As a result, the determination was made that the OSM option was more appropriate for the purpose of this thesis. Since the Lund Challenge location based demonstrator is intended for both general and visually impaired users, the problem of user navigation in parks and open areas was also discussed and a feasibility study was performed. This study revealed a limitation in the application with user navigation in parks and open areas. To resolve this, it is necessary to upgrade the road network with all possible pedestrian paths for parks and open areas

    Path planning for first responders in the presence of moving obstacles

    Get PDF
    Navigation services have gained much importance for all kinds of human activities ranging from tourist navigation to support of rescue teams in disaster management. However, despite the considerable amount of route guidance research that has been performed, many issues that are related to navigation for first responders still need to be addressed. During disasters, emergencies can result in different types of moving obstacles (e.g., fires, plumes, floods), which make some parts of the road network temporarily unavailable. After such incidents occur, responders have to go to different destinations to perform their tasks in the environment affected by the disaster. Therefore they need a path planner that is capable of dealing with such moving obstacles, as well as generating and coordinating their routes quickly and efficiently. During the past decades, more and more hazard simulations, which can modify the models with incorporation of dynamic data from the field, have been developed. These hazard simulations use methods such as data assimilation, stochastic estimation, and adaptive measurement techniques, and are able to generate more reliable results of hazards. This would allow the hazard simulation models to provide valuable information regarding the state of road networks affected by hazards, which supports path planning for first responders among the moving obstacles. The objective of this research is to develop an integrated navigation system for first responders in the presence of moving obstacles. Such system should be able to navigate one or more responders to one or multiple destinations avoiding the moving obstacles, using the predicted information of the moving obstacles generated from by hazard simulations. In this dissertation, the objective we have is expressed as the following research question: How do we safely and efficiently navigate one or more first responders to one or more destinations avoiding moving obstacles? To address the above research questions, this research has been conducted using the following outline: 1). literature review; 2). conceptual design and analysis; 3). implementation of the prototype; and 4). assessment of the prototype and adaption. We investigated previous research related to navigation in disasters, and designed an integrated navigation system architecture, assisting responders in spatial data storage, processing and analysis.Within this architecture, we employ hazard models to provide the predicted information about the obstacles, and select a geo-database to store the data needed for emergency navigation. Throughout the development of the prototype navigation system, we have proposed: a taxonomy of navigation among obstacles, which categorizes navigation cases on basis of type and multiplicity of first responders, destinations, and obstacles; a multi-agent system, which supports information collection from hazard simulations, spatio-temporal data processing and analysis, connection with a geo-database, and route generation in dynamic environments affected by disasters; data models, which structure the information required for finding paths among moving obstacles, capturing both static information, such as the type of the response team, the topology of the road network, and dynamic information, such as changing availabilities of roads during disasters, the uncertainty of the moving obstacles generated from hazard simulations, and the position of the vehicle; path planning algorithms, which generate routes for one or more responders in the presence of moving obstacles. Using the speed of vehicles, departure time, and the predicted information about the state of the road network, etc., three versions (I, II, and III) of Moving Obstacle Avoiding A* (MOAAStar) algorithms are developed: 1). MOAAstarñ€“ I/Non-waiting, which supports path planning in the case of forest fires; 2). MOAAstarñ€“II/Waiting, which introduces waiting options to avoid moving obstacles like plumes; 3). MOAAstarñ€“III/Uncertainty, which can handle the uncertainty in predictions of moving obstacles and incorporate the profile of responders into the routing. We have applied the developed prototype navigation system to different navigation cases with moving obstacles. The main conclusions drawn from our applications are summarized as follows: In the proposed taxonomy, we have identified 16 navigation cases that could occur in disaster response and need to be investigated. In addressing these navigation problems, it would be quite useful to employ computer simulations and models, which can make reliable predicted information about responders, the targets, and obstacles, in finding safe routes for the responders. The approach we provide is general and not limited to the cases of plumes and fires. In our data model, the data about the movement of hazards is represented as moving polygons. This allows the data model to be easily adjusted to merge and organize information from models of different types of disasters. For example, the areas that are affected by floods can also be represented as moving polygons. To facilitate the route calculation, not only the data of obstacles but also the information about the state of road networks affected by obstacles need to be structured and stored in the database. In planning routes for responders, the routing algorithms should incorporate the dynamic data of obstacles to be able to avoid the hazards. Besides, other factors, such as the operation time of tasks, the required arrival time, and departure time, also need to be considered to achieve the objectives in a rescue process, e.g., to minimize the delays caused by the moving obstacles. The profile of responders is quite important for generation of feasible routes for a specific disaster situation. The responders may have different protective equipment that allows them to pass through different types of moving obstacles, and thus can have different classification of risk levels to define the state of the road network. By taking into account the profile of the responders, the navigation system can propose customized and safe routes to them, which would facilitate their disaster response processes. On the basis of our findings, we suggest the following topics for future work: As presented Wang and Zlatanova (2013c), there are still a couple of navigation cases that need to be addressed, especially the ones that involve dynamic destinations. More algorithms would be needed to solve these navigation problems. Besides, some extreme cases (e.g., the obstacle covers the target point during the course of an incident) also need to be investigated. Using standard Web services, an Android navigation application, which can provide navigation services in the environment affected by hazards, needs to be developed and tested in both the daily practice and real disasters. In this application, a user interface with various styling options should also be designed for different situations, e.g., waiting and moving, day and night, and urgent and non-urgent. Because the communication infrastructure may not be available or work properly during a disaster response, a decentralized method is needed to allow different users to negotiate with each other and to make local agreements on the distribution of tasks in case there is no support from the central planning system. Another type of multi-agent system would be needed to handle this situation. Introduce variable traveling speed into the re-routing process. The vehicle speed plays an important role in generation of routes avoiding moving obstacle, and can be influenced by many factors, such as the obstacles, the type of vehicles, traffic conditions, and the type of roads. Therefore, it would be needed to investigate how to derive the current and future speed from trajectories of vehicles. Apply the system to aid navigation in various types of natural disasters, using different hazard simulation models (e.g., flood model). More types of agents would be needed and integrated into the system to handle heterogeneous data from these models. Extensions of the data model are also required to meet a wider range of informational needs when multiple disasters occur simultaneously

    3D City Models and urban information: Current issues and perspectives

    Get PDF
    Considering sustainable development of cities implies investigating cities in a holistic way taking into account many interrelations between various urban or environmental issues. 3D city models are increasingly used in different cities and countries for an intended wide range of applications beyond mere visualization. Could these 3D City models be used to integrate urban and environmental knowledge? How could they be improved to fulfill such role? We believe that enriching the semantics of current 3D city models, would extend their functionality and usability; therefore, they could serve as integration platforms of the knowledge related to urban and environmental issues allowing a huge and significant improvement of city sustainable management and development. But which elements need to be added to 3D city models? What are the most efficient ways to realize such improvement / enrichment? How to evaluate the usability of these improved 3D city models? These were the questions tackled by the COST Action TU0801 “Semantic enrichment of 3D city models for sustainable urban development”. This book gathers various materials developed all along the four year of the Action and the significant breakthroughs

    GAMIFICATION IN URBAN PLANNING - EXPERIENCING THE FUTURE CITY

    Get PDF
    Virtual Reality (VR) systems have been commonly used in the game and entertainment industries and are also increasingly explored in architecture and urban planning. They assist designers to communicate design ideas to a wider public and can engage them in the design processes. In this paper, we explore gaming environments to allow users to learn about smart city applications, such as innovative mobility approaches, urban farming, drone delivery, etc. The project is part of a real-world project for a future city for 50,000 inhabitants in the European side of Istanbul, Turkey. VR technologies can offer a testing ground for testing ideas, simulating performance, crowdsourcing ideas, before building the actual city physically. Gaming incentivizes citizens to participate in the design process, and the data collected provides a significant feedback loop to shape the city of the future. Citizens can immerse themselves in the VR environment, and experience the design via four circulation modes, e.g., walking, biking, driving, and flying. They allow users to explore novel circulatory approaches within new and innovative city arteries. Indeed, the design of the city accommodates a portfolio of mobility options, and the gamification allows testing pioneering designs, e.g., parallel streets for pedestrians, vehicles, etc. Furthermore, the game allows users to collect points when engaging in smart city topics, such as urban farming, solar energy usage, carbon neutrality, etc. Feedback loop that helps to iterate on the design. The project consists of three phases, a. an immersive VR version of the city experienced on head-mounted-displays, b. edutainment and the gamification of the city, and c. the integration of the digital version of the city into Meta’s multi-user space. In the paper, we present early findings of the project, the methods/tools explored, and discuss the utility of VR technologies in the design processes of architecture and urban planning

    “AccessBIM” - A Model of Environmental Characteristics for Vision Impaired Indoor Navigation and Way Finding

    Get PDF
    The complexity of modern indoor environments has made navigation difficult for individuals with vision impairment. Hence, this thesis presents the AccessBIM framework, which is an optimized database that’s facilitates generation of a real-time floor plan with path determination. The AccessBIM framework has the potential to play an integral role in improving the independence and quality of life for people with vision impairment whilst also decreasing the cost to the community related to caretakers

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity
    • 

    corecore