11,228 research outputs found

    Can One Trust Quantum Simulators?

    Full text link
    Various fundamental phenomena of strongly-correlated quantum systems such as high-TcT_c superconductivity, the fractional quantum-Hall effect, and quark confinement are still awaiting a universally accepted explanation. The main obstacle is the computational complexity of solving even the most simplified theoretical models that are designed to capture the relevant quantum correlations of the many-body system of interest. In his seminal 1982 paper [Int. J. Theor. Phys. 21, 467], Richard Feynman suggested that such models might be solved by "simulation" with a new type of computer whose constituent parts are effectively governed by a desired quantum many-body dynamics. Measurements on this engineered machine, now known as a "quantum simulator," would reveal some unknown or difficult to compute properties of a model of interest. We argue that a useful quantum simulator must satisfy four conditions: relevance, controllability, reliability, and efficiency. We review the current state of the art of digital and analog quantum simulators. Whereas so far the majority of the focus, both theoretically and experimentally, has been on controllability of relevant models, we emphasize here the need for a careful analysis of reliability and efficiency in the presence of imperfections. We discuss how disorder and noise can impact these conditions, and illustrate our concerns with novel numerical simulations of a paradigmatic example: a disordered quantum spin chain governed by the Ising model in a transverse magnetic field. We find that disorder can decrease the reliability of an analog quantum simulator of this model, although large errors in local observables are introduced only for strong levels of disorder. We conclude that the answer to the question "Can we trust quantum simulators?" is... to some extent.Comment: 20 pages. Minor changes with respect to version 2 (some additional explanations, added references...

    Tricolored Lattice Gauge Theory with Randomness: Fault-Tolerance in Topological Color Codes

    Get PDF
    We compute the error threshold of color codes, a class of topological quantum codes that allow a direct implementation of quantum Clifford gates, when both qubit and measurement errors are present. By mapping the problem onto a statistical-mechanical three-dimensional disordered Ising lattice gauge theory, we estimate via large-scale Monte Carlo simulations that color codes are stable against 4.5(2)% errors. Furthermore, by evaluating the skewness of the Wilson loop distributions, we introduce a very sensitive probe to locate first-order phase transitions in lattice gauge theories.Comment: 12 pages, 5 figures, 1 tabl

    Simulating quantum mechanics on a quantum computer

    Get PDF
    Algorithms are described for efficiently simulating quantum mechanical systems on quantum computers. A class of algorithms for simulating the Schrodinger equation for interacting many-body systems are presented in some detail. These algorithms would make it possible to simulate nonrelativistic quantum systems on a quantum computer with an exponential speedup compared to simulations on classical computers. Issues involved in simulating relativistic systems of Dirac and gauge particles are discussed.Comment: 22 pages LaTeX; Expanded version of a talk given by WT at the PhysComp '96 conference, BU, Boston MA, November 1996. Minor corrections made, references adde

    Generating and verifying graph states for fault-tolerant topological measurement-based quantum computing in 2D optical lattices

    Full text link
    We propose two schemes for implementing graph states useful for fault-tolerant topological measurement-based quantum computation in 2D optical lattices. We show that bilayer cluster and surface code states can be created by global single-row and controlled-Z operations. The schemes benefit from the accessibility of atom addressing on 2D optical lattices and the existence of an efficient verification protocol which allows us to ensure the experimental feasibility of measuring the fidelity of the system against the ideal graph state. The simulation results show potential for a physical realization toward fault-tolerant measurement-based quantum computation against dephasing and unitary phase errors in optical lattices.Comment: 6 pages and 4 figures (minor changed
    • …
    corecore