64 research outputs found

    Millimeter-wave Communication and Radar Sensing — Opportunities, Challenges, and Solutions

    Get PDF
    With the development of communication and radar sensing technology, people are able to seek for a more convenient life and better experiences. The fifth generation (5G) mobile network provides high speed communication and internet services with a data rate up to several gigabit per second (Gbps). In addition, 5G offers great opportunities of emerging applications, for example, manufacture automation with the help of precise wireless sensing. For future communication and sensing systems, increasing capacity and accuracy is desired, which can be realized at millimeter-wave spectrum from 30 GHz to 300 GHz with several tens of GHz available bandwidth. Wavelength reduces at higher frequency, this implies more compact transceivers and antennas, and high sensing accuracy and imaging resolution. Challenges arise with these application opportunities when it comes to realizing prototype or demonstrators in practice. This thesis proposes some of the solutions addressing such challenges in a laboratory environment.High data rate millimeter-wave transmission experiments have been demonstrated with the help of advanced instrumentations. These demonstrations show the potential of transceiver chipsets. On the other hand, the real-time communication demonstrations are limited to either low modulation order signals or low symbol rate transmissions. The reason for that is the lack of commercially available high-speed analog-to-digital converters (ADCs); therefore, conventional digital synchronization methods are difficult to implement in real-time systems at very high data rates. In this thesis, two synchronous baseband receivers are proposed with carrier recovery subsystems which only require low-speed ADCs [A][B].Besides synchronization, high-frequency signal generation is also a challenge in millimeter-wave communications. The frequency divider is a critical component of a millimeter-wave frequency synthesizer. Having both wide locking range and high working frequencies is a challenge. In this thesis, a tunable delay gated ring oscillator topology is proposed for dual-mode operation and bandwidth extension [C]. Millimeter-wave radar offers advantages for high accuracy sensing. Traditional millimeter-wave radar with frequency-modulated continuous-wave (FMCW), or continuous-wave (CW), all have their disadvantages. Typically, the FMCW radar cannot share the spectrum with other FMCW radars.\ua0 With limited bandwidth, the number of FMCW radars that could coexist in the same area is limited. CW radars have a limited ambiguous distance of a wavelength. In this thesis, a phase-modulated radar with micrometer accuracy is presented [D]. It is applicable in a multi-radar scenario without occupying more bandwidth, and its ambiguous distance is also much larger than the CW radar. Orthogonal frequency-division multiplexing (OFDM) radar has similar properties. However, its traditional fast calculation method, fast Fourier transform (FFT), limits its measurement accuracy. In this thesis, an accuracy enhancement technique is introduced to increase the measurement accuracy up to the micrometer level [E]

    Frequency Synthesizers and Oscillator Architectures Based on Multi-Order Harmonic Generation

    Get PDF
    Frequency synthesizers are essential components for modern wireless and wireline communication systems as they provide the local oscillator signal required to transmit and receive data at very high rates. They are also vital for computing devices and microcontrollers as they generate the clocks required to run all the digital circuitry responsible for the high speed computations. Data rates and clocking speeds are continuously increasing to accommodate for the ever growing demand on data and computational power. This places stringent requirements on the performance metrics of frequency synthesizers. They are required to run at higher speeds, cover a wide range of frequencies, provide a low jitter/phase noise output and consume minimum power and area. In this work, we present new techniques and architectures for implementing high speed frequency synthesizers which fulfill the aforementioned requirements. We propose a new architecture and design approach for the realization of wideband millimeter-wave frequency synthesizers. This architecture uses two-step multi-order harmonic generation of a low frequency phase-locked signal to generate wideband mm-wave frequencies. A prototype of the proposed system is designed and fabricated in 90nm Complementary Metal Oxide Semiconductor (CMOS) technology. Measurement results demonstrated that a very wide tuning range of 5 to 32 GHz can be achieved, which is costly to implement using conventional techniques. Moreover the power consumption per octave resembles that of state-of-the art reports. Next, we propose the N-Push cyclic coupled ring oscillator (CCRO) architecture to implement two high performance oscillators: (1) a wideband N-Push/M-Push CCRO operating from 3.16-12.8GHz implemented by two harmonic generation operations using the availability of different phases from the CCRO, and (2) a 13-25GHz millimeter-wave N-Push CCRO with a low phase noise performance of -118dBc/Hz at 10MHz. The proposed oscillators achieve low phase noise with higher FOM than state of the art work. Finally, we present some improvement techniques applied to the performance of phase locked loops (PLLs). We present an adaptive low pass filtering technique which can reduce the reference spur of integer-N charge-pump based PLLs by around 20dB while maintaining the settling time of the original PLL. Another PLL is presented, which features very low power consumption targeting the Medical Implantable Communication Standard. It operates at 402-405 MHz while consuming 600microW from a 1V supply

    Design and implementation of frequency synthesizers for 3-10 ghz mulitband ofdm uwb communication

    Get PDF
    The allocation of frequency spectrum by the FCC for Ultra Wideband (UWB) communications in the 3.1-10.6 GHz has paved the path for very high data rate Gb/s wireless communications. Frequency synthesis in these communication systems involves great challenges such as high frequency and wideband operation in addition to stringent requirements on frequency hopping time and coexistence with other wireless standards. This research proposes frequency generation schemes for such radio systems and their integrated implementations in silicon based technologies. Special emphasis is placed on efficient frequency planning and other system level considerations for building compact and practical systems for carrier frequency generation in an integrated UWB radio. This work proposes a frequency band plan for multiband OFDM based UWB radios in the 3.1-10.6 GHz range. Based on this frequency plan, two 11-band frequency synthesizers are designed, implemented and tested making them one of the first frequency synthesizers for UWB covering 78% of the licensed spectrum. The circuits are implemented in 0.25µm SiGe BiCMOS and the architectures are based on a single VCO at a fixed frequency followed by an array of dividers, multiplexers and single sideband (SSB) mixers to generate the 11 required bands in quadrature with fast hopping in much less than 9.5 ns. One of the synthesizers is integrated and tested as part of a 3-10 GHz packaged receiver. It draws 80 mA current from a 2.5 V supply and occupies an area of 2.25 mm2. Finally, an architecture for a UWB synthesizer is proposed that is based on a single multiband quadrature VCO, a programmable integer divider with 50% duty cycle and a single sideband mixer. A frequency band plan is proposed that greatly relaxes the tuning range requirement of the multiband VCO and leads to a very digitally intensive architecture for wideband frequency synthesis suitable for implementation in deep submicron CMOS processes. A design in 130nm CMOS occupies less than 1 mm2 while consuming 90 mW. This architecture provides an efficient solution in terms of area and power consumption with very low complexity

    Design and implementation of frequency synthesizers for 3-10 ghz mulitband ofdm uwb communication

    Get PDF
    The allocation of frequency spectrum by the FCC for Ultra Wideband (UWB) communications in the 3.1-10.6 GHz has paved the path for very high data rate Gb/s wireless communications. Frequency synthesis in these communication systems involves great challenges such as high frequency and wideband operation in addition to stringent requirements on frequency hopping time and coexistence with other wireless standards. This research proposes frequency generation schemes for such radio systems and their integrated implementations in silicon based technologies. Special emphasis is placed on efficient frequency planning and other system level considerations for building compact and practical systems for carrier frequency generation in an integrated UWB radio. This work proposes a frequency band plan for multiband OFDM based UWB radios in the 3.1-10.6 GHz range. Based on this frequency plan, two 11-band frequency synthesizers are designed, implemented and tested making them one of the first frequency synthesizers for UWB covering 78% of the licensed spectrum. The circuits are implemented in 0.25µm SiGe BiCMOS and the architectures are based on a single VCO at a fixed frequency followed by an array of dividers, multiplexers and single sideband (SSB) mixers to generate the 11 required bands in quadrature with fast hopping in much less than 9.5 ns. One of the synthesizers is integrated and tested as part of a 3-10 GHz packaged receiver. It draws 80 mA current from a 2.5 V supply and occupies an area of 2.25 mm2. Finally, an architecture for a UWB synthesizer is proposed that is based on a single multiband quadrature VCO, a programmable integer divider with 50% duty cycle and a single sideband mixer. A frequency band plan is proposed that greatly relaxes the tuning range requirement of the multiband VCO and leads to a very digitally intensive architecture for wideband frequency synthesis suitable for implementation in deep submicron CMOS processes. A design in 130nm CMOS occupies less than 1 mm2 while consuming 90 mW. This architecture provides an efficient solution in terms of area and power consumption with very low complexity

    Clock Generation Design for Continuous-Time Sigma-Delta Analog-To-Digital Converter in Communication Systems

    Get PDF
    Software defined radio, a highly digitized wireless receiver, has drawn huge attention in modern communication system because it can not only benefit from the advanced technologies but also exploit large digital calibration of digital signal processing (DSP) to optimize the performance of receivers. Continuous-time (CT) bandpass sigma-delta (ΣΔ) modulator, used as an RF-to-digital converter, has been regarded as a potential solution for software defined ratio. The demand to support multiple standards motivates the development of a broadband CT bandpass ΣΔ which can cover the most commercial spectrum of 1GHz to 4GHz in a modern communication system. Clock generation, a major building block in radio frequency (RF) integrated circuits (ICs), usually uses a phase-locked loop (PLL) to provide the required clock frequency to modulate/demodulate the informative signals. This work explores the design of clock generation in RF ICs. First, a 2-16 GHz frequency synthesizer is proposed to provide the sampling clocks for a programmable continuous-time bandpass sigma-delta (ΣΔ) modulator in a software radio receiver system. In the frequency synthesizer, a single-sideband mixer combines feed-forward and regenerative mixing techniques to achieve the wide frequency range. Furthermore, to optimize the excess loop delay in the wideband system, a phase-tunable clock distribution network and a clock-controlled quantizer are proposed. Also, the false locking of regenerative mixing is solved by controlling the self-oscillation frequency of the CML divider. The proposed frequency synthesizer performs excellent jitter performance and efficient power consumption. Phase noise and quadrature phase accuracy are the common tradeoff in a quadrature voltage-controlled oscillator. A larger coupling ratio is preferred to obtain good phase accuracy but suffer phase noise performance. To address these fundamental trade-offs, a phasor-based analysis is used to explain bi-modal oscillation and compute the quadrature phase errors given by inevitable mismatches of components. Also, the ISF is used to estimate the noise contribution of each major noise source. A CSD QVCO is first proposed to eliminate the undesired bi-modal oscillation and enhance the quadrature phase accuracy. The second work presents a DCC QVCO. The sophisticated dynamic current-clipping coupling network reduces injecting noise into LC tank at most vulnerable timings (zero crossing points). Hence, it allows the use of strong coupling ratio to minimize the quadrature phase sensitivity to mismatches without degrading the phase noise performance. The proposed DCC QVCO is implemented in a 130-nm CMOS technology. The measured phase noise is -121 dBc/Hz at 1MHz offset from a 5GHz carrier. The QVCO consumes 4.2mW with a 1-V power supply, resulting in an outstanding Figure of Merit (FoM) of 189 dBc/Hz. Frequency divider is one of the most power hungry building blocks in a PLL-based frequency synthesizer. The complementary injection-locked frequency divider is proposed to be a low-power solution. With the complimentary injection schemes, the dividers can realize both even and odd division modulus, performing a more than 100% locking range to overcome the PVT variation. The proposed dividers feature excellent phase noise. They can be used for multiple-phase generation, programmable phase-switching frequency dividers, and phase-skewing circuits

    Design of Digital FMCW Chirp Synthesizer PLLs Using Continuous-Time Delta-Sigma Time-to-Digital Converters

    Full text link
    Radar applications for driver assistance systems and autonomous vehicles have spurred the development of frequency-modulated continuous-wave (FMCW) radar. Continuous signal transmission and high operation frequencies in the K- and W-bands enable radar systems with low power consumption and small form factors. The radar performance depends on high-quality signal sources for chirp generation to ensure accurate and reliable target detection, requiring chirp synthesizers that offer fast frequency settling and low phase noise. Fractional-N phase locked loops (PLLs) are an effective tool for synthesis of FMCW waveform profiles, and advances in CMOS technology have enabled high-performance single-chip CMOS synthesizers for FMCW radar. Design approaches for FMCW chirp synthesizer PLLs need to address the conflicting requirements of fast settling and low close-in phase noise. While integrated PLLs can be implemented as analog or digital PLLs, analog PLLs still dominate for high frequencies. Digital PLLs offer greater programmability and area efficiency than their analog counterparts, but rely on high-resolution time-to-digital converters (TDCs) for low close-in phase noise. Performance limitations of conventional TDCs remain a roadblock for achieving low phase noise with high-frequency digital PLLs. This shortcoming of digital PLLs becomes even more pronounced with wide loop bandwidths as required for FMCW radar. To address this problem, this work presents digital FMCW chirp synthesizer PLLs using continuous-time delta-sigma TDCs. After a discussion of the requirements for PLL-based FMCW chirp synthesizers, this dissertation focuses on digital fractional-N PLL designs based on noise-shaping TDCs that leverage state-of-the-art delta-sigma modulator techniques to achieve low close-in phase noise in wide-bandwidth digital PLLs. First, an analysis of the PLL bandwidth and chirp linearity studies the design requirements for chirp synthesizer PLLs. Based on a model of a complete radar system, the analysis examines the impact of the PLL bandwidth on the radar performance. The modeling approach allows for a straightforward study of the radar accuracy and reliability as functions of the chirp parameters and the PLL configuration. Next, an 18-to-22GHz chirp synthesizer PLL that produces a 25-segment chirp for a 240GHz FMCW radar application is described. This synthesizer design adapts an existing third-order noise-shaping TDC design. A 65nm CMOS prototype achieves a measured close-in phase noise of -88dBc/Hz at 100kHz offset for wide PLL bandwidths and consumes 39.6mW. The prototype drives a radar testbed to demonstrate the effectiveness of the synthesizer design in a complete radar system. Finally, a second-order noise-shaping TDC based on a fourth-order bandpass delta-sigma modulator is introduced. This bandpass delta-sigma TDC leverages the high resolution of a bandpass delta-sigma modulator by sampling a sinusoidal PLL reference and applies digital down-conversion to achieve low TDC noise in the frequency band of interest. Based on the bandpass delta-sigma TDC, a 38GHz digital FMCW chirp synthesizer PLL is designed. The feedback divider applies phase interpolation with a phase rotation scheme to ensure the effectiveness of the low TDC noise. A prototype PLL, fabricated in 40nm CMOS, achieves a measured close-in phase noise of -85dBc/Hz at 100kHz offset for wide loop bandwidths >1MHz and consumes 68mW. It effectively generates fast (500MHz/55us) and precise (824kHz rms frequency error) triangular chirps for FMCW radar. The bandpass delta-sigma TDC achieves a measured integrated rms noise of 325fs in a 1MHz bandwidth.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147732/1/dweyer_1.pdfDescription of dweyer_1.pdf : Restricted to UM users only

    Self-Calibrated, Low-Jitter and Low-Reference-Spur Injection-Locked Clock Multipliers

    Get PDF
    Department of Electrical EngineeringThis dissertation focuses primarily on the design of calibrators for the injection-locked clock multiplier (ILCM). ILCMs have advantage to achieve an excellent jitter performance at low cost, in terms of area and power consumption. The wide loop bandwidth (BW) of the injection technique could reject the noise of voltage-controlled oscillator (VCO), making it thus suitable for the rejection of poor noise of a ring-VCO and a high frequency LC-VCO. However, it is difficult to use without calibrators because of its sensitiveness in process-voltage-temperature (PVT) variations. In Chapter 2, conventional frequency calibrators are introduced and discussed. This dissertation introduces two types of calibrators for low-power high-frequency LC-VCO-based ILFMs in Chapter 3 and Chapter 4 and high-performance ring-VCO-based ILCM in Chapter 5. First, Chapter 3 presents a low power and compact area LC-tank-based frequency multiplier. In the proposed architecture, the input signals have a pulsed waveform that involves many high-order harmonics. Using an LC-tank that amplifies only the target harmonic component, while suppressing others, the output signal at the target frequency can be obtained. Since the core current flows for a very short duration, due to the pulsed input signals, the average power consumption can be dramatically reduced. Effective removal of spurious tones due to the damping of the signal is achieved using a limiting amplifier. In this work, a prototype frequency tripler using the proposed architecture was designed in a 65 nm CMOS process. The power consumption was 950 ??W, and the active area was 0.08 mm2. At a 3.12 GHz frequency, the phase noise degradation with respect to the theoretical bound was less than 0.5 dB. Second, Chapter 4 presents an ultra-low-phase-noise ILFM for millimeter wave (mm-wave) fifth-generation (5G) transceivers. Using an ultra-low-power frequency-tracking loop (FTL), the proposed ILFM is able to correct the frequency drifts of the quadrature voltage-controlled oscillator of the ILFM in a real-time fashion. Since the FTL is monitoring the averages of phase deviations rather than detecting or sampling the instantaneous values, it requires only 600??W to continue to calibrate the ILFM that generates an mm-wave signal with an output frequency from 27 to 30 GHz. The proposed ILFM was fabricated in a 65-nm CMOS process. The 10-MHz phase noise of the 29.25-GHz output signal was ???129.7 dBc/Hz, and its variations across temperatures and supply voltages were less than 2 dB. The integrated phase noise from 1 kHz to 100 MHz and the rms jitter were???39.1 dBc and 86 fs, respectively. Third, Chapter 5 presents a low-jitter, low-reference-spur ring voltage-controlled oscillator (ring VCO)-based ILCM. Since the proposed triple-point frequency/phase/slope calibrator (TP-FPSC) can accurately remove the three root causes of the frequency errors of ILCMs (i.e., frequency drift, phase offset, and slope modulation), the ILCM of this work is able to achieve a low-level reference spur. In addition, the calibrating loop for the frequency drift of the TP-FPSC offers an additional suppression to the in-band phase noise of the output signal. This capability of the TP-FPSC and the naturally wide bandwidth of the injection-locking mechanism allows the ILCM to achieve a very low RMS jitter. The ILCM was fabricated in a 65-nm CMOS technology. The measured reference spur and RMS jitter were ???72 dBc and 140 fs, respectively, both of which are the best among the state-of-the-art ILCMs. The active silicon area was 0.055 mm2, and the power consumption was 11.0 mW.clos

    LOW-POWER FREQUENCY SYNTHESIS BASED ON INJECTION LOCKING

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore