6 research outputs found

    High-speed, low cost test platform using FPGA technology

    Get PDF
    The object of this research is to develop a low-cost, adaptable testing platform for multi-GHz digital applications, with concentration on the test requirement of advanced devices. Since most advanced ATEs are very expensive, this equipment is not always available for testing cost-sensitive devices. The approach is to use recently-introduced advanced FPGAs for the core logic of the testing platform, thereby allowing for a low-cost, low power-consumption, high-performance, and adaptable test system. Furthermore to customize the testing system for specific applications, we implemented multiple extension testing modules base on this platform. With these extension modules, new functions can be added easily and the test system can be upgraded with specific features required for other testing purposes. The applications of this platform can help those digital devices to be delivered into market with shorter time, lower cost and help the development of the whole industry.Ph.D

    An Energy-Efficient Reconfigurable Mobile Memory Interface for Computing Systems

    Get PDF
    The critical need for higher power efficiency and bandwidth transceiver design has significantly increased as mobile devices, such as smart phones, laptops, tablets, and ultra-portable personal digital assistants continue to be constructed using heterogeneous intellectual properties such as central processing units (CPUs), graphics processing units (GPUs), digital signal processors, dynamic random-access memories (DRAMs), sensors, and graphics/image processing units and to have enhanced graphic computing and video processing capabilities. However, the current mobile interface technologies which support CPU to memory communication (e.g. baseband-only signaling) have critical limitations, particularly super-linear energy consumption, limited bandwidth, and non-reconfigurable data access. As a consequence, there is a critical need to improve both energy efficiency and bandwidth for future mobile devices.;The primary goal of this study is to design an energy-efficient reconfigurable mobile memory interface for mobile computing systems in order to dramatically enhance the circuit and system bandwidth and power efficiency. The proposed energy efficient mobile memory interface which utilizes an advanced base-band (BB) signaling and a RF-band signaling is capable of simultaneous bi-directional communication and reconfigurable data access. It also increases power efficiency and bandwidth between mobile CPUs and memory subsystems on a single-ended shared transmission line. Moreover, due to multiple data communication on a single-ended shared transmission line, the number of transmission lines between mobile CPU and memories is considerably reduced, resulting in significant technological innovations, (e.g. more compact devices and low cost packaging to mobile communication interface) and establishing the principles and feasibility of technologies for future mobile system applications. The operation and performance of the proposed transceiver are analyzed and its circuit implementation is discussed in details. A chip prototype of the transceiver was implemented in a 65nm CMOS process technology. In the measurement, the transceiver exhibits higher aggregate data throughput and better energy efficiency compared to prior works

    A LPDDR4 MEMORY CONTROLLER DESIGN WITH EYE CENTER DETECTION ALGORITHM

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2016. 2. 김수환.The demand for higher bandwidth with reduced power consumption in mobile memory is increasing. In this thesis, architecture of the LPDDR4 memory controller, operated with a LPDDR4 memory, is proposed and designed, and efficient training algorithm, which is appropriate for this architecture, is proposed for memory training and verification. The operation speed range of the LPDDR4 memory specification is from 533Mbps to 4266Mbps, and the LPDDR4 memory controller is designed to support that range of the LPDDR4 memory. The phase-locked loop in the LPDDR4 memory controller is designed to operate between 1333MHz and 2133MHz. To cover the range of the LPDDR4 memory, the selectable frequency divider is used to provide operation clock. The output frequency of the phase-locked loop with divider is from 266MHz to 2133MHz. The delay-locked loop in the LPDDR4 memory controller is designed to operate between 266MHz and 2133MHz with 180˚ phase locking. The delay-locked loop is used each training operation, which is command training, data read and write training. To complete training in each training stage, eye center detection algorithm is used. The circuits for the proposed eye center detection algorithm such as delay line, phase interpolator and reference generator are designed and validated. The proposed 1x2y3x eye center detection algorithm is 23 times faster than conventional two-dimensional eye center detection algorithm and it can be implemented simply. Using 65nm CMOS process, the proposed LPDDR4 memory controller occupies 12mm2. The verification of the LPDDR4 memory controller is performed with commodity LPDDR4 memory. The verification of all training sequence, which is power on, initializing, boot up, command training, write leveling, read training, write training, is performed in this environment. The low voltage swing terminated logic driver and other several functions, including write leveling and data transmission, are verified at 4266Mbps and the entire LPDDR4 memory controller operations from 566Mbps to 1600Mbps are verified. The proposed eye center detection algorithm is verified from 566Mbps to 2843Mbps.CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 INTRODUCTION 5 1.3 THESIS ORGANIZATION 7 CHAPTER 2 LPDDR4 MEMORY CONTROLLER DESIGN 8 2.1 DIFFERENCE BETWEEN LPDDR3 AND LPDDR4 MEMORY 8 2.1.1 ARCHITECTURAL DIFFERENCE BETWEEN LPDDR3 AND LPDDR4 MEMORY 10 2.1.2 SOURCE SYNCHRONOUS MATCHED SCHEME AND UNMATCHED SCHEME 11 2.1.3 LOW VOLTAGE SWING TERMINATED LOGIC DRIVER AND TERMINATION SCHEME 12 2.2 LPDDR4 MEMORY CONTROLLER SPECIFICATION 15 2.3 DESIGN PROCEDURE 18 CHAPTER 3 LPDDR4 MEMORY CONTROLLER ARCHITECTURE BASED ON MEMORY TRAINING 20 3.1 LPDDR4 MEMORY TRAINING SEQUENCE 20 3.2 LPDDR4 MEMORY TRAINING EYE DETECTION ALGORITHM 24 3.2.1 EYE CENTER DETECTION 24 3.2.2 1X2Y3X EYE CENTER DETECTION ALGORITHM 27 3.3. LPDDR4 MEMORY CONTROLLER DESIGN BASED ON MEMORY TRAINING 31 3.3.1 ARCHITECTURE FOR MEMORY BOOT UP AND POWER UP 31 3.3.2 CLOCK PATH ARCHITECTURE AND CLOCK TREE 34 3.3.3 COMMAND TRAINING AND COMMAND PATH ARCHITECTURE 35 3.3.4 WRITE LEVELING AND DATA STROBE TRANSMISSION PATH ARCHITECTURE 39 3.3.5 READ TRAINING AND READ PATH ARCHITECTURE 41 3.3.6 WRITE TRAINING AND WRITE PATH ARCHITECTURE 43 3.3.7 NORMAL READ/WRITE OPERATION AND MARGIN TEST 46 CHAPTER 4 LPDDR4 MEMORY CONTROLLER ARCHITECTURE MODELING AND CIRCUIT DESIGN 48 4.1 OVERALL LPDDR4 MEMORY CONTROLLER ARCHITECTURE MODELING 48 4.2 SIMULATION RESULT OF LPDDR4 MEMORY CONTROLLER MODELING 51 4.3 LPDDR4 MEMORY CONTROLLER CIRCUIT DESIGN 61 4.3.1 PHASE-LOCKED LOOP 61 4.3.2 DELAY-LOCKED LOOP 65 4.3.3 TRANSMITTER OF LPDDR4 MEMORY CONTROLLER: WRITE PATH 70 4.3.4 DE-SERIALIZER WITH CLOCK DOMAIN CROSSING 75 CHAPTER 5 MEASUREMENT RESULT OF LPDDR4 MEMORY CONTROLLER 77 5.1 LPDDR4 MEMORY CONTROLLER MEASUREMENT SETUP 77 5.1.1 LPDDR4 MEMORY CONTROLLER FLOOR PLAN AND LAYOUT 77 5.1.2 PACKAGE AND TEST BOARD 79 5.2 LPDDR4 MEMORY CONTROLLER SUB-BLOCK MEASUREMENT 81 5.2.1 PHASE-LOCKED LOOP 81 5.2.2 DELAY-LOCKED LOOP 83 5.2.3 200PS AND 800PS DELAY LINE 85 5.2.4 VOLTAGE REFERENCE GENERATOR 86 5.2.5 PHASE INTERPOLATOR 87 5.3 LPDDR4 MEMORY SYSTEM OPERATION MEASUREMENT 90 CHAPTER 6 CONCLUSION 93 APPENDIX OPERATION FLOW CHART OF THE PROPOSED LPDDR4 MEMORY CONTROLLER 95 BIBLIOGRAPHY 118 KOREAN ABSTRACT 124Docto

    PHY Link Design and Optimization For High-Speed Low-Power Communication Systems

    Get PDF
    The ever-growing demands for high-bandwidth data transfer have been pushing towards advancing research efforts in the field of high-performing communication systems. Studies on the performance of single chip, e.g. faster multi-core processors and higher system memory capacity, have been explored. To further enhance the system performance, researches have been focused on the improvement of data-transfer bandwidth for chip-to-chip communication in the high-speed serial link. Many solutions have been addressed to overcome the bottleneck caused by the non-idealties such as bandwidth-limited electrical channel that connects two link devices and varieties of undesired noise in the communication systems. Nevertheless, with these solutions data have run into limitations of the timing margins for high-speed interfaces running at multiple gigabits per second data rates on low-cost Printed Circuit Board (PCB) material with constrained power budget. Therefore, the challenge in designing a physical layer (PHY) link for high-speed communication systems turns out to be power-efficient, reliable and cost-effective. In this context, this dissertation is intended to focus on architectural design, system-level and circuit-level verification of a PHY link as well as system performance optimization in respective of power, reliability and adaptability in high-speed communication systems. The PHY is mainly composed of clock data recovery (CDR), equalizers (EQs) and high- speed I/O drivers. Symmetrical structure of the PHY link is usually duplicated in both link devices for bidirectional data transmission. By introducing training mechanisms into high-speed communication systems, the timing in one link device is adaptively aligned to the timing condition specified in the other link device despite of different skews or induced jitter resulting from process, voltage and temperature (PVT) variations in the individual link. With reliable timing relationships among the interface signals provided, the total system bandwidth is dramatically improved. On the other hand, interface training offers high flexibility for reuse without further investigation on high demanding components involved in high costs. In the training mode, a CDR module is essential for reconstructing the transmitted bitstream to achieve the best data eye and to detect the edges of data stream in asynchronous systems or source-synchronous systems. Generally, the CDR works as a feedback control system that aligns its output clock to the center of the received data. In systems that contain multiple data links, the overall CDR power consumption increases linearly with the increase in number of links as one CDR is required for each link. Therefore, a power-efficient CDR plays a significant role in such systems with parallel links. Furthermore, a high performance CDR requires low jitter generation in spite of high input jitter. To minimize the trade-off between power consumption and CDR jitter, a novel CDR architecture is proposed by utilizing the proportional-integral (PI) controller and three times sampling scheme. Meanwhile, signal integrity (SI) becomes critical as the data rate exceeds several gigabits per second. Distorted data due to the non-idealties in systems are likely to reduce the signal quality aggressively and result in intolerable transmission errors in worst case scenarios, thus affect the system effective bandwidth. Hence, additional trainings such as transmitter (Tx) and receiver (Rx) EQ trainings for SI purpose are inserted into the interface training. Besides, a simplified system architecture with unsymmetrical placement of adaptive Rx and Tx EQs in a single link device is proposed and analyzed by using different coefficient adaptation algorithms. This architecture enables to reduce a large number of EQs through the training, especially in case of parallel links. Meanwhile, considerable power and chip area are saved. Finally, high-speed I/O driver against PVT variations is discussed. Critical issues such as overshoot and undershoot interfering with the data are primarily accompanied by impedance mismatch between the I/O driver and its transmitting channel. By applying PVT compensation technique I/O driver impedances can be effectively calibrated close to the target value. Different digital impedance calibration algorithms against PVT variations are implemented and compared for achieving fast calibration and low power requirements

    Topical Workshop on Electronics for Particle Physics

    Get PDF
    The purpose of the workshop was to present results and original concepts for electronics research and development relevant to particle physics experiments as well as accelerator and beam instrumentation at future facilities; to review the status of electronics for the LHC experiments; to identify and encourage common efforts for the development of electronics; and to promote information exchange and collaboration in the relevant engineering and physics communities
    corecore