40 research outputs found

    CMOS ring oscillator delay cell performance: a comparative study

    Get PDF
    A common voltage-controlled oscillator (VCO) architecture used in the phase locked loop (PLL) is the ring oscillator (RO). RO consist of number of inverters cascaded together as the input of the first stage connected to the output of the last stage. It is important to design the RO to be work at desired frequency depend on application with low power consumption. This paper presents a review the performance evaluation of different delay cell topologies the implemented in the ring oscillator. The various topologies analyzed includes current starved delay cell, differential delay cell and current follower cell. Performance evaluation includes frequency range, frequency stability, phase noise and power consumption had been reviewed and comparison of different topologies has been discussed. It is observed that starved current delay cell have lower power consumption and the different of the frequency range is small as compared to other type of delay cell

    Tradeoffs in Design of Low-Power Gated-Oscillator CDR Circuits

    Get PDF
    This article describes some techniques for implementing low- power clock and data recovery (CDR) circuits based on gated- oscillator (GO) topology for short distance applications. Here, the main tradeoffs in design of a high performance and power-efficient GO CDR are studied and based on that a top-down design methodology is introduced such that the jitter tolerance (JTOL) and frequency tolerance (FTOL) requirements of the system are simultaneously satisfied. A test chip has been implemented in standard digital 0.18 μm CMOS while the proposed CDR circuit consumes only 10.5 mW and occupies 0.045 mm2 silicon area in 2.5 Gbps data bit rate. Measurement results show a good agreement to analyses proofs the capabilities of the proposed approach for implementing low-power GO CDRs

    Design and modelling of clock and data recovery integrated circuit in 130 nm CMOS technology for 10 Gb/s serial data communications

    Get PDF
    This thesis describes the design and implementation of a fully monolithic 10 Gb/s phase and frequency-locked loop based clock and data recovery (PFLL-CDR) integrated circuit, as well as the Verilog-A modeling of an asynchronous serial link based chip to chip communication system incorporating the proposed concept. The proposed design was implemented and fabricated using the 130 nm CMOS technology offered by UMC (United Microelectronics Corporation). Different PLL-based CDR circuits topologies were investigated in terms of architecture and speed. Based on the investigation, we proposed a new concept of quarter-rate (i.e. the clocking speed in the circuit is 2.5 GHz for 10 Gb/s data rate) and dual-loop topology which consists of phase-locked and frequency-locked loop. The frequency-locked loop (FLL) operates independently from the phase-locked loop (PLL), and has a highly-desired feature that once the proper frequency has been acquired, the FLL is automatically disabled and the PLL will take over to adjust the clock edges approximately in the middle of the incoming data bits for proper sampling. Another important feature of the proposed quarter-rate concept is the inherent 1-to-4 demultiplexing of the input serial data stream. A new quarter-rate phase detector based on the non-linear early-late phase detector concept has been used to achieve the multi-Giga bit/s speed and to eliminate the need of the front-end data pre-processing (edge detecting) units usually associated with the conventional CDR circuits. An eight-stage differential ring oscillator running at 2.5 GHz frequency center was used for the voltage-controlled oscillator (VCO) to generate low-jitter multi-phase clock signals. The transistor level simulation results demonstrated excellent performances in term of locking speed and power consumption. In order to verify the accuracy of the proposed quarter-rate concept, a clockless asynchronous serial link incorporating the proposed concept and communicating two chips at 10 Gb/s has been modelled at gate level using the Verilog-A language and time-domain simulated

    A Power-Efficient Clock and Data Recovery Circuit in 0.18-um CMOS Technology for Multi-Channel Short-Haul Optical Data Communication

    Get PDF
    This paper studies the specifications of gated-oscillator-based clock and data recovery circuits (GO CDRs) designed for short haul optical data communication systems. Jitter tolerance (JTOL) and frequency tolerance (FTOL) are analyzed and modeled as two main design parameters for the proposed topology to explore the main tradeoffs in design of low-power GO CDRs. Based on this, a top-down design methodology is presented to implement a low-power CDR unit while the JTOL and FTOL requirements of the system are simultaneously satisfied. Using standard digital 0.18 um CMOS technology, an 8-channel CDR system has been realized consuming 4.2 mW/Gbps/channel and occupying a silicon area of 0.045 mm2/channel, with the total aggregate data bit rate of 20 Gbps. The measured FTOL is 3.5% and no error was detected for a 231-1 PRBS (pseudo-random bit stream) input data for 30 minutes meaning that the bit error rate (BER) is smaller than 10-12. Meanwhile, a shared-PLL (phase-locked loop) with a wide tuning-range and compensated loop-gain has been applied to tune the center frequency of all CDR channels on desired frequency

    Oscillator Architectures and Enhanced Frequency Synthesizer

    Get PDF
    A voltage controlled oscillator (VCO), that generates a periodic signal whose frequency is tuned by a voltage, is a key building block in any integrated circuit systems. A sine wave oscillator can be used for a built-in self testing where high linearity is required. A bandpass filter (BPF) based oscillator is a preferred solution, and high quality factor (Q-factor) is needed to improve the linearity. However, a stringent linearity specification may require very high Q-factor, not practical to implement. To address this problem, a frequency harmonic shaping technique is proposed. It utilizes a finite impulse response filter improving the linearity by rejecting certain harmonics. A prototype SC BPF oscillator with an oscillating frequency of 10 MHz is designed and measurement results show that linearity is improved by 20 dB over a conventional oscillator. In radio frequency area, preferred oscillator structures are an LC oscillator and a ring oscillator. An LC oscillator exhibits good phase noise but an expensive cost of an inductor is disadvantageous. A ring oscillator can be built in standard CMOS process, but suffers due to a poor phase noise and is sensitive to supply noise. A RC BPF oscillator is proposed to compromise the above difficulties. A RC BPF oscillator at 2.5 GHz is designed and measured performance is better than ring oscillators when compared using a figure of merit. In particular, the frequency tuning range of the proposed oscillator is superior to the ring oscillator. VCO is normally incorporated with a frequency synthesizer (FS) for an accurate frequency control. In an integer-N FS, reference spur is one of the design concerns in communication systems since it degrades a signal to noise ratio. Reference spurs can be rejected more by either the lower loop bandwidth or the higher loop filter. But the former increases a settling time and the latter decreases phase margin. An adaptive lowpass filtering technique is proposed. The loop filter order is adaptively increased after the loop is locked. A 5.8 GHz integer-N FS is designed and measurement results show that reference spur rejection is improved by 20 dB over a conventional FS without degrading the settling time. A new pulse interleaving technique is proposed and several design modifications are suggested as a future work

    Techniques for high-performance digital frequency synthesis and phase control

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 183-190).This thesis presents a 3.6-GHz, 500-kHz bandwidth digital [delta][sigma] frequency synthesizer architecture that leverages a recently invented noise-shaping time-to-digital converter (TDC) and an all-digital quantization noise cancellation technique to achieve excellent in-band and out-of-band phase noise, respectively. In addition, a passive digital-to-analog converter (DAC) structure is proposed as an efficient interface between the digital loop filter and a conventional hybrid voltage-controlled oscillator (VCO) to create a digitally-controlled oscillator (DCO). An asynchronous divider structure is presented which lowers the required TDC range and avoids the divide-value-dependent delay variation. The prototype is implemented in a 0.13-am CMOS process and its active area occupies 0.95 mm². Operating under 1.5 V, the core parts, excluding the VCO output buffer, dissipate 26 mA. Measured phase noise at 3.67 GHz achieves -108 dBc/Hz and -150 dBc/Hz at 400 kHz and 20 MHz, respectively. Integrated phase noise at this carrier frequency yields 204 fs of jitter (measured from 1 kHz to 40 MHz). In addition, a 3.2-Gb/s delay-locked loop (DLL) in a 0.18-[mu]m CMOS for chip-tochip communications is presented. By leveraging the fractional-N synthesizer technique, this architecture provides a digitally-controlled delay adjustment with a fine resolution and infinite range. The provided delay resolution is less sensitive to the process, voltage, and temperature variations than conventional techniques. A new [delta][sigma] modulator enables a compact and low-power implementation of this architecture. A simple bang-bang detector is used for phase detection. The prototype operates at a 1.8-V supply voltage with a current consumption of 55 mA. The phase resolution and differential rms clock jitter are 1.4 degrees and 3.6 ps, respectively.by Chun-Ming Hsu.Ph.D

    Architectural Alternatives to Implement High-Performance Delta-Sigma Modulators

    Get PDF
    RÉSUMÉ Le besoin d’appareils portatifs, de téléphones intelligents et de systèmes microélectroniques implantables médicaux s’accroît remarquablement. Cependant, l’optimisation de l’alimentation de tous ces appareils électroniques portables est l’un des principaux défis en raison du manque de piles à grande capacité utilisées pour les alimenter. C’est un fait bien établi que le convertisseur analogique-numérique (CAN) est l’un des blocs les plus critiques de ces appareils et qu’il doit convertir efficacement les signaux analogiques au monde numérique pour effectuer un post-traitement tel que l’extraction de caractéristiques. Parmi les différents types de CAN, les modulateurs Delta Sigma (��M) ont été utilisés dans ces appareils en raison des fonctionnalités alléchantes qu’ils offrent. En raison du suréchantillonnage et pour éloigner le bruit de la bande d’intérêt, un CAN haute résolution peut être obtenu avec les architectures ��. Il offre également un compromis entre la fréquence d’échantillonnage et la résolution, tout en offrant une architecture programmable pour réaliser un CAN flexible. Ces CAN peuvent être implémentés avec des blocs analogiques de faible précision. De plus, ils peuvent être efficacement optimisés au niveau de l’architecture et circuits correspondants. Cette dernière caractéristique a été une motivation pour proposer différentes architectures au fil des ans. Cette thèse contribue à ce sujet en explorant de nouvelles architectures pour optimiser la structure ��M en termes de résolution, de consommation d’énergie et de surface de silicium. Des soucis particuliers doivent également être pris en compte pour faciliter la mise en œuvre du ��M. D’autre part, les nouveaux procédés CMOS de conception et fabrication apportent des améliorations remarquables en termes de vitesse, de taille et de consommation d’énergie lors de la mise en œuvre de circuits numériques. Une telle mise à l’échelle agressive des procédés, rend la conception de blocs analogiques tel que un amplificateur de transconductance opérationnel (OTA), difficile. Par conséquent, des soins spéciaux sont également pris en compte dans cette thèse pour surmonter les problèmes énumérés. Ayant mentionné ci-dessus que cette thèse est principalement composée de deux parties principales. La première concerne les nouvelles architectures implémentées en mode de tension et la seconde partie contient une nouvelle architecture réalisée en mode hybride tension et temps.----------ABSTRACT The need for hand-held devices, smart-phones and medical implantable microelectronic sys-tems, is remarkably growing up. However, keeping all these electronic devices power optimized is one of the main challenges due to the lack of long life-time batteries utilized to power them up. It is a well-established fact that analog-to-digital converter (ADC) is one of the most critical building blocks of such devices and it needs to efficiently convert analog signals to the digital world to perform post processing such as channelizing, feature extraction, etc. Among various type of ADCs, Delta Sigma Modulators (��Ms) have been widely used in those devices due to the tempting features they offer. In fact, due to oversampling and noise-shaping technique a high-resolution ADC can be achieved with �� architectures. It also offers a compromise between sampling frequency and resolution while providing a highly-programmable approach to realize an ADC. Moreover, such ADCs can be implemented with low-precision analog blocks. Last but not the least, they are capable of being effectively power optimized at both architectural and circuit levels. The latter has been a motivation to proposed different architectures over the years.This thesis contributes to this topic by exploring new architectures to effectively optimize the ��M structure in terms of resolution, power consumption and chip area. Special cares must also be taken into account to ease the implementation of the ��M. On the other hand, advanced node CMOS processes bring remarkable improvements in terms of speed, size and power consumption while implementing digital circuits. Such an aggressive process scaling, however, make the design of analog blocks, e.g. operational transconductance amplifiers (OTAs), cumbersome. Therefore, special cares are also taken into account in this thesis to overcome the mentioned issues. Having had above mentioned discussion, this thesis is mainly split in two main categories. First category addresses new architectures implemented in a pure voltage domain and the second category contains new architecture realized in a hybrid voltage and time domain. In doing so, the thesis first focuses on a switched-capacitor implementation of a ��M while presenting an architectural solution to overcome the limitations of the previous approaches. This limitations include a power hungry adder in a conventional feed-forward topology as well as power hungry OTAs

    DESIGN AND CHARACTERIZATION OF LOW-POWER LOW-NOISE ALLDIGITAL SERIAL LINK FOR POINT-TO-POINT COMMUNICATION IN SOC

    Get PDF
    The fully-digital implementation of serial links has recently emerged as a viable alternative to their classical analogue counterpart. Indeed, reducing the analogue content in favour of expanding the digital content becomes more attractive due to the ability to achieve less power consumption, less sensitivity to the noise and better scalability across multiple technologies and platforms with inconsiderable modifications. In addition, describing the circuit in hardware description languages gives it a high flexibility to program all design parameters in a very short time compared with the analogue designs which need to be re-designed at transistor level for any parameter change. This can radically reduce cost and time-to-market by saving a significant amount of development time. However, beside these considerable advantages, the fully-digital architecture poses several design challenges

    Design and realization of fully integrated multiband and multistandard bi-cmos sigma delta frequency synthesizer

    Get PDF
    Wireless communication has grown, exponentially, with wide range of applications offered for the customers. Among these, WLAN (2.4-2.5GHz, 3.6-3.7GHzand 4.915- 5.825GHz GHz), Bluetooth (2.4 GHz), and WiMAX (2.500-2.696 GHz, 3.4-3.8 GHz and 5.725-5.850 GHz) communication standard/technologies have found largest use local area, indoor – outdoor communication and entertainment system applications. One of the recent trends in this area of technology is to utilize compatible standards on a single chip solutions, while meeting the requirements of each, to provide customers systems with smaller size, lower power consumption and cheaper in cost. In this thesis, RF – Analog, and – Digital Integrated Circuit design methodologies and techniques are applied to realize a multiband / standart (WLAN and WiMAX) operation capable Voltage- Controlled-Oscillator (VCO) and Frequency Synthesizer. Two of the major building blocks of wireless communication systems are designed using 0.35 μm, AMS-Bipolar (HBT)-CMOS process technology. A new inductor switching concept is implemented for providing the multiband operation capability. Performance parameters such as operating frequencies, phase noise, power consumption, and tuning range are modeled and simulated using analytical approaches, ADS® and Cadence® design and simulation environments. Measurement and/or Figure-of-Merit (FOM) values of our circuits have revealed results that are comparable with already published data, using the similar technology, in the literature, indicating the strength of the design methodologies implemented in this study
    corecore