941 research outputs found

    High linearity analog and mixed-signal integrated circuit design

    Get PDF
    Linearity is one of the most important specifications in electrical circuits.;In Chapter 1, a ladder-based transconductance networks has been adopted first time to build a low distortion analog filters for low frequency applications. This new technique eliminated the limitation of the application with the traditional passive resistors for low frequency applications. Based on the understanding of this relationship, a strategy for designing high linear analog continuous-time filters has been developed. According to our strategy, a prototype analog integrated filter has been designed and fabricated with AMI05 0.5 um standard CMOS process. Experimental results proved this technique has the ability to provide excellent linearity with very limited active area.;In Chapter 2, the relationships between the transconductance networks and major circuit specifications have been explored. The analysis reveals the trade off between the silicon area saved by the transconductance networks and the some other important specifications such as linearity, noise level and the process variations of the overall circuit. Experimental results of discrete component circuit matched very well with our analytical outcomes to predict the change of linearity and noise performance associated with different transconductance networks.;The Chapter 3 contains the analysis and mathematical proves of the optimum passive area allocations for several most popular analog active filters. Because the total area is now manageable by the technique introduced in the Chapter 1, the further reduce of the total area will be very important and useful for efficient utilizing the silicon area, especially with the today\u27s fast growing area efficiency of the highly density digital circuits. This study presents the mathematical conclusion that the minimum passive area will be achieved with the equalized resistor and capacitor.;In the Chapter 4, a well recognized and highly honored current division circuit has been studied. Although it was claimed to be inherently linear and there are over 60 published works reported with high linearity based on this technique, our study discovered that this current division circuit can achieve, if proper circuit condition being managed, very limited linearity and all the experimental verified performance actually based on more general circuit principle. Besides its limitation, however, we invented a novel current division digital to analog converter (DAC) based on this technique. Benefiting from the simple circuit structure and moderate good linearity, a prototype 8-bit DAC was designed in TSMC018 0.2 um CMOS process and the post layout simulations exhibited the good linearity with very low power consumption and extreme small active area.;As the part of study of the output stage for the current division DAC discussed in the Chapter 4, a current mirror is expected to amplify the output current to drive the low resistive load. The strategy of achieving the optimum bandwidth of the cascode current mirror with fixed total current gain is discussed in the Chapter 5.;Improving the linearity of pipeline ADC has been the hottest and hardest topic in solid-state circuit community for decade. In the Chapter 6, a comprehensive study focus on the existing calibration algorithms for pipeline ADCs is presented. The benefits and limitations of different calibration algorithms have been discussed. Based on the understanding of those reported works, a new model-based calibration is delivered. The simulation results demonstrate that the model-based algorithms are vulnerable to the model accuracy and this weakness is very hard to be removed. From there, we predict the future developments of calibration algorithms that can break the linearity limitations for pipelined ADC. (Abstract shortened by UMI.

    A 13-bit, 2.2-MS/s, 55-mW multibit cascade ΣΔ modulator in CMOS 0.7-μm single-poly technology

    Get PDF
    This paper presents a CMOS 0.7-μm ΣΔ modulator IC that achieves 13-bit dynamic range at 2.2 MS/s with an oversampling ratio of 16. It uses fully differential switched-capacitor circuits with a clock frequency of 35.2 MHz, and has a power consumption of 55 mW. Such a low oversampling ratio has been achieved through the combined usage of fourth-order filtering and multibit quantization. To guarantee stable operation for any input signal and/or initial condition, the fourth-order shaping function has been realized using a cascade architecture with three stages; the first stage is a second-order modulator, while the others are first-order modulators - referred to as a 2-1-1mb architecture. The quantizer of the last stage is 3 bits, while the other quantizers are single bit. The modulator architecture and coefficients have been optimized for reduced sensitivity to the errors in the 3-bit quantization process. Specifically, the 3-bit digital-to-analog converter tolerates 2.8% FS nonlinearity without significant degradation of the modulator performance. This makes the use of digital calibration unnecessary, which is a key point for reduced power consumption. We show that, for a given oversampling ratio and in the presence of 0.5% mismatch, the proposed modulator obtains a larger signal-to-noise-plus-distortion ratio than previous multibit cascade architectures. On the other hand, as compared to a 2-1-1single-bit modulator previously designed for a mixed-signal asymmetrical digital subscriber line modem in the same technology, the modulator in this paper obtains one more bit resolution, enhances the operating frequency by a factor of two, and reduces the power consumption by a factor of four.Comisión Interministerial de Ciencia y Tecnología TIC97-0580European Commission ESPRIT 879

    An Interactive Application Demo for the AD8295

    Get PDF
    The goal of this MQP was to design an interactive Application Demo Board for the Instrumentation Amplifier AD8295 that could be used in electronics trade-shows worldwide to demonstrate the versatility of this product. Instrumentation Amplifiers (In-Amps) are ideal for extracting and processing small differential signals from high common-mode voltages. Traditionally, these amplifiers have been used for applications in the medical and automotive industries. The AD8295 from Analog Devices is their latest in-amp product and comprises of a precision In-Amp, 2 uncommitted Op-Amps and a matched resistor pair all on the same substrate. This provides immense versatility and allows the product to be designed into a myriad of applications as a space saving, precise, and low power alternative

    A 12-bit SAR ADC for a flexible tactile sensor

    Get PDF
    Successive Approximation Register (SAR) Analog-to-Digital Converters (ADC) are some of the most efficient ADC topologies available, allowing excellent performance values at low power consumption across a wide range of sampling frequencies. The proposed ADC is aimed at a tactile sensor application, requiring a low-noise and lowpower solution. In addition, it should have high SNDR to detect even the weakest signals with precision. This thesis presents a 12-bit 400 kS/s SAR ADC implemented in a 180 nm CMOS technology for such a task. The designed SAR ADC uses a hybrid R-C DAC topology consisting of a chargescaling MSB DAC and a voltage-scaling LSB DAC, allowing a good trade-off between power consumption, layout area and performance while keeping the total DAC capacitance under reasonable values. Bootstrapped switches have been implemented to preserve high-linearity during the sampling period. A double-tail dynamic comparator has been designed to obtain a low-noise measurement while ensuring suitable delay values. Finally, regarding the logic, an asynchronous implementation and the conventional switching algorithm provide a simple but effective solution to supply the digital signals of the design. Pre-layout noise simulations with input frequencies around 200 kHz show SNDR values of 72.07 dB, corresponding to an ENOB of 11.67 bits. The total power consumption is 365 ?W while the Walden and Schreier figure-of-merit (FoM) correspond to values of 275 fJ/conversion and 160 dB, respectively

    Crexens™: an expandable general-purpose electrochemical analyzer

    Get PDF
    2019 Fall.Includes bibliographical references.Electrochemical analysis has gained a great deal of attention of late due to its low-cost, easy-to-perform, and easy-to-miniaturize, especially in personal health care where accuracy and mobility are key factors to bring diagnostics to patients. According to data from Centers for Medicare & Medicaid Services (CMS) in the US, the share of health expenditure in the US has been kept growing in the past 3 decades and reached 17.9% of its overall Gross Domestic Product till 2016, which is equivalent to 10,348foreverypersonintheUSperyear.Ontheotherhand,healthcareresourcesareoftenlimitednotonlyinruralareabutalsoappearedinwelldevelopedcountries.TheurgentneedandthelackofhealthresourcebringstofronttheresearchinterestofPointofCare(PoC)diagnosisdevices.Electrochemicalmethodshavebeenlargelyadoptedbychemistandbiologistfortheirresearchpurposes.However,severalissuesexistwithincurrentcommercialbenchtopinstrumentsforelectrochemicalmeasurement.Firstofall,thecurrentcommercialinstrumentsareusuallybulkyanddonothavehandheldfeatureforpointofcareapplicationsandthecostareeasilynear10,348 for every person in the US per year. On the other hand, health care resources are often limited not only in rural area but also appeared in well-developed countries. The urgent need and the lack of health resource brings to front the research interest of Point-of-Care (PoC) diagnosis devices. Electrochemical methods have been largely adopted by chemist and biologist for their research purposes. However, several issues exist within current commercial benchtop instruments for electrochemical measurement. First of all, the current commercial instruments are usually bulky and do not have handheld feature for point-of-care applications and the cost are easily near 5,000 each or above. Secondly, most of the instruments do not have good integration level that can perform different types of electrochemical measurements for different applications. The last but not the least, the existing generic benchtops instruments for electrochemical measurements have complex operational procedures that require users to have a sufficient biochemistry and electrochemistry background to operate them correctly. The proposed Crexens™ analyzer platform is aimed to present an affordable electrochemical analyzerwhile achieving comparable performance to the existing commercial instruments, thus, making general electrochemical measurement applications accessible to general public. In this dissertation, the overall Crexens™ electrochemical analyzer architecture and its evolution are presented. The foundation of the Crexens™ architecture was derived from two separate but related research in electrochemical sensing. One of them is a microelectrode sensor array using CMOS for neurotransmitter sensing; the other one is a DNA affinity-based capacitive sensor for infectious disease, such as ZIKA. The CMOS microelectrode sensor array achieved a 320uM sensitivity for norepinephrine, whereas the capacitive sensor achieved a dynamic range of detection from 1 /uL to 105 /uL target molecules (20 to 2 million targets), which makes it be within the detection range in a typical clinical application environment. This dissertation also covers the design details of the CMOS microelectrode array sensor and the capacitive sensor design as a prelude to the development of the Crexens™ analyzer architecture. Finally, an expandable integrated electrochemical analyzer architecture (Crexens™) has been designed for mobile point-of-care (POC) applications. Electrochemical methods have been explored in detecting various bio-molecules such as glucose, lactate, protein, DNA, neurotransmitter, steroid hormone, which resulted in good sensitivity and selectivity. The proposed system is capable of running electrochemical experiments including cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), electrochemical capacitive spectroscopy (ECS), amperometry, potentiometry, and other derived electrochemical based tests. This system consist of a front-end interface to sensor electrodes, a back-end user interface on smart phone and PC, a base unit as master module, a low-noise add-on module, a high-speed add-on module, and a multi-channel add-on module. The architecture allows LEGO™-like capability to stack add-on modules on to the base-unit for performance enhancements in noise, speed or parallelism. The analyzer is capable of performing up to 1900 V/s CV with 10 mV step, up to 12 kHz EIS scan range and a limit of detection at 637 pA for amperometric applications with the base module. With high performance module, the EIS scan range can be extended upto 5 MHz. The limit of detection can be further improved to be at 333 fA using the low-noise module. The form factor of the electrochemical analyzer is designed for its mobile/point-of-care applications, integrating its entire functionality on to a 70 cm² area of surface space. A glutamine enzymatic sensor was used to valid the capability of the proposed electrochemical analyzer and turned out to give good linearity and reached a limit of detection at 50 uM

    Super-precision programmable current source for coil/magnet actuators

    Get PDF
    This thesis describes the design and development of a super-precision programmable current source that can deliver up to about ±100 rnA to an inductive load. The load is intended typically to be a coil in a coil/magnet actuator that provides a force which is proportional to the current, and results in a linear and well defined movement of an elastic flexure mechanism. The particularly demanding application of long-range x-ray interferometry required two tracking current sources that offered a resolution to better than 1 part in 500,000 and this could not be satisfied by commercially available instruments. Consequently it was necessary to design, construct and test two identical supplies (or drives); a non-trivial and very demanding task since exceptionally slow drives scans needed to be accommodated. Temporal stability is therefore critical. Although the operational bandwidth can be kept small, noise up to over 1 kHz must be rigorously suppressed to avoid exciting resonances in the system being driven. Commercial 20-bit digital-to-analogue converters could not be utilised to provide a resolution of 1 part per million, because they are invariably designed for audio applications and have unacceptable drifts with temperature and time. The integral non-linearity had to be less than ±O.0007% (15 ppm) and the design actually achieves ±O.5 ppm by using an embedded precision analogue-to-digital converter to form a servo-loop within each drive. A desk-top computer (PC) accepts setpoints via a serial communications channel, and simultaneously controls the servo-loops for two drives by the exchange of simple messages via optically isolated links. The major components within each drive are, an embedded 8-bit micro-controller, two DAC's providing coarse and fine voltage settings, a precision voltage-to-current converter, a precision ADC and an ADC which monitors critical nodes, all of which are discussed in considerable detail together with the algorithms and software in the PC and microcontroller. Circuit simulations were an important part of preliminary studies and are presented along with measures of actual performance. It is shown that the drives achieve not only a resolution of 1 ppm but that all other operational parameters are of a similar order. A number of proposals are made for alternative methods which represent the foundations for future work
    corecore