3 research outputs found

    Bandpass delta-sigma modulators for radio receivers

    Get PDF
    This thesis concerns discrete-time (DT) bandpass (BP) ΔΣ modulators targeted for intermediate frequency (IF) analog-to-digital (A/D) conversion in radio receivers. The receiver architecture adopted has to be capable of operating with different radio frequencies, channel bandwidths, and modulation techniques. This is necessary in order to achieve an extensive operating area and the possibility of utilizing a local mobile phone standard or a standard suitable for a specific service. The digital IF receiver is a good choice for a multi-mode and multi-band mobile phone receiver, because the signal demodulation and channel filtering are performed in the digital domain. This increases the flexibility of the receiver and relieves the design of the baseband part, but an A/D conversion with high dynamic range and low power dissipation is required. BP ΔΣ modulators are capable of converting a high-frequency narrow band signal and are therefore suitable for signal digitization in an IF receiver. First, the theory of BP ΔΣ modulators is introduced. It has been determined that resonators are the most critical circuit blocks in the implementation of a high performance BP ΔΣ modulator. Different DT resonator topologies are studied and a double-delay (DD) resonator is found to be the best candidate for a high quality resonator. A new DD switched-capacitor (SC) resonator structure has been designed. Furthermore, two evolution versions of the designed SC resonator are presented and their nonidealities are analyzed. The three designed DD SC resonator structures are a main point of the thesis, together with the experimental results. Five different DT BP ΔΣ modulator circuit structures have been implemented and measured. All three of the designed SC resonators are used in the implemented circuits. The experimental work consists of both single-bit and multi-bit structures, as well as both single-loop and cascade architectures. The circuits have been implemented with a 0.35 μm (Bi)CMOS technology and operate with a 3.0 V supply. The measured maximum signal-to-noise-and-distortion ratios (SNDRs) are 78 dB over 270 kHz (GSM), 75 dB over 1.25 MHz (IS-95), 69 dB over 1.762 MHz (DECT), and 48 dB over 3.84 MHz (WCDMA) bandwidths using a 60 MHz IF signal.reviewe

    PROCESS AWARE ANALOG-CENTRIC SINGLE LEAD ECG ACQUISITION AND CLASSIFICATION CMOS FRONTEND

    Get PDF
    The primary objective of this research work is the development of a low power single-lead ECG analog front-end (AFE) architecture which includes acquisition, digitization, process aware efficient gain and frequency control mechanism and a low complexity classifier for the detecting asystole, extreme bardycardia and tachycardia. Recent research on ECG recording systems focuses on the design of a compact single-lead wearable/portable devices with ultra-low-power consumption and in-built hardware for diagnosis and prognosis. Since, the amplitude of the ECG signal varies from hundreds of µV to a few mV, and has a bandwidth of DC to 250 Hz, conventional front-ends use an instrument amplifier followed by a programmable gain amplifier (PGA) to amplify the input ECG signal appropriately. This work presents an mixed signal ECG fronted with an ultra-low power two-stage capacitive-coupled signal conditioning circuit (or an AFE), providing programmable amplification along with tunable 2nd order high pass and lowpass filter characteristics. In the contemporary state-of-the-art ECG recording systems, the gain of the amplifier is controlled by external digital control pins which are in turn dynamically controlled through a DSP. Therefore, an efficient automatic gain control mechanism with minimal area overhead and consuming power in the order of nano watts only. The AGC turns the subsequent ADC on only after output of the PGA (or input of the ADC) reaches a level for which the ADC achieves maximum signal-to-noise-ratio (SNR), hence saving considerable startup power and avoiding the use of DSP. Further, in any practical filter design, the low pass cut-off frequency is prone to deviate from its nominal value across process and temperature variations. Therefore, post-fabrication calibration is essential, before the signal is fed to an ADC, to minimize this deviation, prevent signal degradation due to aliasing of higher frequencies into the bandwidth for classification of ECG signals, to switch to low resolution processing, hence saving power and enhances battery lifetime. Another short-coming noticed in the literature published so far is that the classification algorithm is implemented in digital domain, which turns out to be a power hungry approach. Moreover, Although analog domain implementations of QRS complexes detection schemes have been reported, they employ an external micro-controller to determine the threshold voltage. In this regard, finally a power-efficient low complexity CMOS fully analog classifier architecture and a heart rate estimator is added to the above scheme. It reduces the overall system power consumption by reducing the computational burden on the DSP. The complete proposed scheme consists of (i) an ultra-low power QRS complex detection circuit using an autonomous dynamic threshold voltage, hence discarding the need of any external microcontroller/DSP and calibration (ii) a power efficient analog classifier for the detection of three critical alarm types viz. asystole, extreme bradycardia and tachycardia. Additionally, a heart rate estimator that provides the number of QRS complexes within a period of one minute for cardiac rhythm (CR) and heart rate variability (HRV) analysis. The complete proposed architecture is implemented in UMC 0.18 µm CMOS technology with 1.8 V supply. The functionality of each of the individual blocks are successfully validated using postextraction process corner simulations and through real ECG test signals taken from the PhysioNet database. The capacitive feedback amplifier, Σ∆ ADC, AGC and the AFT are fabricated, and the measurement results are discussed here. The analog classification scheme is successfully validated using embed NXP LPC1768 board, discrete peak detector prototype and FPGA software interfac

    Time interleaved counter analog to digital converters

    Get PDF
    The work explores extending time interleaving in A/D converters, by applying a high-level of parallelism to one of the slowest and simplest types of data-converters, the counter ADC. The motivation for the work is to realise high-performance re-configurable A/D converters for use in multi-standard and multi-PHY communication receivers with signal bandwidths in the 10s to 100s of MHz. The counter ADC requires only a comparator, a ramp signal, and a digital counter, where the comparator compares the sampled input against all possible quantisation levels sequentially. This work explores arranging counter ADCs in large time-interleaved arrays, building a Time Interleaved Counter (TIC) ADC. The key to realising a TIC ADC is distributed sampling and a global multi-phase ramp generator realised with a novel figure-of-8 rotating resistor ring. Furthermore Counter ADCs allow for re-configurability between effective sampling rate and resolution due to their sequential comparison of reference levels in conversion. A prototype TIC ADC of 128-channels was fabricated and measured in 0.13μm CMOS technology, where the same block can be configured to operate as a 7-bit 1GS/s, 8-bit 500MS/s, or 9-bit 250MS/s dataconverter. The ADC achieves a sub 400fJ/step FOM in all modes of configuration
    corecore