1,994 research outputs found

    A 2.4-GHz low power polar transmitter for wireless body area network applications

    Get PDF
    A 2.4GHz low power polar transmitter is proposed in this paper. A dynamic biasing circuit, controlled by a digital envelope signal, is used as a direct digital-to-RF envelope converter. It effectively linearizes the input-output characteristic of the overdriven cascode class-C power amplifier used as the output stage, by dynamically adjusting the bias voltage of the cascode transistor. An equivalent baseband model of the transmitter is presented and used to optimize system parameters and give initial assessment of the achievable performance in terms of efficiency and linearity. Based on these simulations, parameters for transistor-level implementation of the bias circuit are derived. The transmitter is designed in a 65nm CMOS technology. The post layout simulations indicate that the transmitter successfully meets the requirements of the IEEE 802.15.6 standard for wireless body area networks. The simulated amplifier consumes 4.75mA from a 1.2V supply while delivering 1.45dBm of output power with a peak efficiency of 24%. The entire transmitter, including the PLL, consumes 7.5mA

    Flexible dual-diversity wearable wireless node integrated on a dual-polarised textile patch antenna

    Get PDF
    A new textile wearable wireless node, for operation in the 2.45 GHz industrial, scientific and medical (ISM) band, is proposed. It consists of a dual-polarised textile patch antenna with integrated microcontroller, sensor, memory and transceiver with receive diversity. Integrated into a garment, the flexible unit may serve for fall detection, as well as for patient or rescue-worker monitoring. Fragile and lossy interconnections are eliminated. They are replaced by very short radiofrequency signal paths in the antenna feed plane, reducing electromagnetic compatibility and signal integrity problems. The compact and flexible module combines sensing and wireless channel monitoring functionality with reliable and energy-efficient off-body wireless communication capability, by fully exploiting dual polarisation diversity. By integrating a battery, a fully autonomous and flexible system is obtained. This novel textile wireless node was validated, both in flat and bent state, in the anechoic chamber, assessing the characteristics of the integrated system in free-space conditions. Moreover, its performance was verified in various real-world conditions, integrated into a firefighter garment, and used as an autonomous body-centric measurement device

    Wireless body sensor networks for health-monitoring applications

    Get PDF
    This is an author-created, un-copyedited version of an article accepted for publication in Physiological Measurement. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0967-3334/29/11/R01

    In situ characterization of two wireless transmission schemes for ingestible capsules

    Get PDF
    We report the experimental in situ characterization of 30-40 MHz and 868 MHz wireless transmission schemes for ingestible capsules, in porcine carcasses. This includes a detailed study of the performance of a magnetically coupled near-field very high-frequency (VHF) transmission scheme that requires only one eighth of the volume and one quarter of the power consumption of existing 868-MHz solutions. Our in situ measurements tested the performance of four different capsules specially constructed for this study (two variants of each transmission scheme), in two scenarios. One mimicked the performance of a body-worn receiving coil, while the other allowed the characterization of the direction-dependent signal attenuation due to losses in the surrounding tissue. We found that the magnetically coupled near-field VHF telemetry scheme presents an attractive option for future, miniturized ingestible capsules for medical applications

    Personal area technologies for internetworked services

    Get PDF

    Antenna and radio channel characterisation for low‐power personal and body area networks

    Get PDF
    PhDThe continuous miniaturisation of sensors, as well as the progression in wearable electronics, embedded software, digital signal processing and biomedical technologies, have led to new usercentric networks, where devices can be carried in the user’s pockets, attached to the user’s body. Body-centric wireless communications (BCWCs) is a central point in the development of fourth generation mobile communications. Body-centric wireless networks take their place within the personal area networks, body area networks and sensor networks which are all emerging technologies that have a wide range of applications (such as, healthcare, entertainment, surveillance, emergency, sports and military). The major difference between BCWC and conventional wireless systems is the radio channels over which the communication takes place. The human body is a hostile environment from a radio propagation perspective and it is therefore important to understand and characterise the effects of the human body on the antenna elements, the radio channel parameters and, hence, system performance. This thesis focuses on the study of body-worn antennas and on-body radio propagation channels. The performance parameters of five different narrowband (2.45 GHz) and four UWB (3.1- 10.6 GHz) body-worn antennas in the presence of human body are investigated and compared. This was performed through a combination of numerical simulations and measurement campaigns. Parametric studies and statistical analysis, addressing the human body effects on the performance parameters of different types of narrowband and UWB antennas have been presented. The aim of this study is to understand the human body effects on the antenna parameters and specify the suitable antenna in BCWCs at both 2.45 GHz and UWB frequencies. Extensive experimental investigations are carried out to study the effects of various antenna types on the on-body radio propagation channels as well. Results and analysis emphasize the best body-worn antenna for reliable and power-efficient on-body communications. Based on the results and analysis, a novel dual-band and dual-mode antenna is proposed for power-efficient and reliable on-body and off-body communications. The on-body performance of the DBDM antenna at 2.45 GHz is compared with other five narrowband antennas. Based on the results and analysis of six narrowband and four UWB antennas, antenna specifications and design guidelines are provided that will help in selecting the best body-worn antenna for both narrowband and UWB systems to be applied in body-centric wireless networks (BCWNs). A comparison between IV the narrowband and UWB antenna parameters are also provided. At the end of the thesis, the subject-specificity of the on-body radio propagation channel at 2.45 GHz and 3-10 GHz was experimentally investigated by considering eight real human test subjects of different shapes, heights and sizes. The subject-specificity of the on-body radio propagation channels was compared between the narrowband and UWB systems as well
    corecore