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ABSTRACT

CREXENSTM: AN EXPANDABLE GENERAL-PURPOSE ELECTROCHEMICAL

ANALYZER

Electrochemical analysis has gained a great deal of attention of late due to its low-cost, easy-to-

perform, and easy-to-miniaturize, especially in personal health care where accuracy and mobility

are key factors to bring diagnostics to patients. According to data from Centers for Medicare &

Medicaid Services (CMS) in the US [1], the share of health expenditure in the US has been kept

growing in the past 3 decades and reached 17.9% of its overall Gross Domestic Product till 2016,

which is equivalent to $10,348 for every person in the US per year. On the other hand, health care

resources are often limited not only in rural area but also appeared in well-developed countries.

The urgent need and the lack of health resource brings to front the research interest of Point-of-

Care (PoC) diagnosis devices. Electrochemical methods have been largely adopted by chemist

and biologist for their research purposes. However, several issues exist within current commer-

cial benchtop instruments for electrochemical measurement. First of all, the current commercial

instruments are usually bulky and do not have handheld feature for point-of-care applications and

the cost are easily near $5,000 each or above. Secondly, most of the instruments do not have good

integration level that can perform different types of electrochemical measurements for different

applications. The last but not the least, the existing generic benchtops instruments for electro-

chemical measurements have complex operational procedures that require users to have a sufficient

biochemistry and electrochemistry background to operate them correctly. The proposed CrexensTM

analyzer platform is aimed to present an affordable electrochemical analyzerwhile achieving com-

parable performance to the existing commercial instruments, thus, making general electrochemical

measurement applications accessible to general public.
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In this dissertation, the overall CrexensTM electrochemical analyzer architecture and its evolu-

tion are presented. The foundation of the CrexensTM architecture was derived from two separate

but related research in electrochemical sensing. One of them is a microelectrode sensor array using

CMOS for neurotransmitter sensing; the other one is a DNA affinity-based capacitive sensor for

infectious disease, such as ZIKA. The CMOS microelectrode sensor array achieved a 320uM sen-

sitivity for norepinephrine, whereas the capacitive sensor achieved a dynamic range of detection

from 1 /uL to 105 /uL target molecules (20 to 2 million targets), which makes it be within the de-

tection range in a typical clinical application environment. This dissertation also covers the design

details of the CMOS microelectrode array sensor and the capacitive sensor design as a prelude to

the development of the CrexensTM analyzer architecture.

Finally, an expandable integrated electrochemical analyzer architecture(CrexensTM) has been

designed for mobile point-of-care (POC) applications. Electrochemical methods have been ex-

plored in detecting various bio-molecules such as glucose, lactate, protein, DNA, neurotransmitter,

steroid hormone, which resulted in good sensitivity and selectivity. The proposed system is capa-

ble of running electrochemical experiments including cyclic voltammetry (CV), electrochemical

impedance spectroscopy (EIS), electrochemical capacitive spectroscopy (ECS), amperometry, po-

tentiometry, and other derived electrochemical based tests. This system consist of a front-end

interface to sensor electrodes, a back-end user interface on smart phone and PC, a base unit as

master module, a low-noise add-on module, a high-speed add-on module, and a multi-channel

add-on module. The architecture allows LEGOTM-like capability to stack add-on modules on to

the base-unit for performance enhancements in noise, speed or parallelism. The analyzer is capa-

ble of performing up to 1900 V/s CV with 10 mV step, up to 12 kHz EIS scan range and a limit of

detection at 637 pA for amperometric applications with the base module. With high performance

module, the EIS scan range can be extended upto 5 MHz. The limit of detection can be further

improved to be at 333 fA using the low-noise module. The form factor of the electrochemical ana-

lyzer is designed for its mobile/point-of-care applications, integrating its entire functionality on to

a 70 cm2 area of surface space. A glutamine enzymatic sensor was used to valid the capability of
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the proposed electrochemical analyzer and turned out to give good linearity and reached a limit of

detection at 50 uM.
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Chapter 1

Introduction

1.1 Health Care in the US and Beyond

Health care is a critical topic as it is related to every individual. In the United States, the

health care expenditure is the highest among developed countries. According to the data from the

National Health Expenditure Accounts (NHEA) as shown in Figure 1.1, US reached $ 3.3 trillion

total health care expenditure, or $10,348 per person in 2016 [2]. This is about 17.9% of the gross

domestic product (GDP). In other developed countries, such as Britain, Germany,and France, the

spending on health care is around 10% of their GDP and the percentage is keeping growing over

the years.

Figure 1.1: The health care expenditure as share of GDP [2].

While the market in health care is promising and prosperous, from a patient perspective, limited

health care resource and the resulting frustration in waiting time can prevent needed diagnosis in a
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timely fashion. Data from the Commonwealth Fund in 2013 indicated 76% of patients can manage

to make an appointment for specialist within 4 weeks, and 6% need to wait for two month or more

in the US [3], as shown in Figure 1.2. In other countries, such as Canada, the scenario could

be even worse with only 39% in four weeks and 29% in more than two months. Diseases like

cancer or any viral infections tend not to be discovered until they reach a late stage, which could

be avoided and make the treatment easier if can be diagnosed at an early stage.

Figure 1.2: Waiting times for specialist at different countries [3].

Personal health care devices in this case draw people’s attention to relieve the burden on health

care diagnosis. Companies own such techniques can provide domestic personal health care service

and allow users to do daily or weekly routing tracking on their health status. Health issue, therefore,

has a better chance to be found in an early stage without adding load to health care centers.
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1.2 Development of Personal Health Care Devices

Moore’s law was a prediction in development of semiconductor electronics, which generalized

the number of transistors would be doubled in every two years per integrated circuit. Although

the slope has been flattened in recent years, the exponential growth has been successfully observed

for past decades due to scaling down of transistor size. As a fact of the global industry revenue

involved with consumer electronics, such like Wifi-enabled cellphones, tablet, laptop and other

personal assistant device (PDA) was increased in recent years, the success of technology scaling

down could be largely attributed to market stimulus from the needs of being entertained or being

facilitated. Personal health care electronics, therefore, have become an emerging topic by taking

the advantage of very large scale integrated circuit (VLSI) and to fulfill a need of timely diagno-

sis from individuals [4] [5]. Bio-electronic circuit designs for monitoring important signals and

molecules,such as ECG [6], neurotransmitter [7], human metabolism [8], were proposed to serve

the various needs. One of the issues needs to be addressed is that the geometry of bio-electronics

is required to be scaled down from benchtop as much as possible to become more portable. On

one hand, scaling down is a trend to catch up with the technology scaling of the semiconductor in-

dustry. On the other hand, bioelectronic circuits are typically used in field where a portable feature

provides better accessibility to the users. The portable bioelectronics have different forms. Works

in [9] and [10] proposed CMOS based integrated chip designs for applications uses impedance

spectroscopy technique to achieve the goal. Consequently, wearable device, handhold device and

implantable device are three major solutions to reach the goal, such as works in [11], [12] and [13]

for sensing glucose, Bovine serum albumin (BSA) proteins and neurotransmitters respectively.

1.3 Challenges in the Development of Personal Health Care

Devices

Challenges in developing bio-electronics lie in cost, mobility, simplicity and accuracy, other

challenges in bio-interface involves bio-compatibility, sensitivity, specificity, reproducibility and
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reliability [14] [15] [16] [17]. Multi-disciplinary background of knowledge is required to resolve

these problems as a whole from a system level’s perspective. Among various challenges, cost and

simplicity seem to be the most urgent features from the viewpoint of usability and mobility. Cost

and size, are typically determined by the type of detection principle and implementation details.

Based on the type of signal being sensed from bio-targets, different solutions could be proposed

and a decision needs to be made to have an optimum viable approach. The corresponding simplest

circuit/chip design should be made for realization. As for simplicity, the whole system operation

protocol should be established to have enough prework done by biosensor providers to reduce the

amount of steps that require users to execute. A common example is the choice of labeled tech-

niques, such as florescence labeling. Since this class of techniques usually requires expertise to

handle samples, and therefore, slows down the diagnosis cycle and adds costs, other alternatives

should be explored instead if achievable. On the other hand, it is essential to realize that personal

health care devices differ from research benchtop in its application specificity. This suggests the

specification for personal health care device can be narrowed down compared to general purpose

benchtop. Keep this in mind, reconfigurability comes out as new solution for customization. A

re-configurable personal health care device allows the designers to reduce redundant design and

unnecessary competing effort for specifications by providing the adequate functionality to users

that fits almost exactly the requirements. With introducing reconfigurability, personal health care

devices will be more affordable and flexible in the market. In reality, however, there is no electro-

chemical analyzer benchtop with reconfigurability features since circuit designers tend to design

general purpose electronics to fit for the needs of every electrochemical researcher. Consequently,

electrochemical analyzer design process was a research-oriented rather than application-oriented ,

while the later one is one step further to the public and the mass market. Nevertheless, circuit de-

signers for personal health care device will be required to have biosensor application experiences

in order to gain enough background to complete multidisciplinary design loop and know how to

develop a reconfigurable bio-electronic.
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Chapter 2

Existing approaches

2.1 Bio-sensor Basics

Biosensor device is a class of sensor that converts parameters with bio-interest, such as concen-

tration, to electrical signals for storage and further processing. As an analytical device, a biosensor

is able to interact with bioelements such as nuclieu acids, antibodies, tissues, microorganisms,

enzymes, etc., electrochemically (direct and indirect) or through binding. A common biosensor

consists of bioreceptor, biotransducer, amplifier, processor and display, as shown in Figure 2.1.

Figure 2.1: Illustration of a biosensor system.
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A bioreceptor is a bio-molecule that can recognize target analyte through their reaction, such

as binding between antigen/antibody due to hydrophobic force, ionic force and other forces among

molecules, complementary DNA hybridization due to the form of hydrogen binding in base pair-

ing. Other bioreactions include enzymatic interactions such as glucose oxidase that consumes

oxygen when glucose exists.

As a critical component which determines the actual implementation of biosensor, transducer

is the mechanism that makes a bioreceptor event observable or detectable. Upon binding or other

bioreaction events, transducers take advantage of side effects, such as heat, potentiometric, am-

perametric, magnetical or optical phenomenon, and translate them into electrical signals. The

following discussion will focus on the principle and details on different transducer designs.

2.2 Different Bio-sensing Techniques

2.2.1 Labeled Biosensors

Fluorescent Imaging Sensors

One of the techniques used by the majority of biologists is fluorescence labeling. In this case,

the target analyte is reprocessed to be attached with a fluorescent label. During the experiment, the

analyte can bind to the modified substrate which provides specificity to the analyte under study.

The system setup is shown as in Figure 2.2. An excitation source with a tuned filter is adopted to

generate narrow bandwidth frequency light that can trigger the emission. Then the emitted pho-

ton can be sensed by the filtered detector and therefore to detect the existence of target analytes

and visualize their location. The excitation source is implemented using a homogeneous light

source [18]. Filters are needed to reduce unwanted excitation light and emitted photons. Detector

in this system is the transducer that convert photon into electrical signal through imaging electron-

ics such as charge-coupled device (CCD) cameras [19]. The CCD active area is typically formed

by a 2D array of metal-oxide-semiconductors (MOS) capacitor which can generate current flow

proportional to photon intensity. The resolution of image is determined by the actual pixel pitch

and density.
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Figure 2.2: System setup of a fluorescent imaging sensor.

Magnetic-particle Labeled Sensors

Another labeled technique is by attaching a magnetic nano-particle to the target analyte. The

system is illustrated in Figure 2.3. In this technique, the magnetic particle serves as an extra com-

ponent to store magnetic field. A LC resonator is designed and tuned to oscillate at frequency

determined by the designed capacitance and inductance. Upon the reaction between bioreceptor

and target analyte, the magnetic particle will sit around the electrode surface. Because of the os-

cillation through the electrode, an alternating magnetic field is generated. The polarized magnetic

particles in the vicinity of the electrode, therefore, provide additional magnetic flux and result

in inductance change.Consequently, the oscillation frequency will be changed due to inductance

change [20]. After the transducer have converted the binding/hybridization to frequency shift, the

change can be further detected by introducing a counter circuit that counts number of cycle within

a given time interval. The quantitative difference in number of cycles prior and post to target an-

alyte injection indicates not only its existence, but the amount or concentration based on proper

calibration.

7



Figure 2.3: Principle of magnetic particle labeled biosensor [20].

2.2.2 Label-free Biosensors

Ion-sensitive Field Effect Transistor(ISFET) Based Sensors

While the labeled techniques uses different transducers to detect analytes by recognizing labels,

another class of biosensors are label-free biosensors. Ion-sensitive Field Effect Transistor (ISFET)

based sensor is a type of label-free biosensor, as shown in Figure 2.4. Field effect transistor in

general is a switch whose conductivity is determined by the electrical potential to the gate. With

the interference of electrical potential due to ions in electrolyte and analyte, the charge transfer

response can be distinguished, and therefore, used as transducer for biosensing purposes. For in-

stance, such technique is applied to detect DNA in [21]. Since DNA naturally carries backbone

negative charges that opposed the applied electrical field, the capture of its complementary DNA

will cause further change of chargers accumulated beneath the sensing area. Taking into account

the pH effect in the solution, the actual potential applied to the gate area is described by Eq. (2.1),

where Vref is the bias voltage applied to the electrolyte solution, αH+ is the hydrogen ion concen-

tration, R is gas constant, T is temperature, F is Faraday constant, VDNA and VComplementaryDNA

are equivalent potential change due to opposing electrical field from backbone negative charges.

With ϕ at the gate of ISFET, the charge Q accumulated to the floating diffusion (FD) capacitor
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varies accordingly. The sensor signal is eventually represented as the voltage signal at the output

of the source follower buffer according to Eq. (2.2), where CFD is the capacitance at the drain

terminal of ISFET, Q is the total charges collected by FD capacitor, ASF is the gain of the source

follower. The ISFET based technique is commonly used for pH sensor [22] as well.

ϕ = Vref +
RT

F
lnαH+ − VDNA − VComplementaryDNA, (2.1)

V out =
Q

CFD

× ASF , (2.2)

Figure 2.4: An ISFET based biosensor [21].

Capacitive Sensors

When a pair of electrodes is immersed in a solution and form a complete electrical loop, elec-

trodes can repel ion with same polarity and attract counterions due to the electrical field. The

charges on electrode and counterions in the electrolyte solution in vicinity, therefore, form two

layers of conductive plates. Since the molecules in between the plates act as dielectric material, a

double layer capacitor is formed at the electrode/electrolyte interface. As illustrated in Figure 2.5,

the bare electrode/electrolyte interface can be modeled as a resistor Rp in parallel with a capacitor
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Cp and then in series with another resistor Rp. Rp is to model the leakage current through elec-

trode, Rs represents solution resistance and Cp is the double layer capacitor. When target analytes

bind near the electrode, the biomolecules displace the counterions and increase the dielectric layer

thickness [23]. Eq. (2.3) defines the capacitance involved in sensing, where ǫ is dielectric constant,

A is effective plate area, d is distance between plates, as d increases the overall capacitor will

decrease.

There are several ways to measure the capacitance change. For instance, [23] uses an integrator

technique that correlates the capacitance with charge/discharge time delay. In [24], a RC oscillator

was proposed to convert the capacitance change into oscillation frequency. Nevertheless, since ca-

pacitor is the reactant component, the alternative to measure capacitance could be directly derived

from impedance detection [25].

C = ǫ
A

d
(2.3)

Figure 2.5: Principle and model of capacitive biosensor [23].
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Electrochemical Biosensor and Electrochemical Impedance Spectroscopy

Another type of biosensors is based on electrochemistry. A reduction or oxidization reaction

typically happens at electrode/electrolyte interface as shown in Figure 2.6. When the reaction

happens, the reactant will either absorb or release electron, and therefore, cause electron trans-

fer through electrodes. The transducer, hence, view the detection of target analyte as change in

current due to binding or reaction [26]. The mechanism that causes changes in electron transfer

can be either generated by the target analyte through enzymatic response [27] or from the interfer-

ence of target blocking [28]. The enzymatic approach can be applied when detecting molecules

such as lactate and glucose, that each type enzyme bind on electrode is dedicated to catalyze a

specific target to generate electron transfer. In electrochemical affinity sensing that relies on the

blocking effect of carrier movement. A redox couple is commonly introduced in the solution to

enhance the electron transfer current. When binding occurs, the target molecule which is not re-

dox active reduces the effective contact area for the electron movement from the redox couple,

causing the impedance at the electrode/electrolyte interface to increase. This type of transducer

directly converts biosignal into current. Among other electrochemical techniques for biosensor,

Figure 2.6: Electrode/electrolyte interface response in electrochemical Biosensors.
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electrodechemical impedance spectroscopy (EIS) stands out due to its informative nature. EIS is

achieved by sweeping the applied AC signal at the electrode-electrolyte interface In this case more

data can be collected as a response of impedance at different frequency, the dimensionality of data

will be increased and results in more detailed analysis at the bio-interface. Figure 2.7 illustrates an

example in Nyquist plot, which can resolve the equivalent electron transfer resistors and solution

resistor in a more complicated circuit model by finding the best fitting curve to the actual data.

EIS has been largely used by researchers for detecting various proteins such as folate receptor [29]

and C reactive protein [30]. The results achieved so far indicated a good detection limit as low as

picomolar range.

Figure 2.7: Example for EIS fitting results.

2.2.3 Discussion for Different Biosensor Techniques

Among different types of techniques, the label-free techniques are simpler to use and, there-

fore, more appropriate for devices used for POC applications. From the electronics’ perspective,
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electrochemical methods act as a natural bio-transducer that generates current for analysis. This

fits perfectly for electronic design and reduces design complexity. Additionally, the EIS approach

provides the current or impedance information in a complex form which allows the user to do ap-

plications that care about the phase shift in addition to the magnitude. Because EIS can provide

both real and imaginary parts, it fits for capacitive biosensor applications as well. Therefore, the

implementation and validation of a low cost EIS system act as a perfect entrance point to develop

the reconfigurable electrochemical analyzer as a main base module.

2.3 Electrical Impedance and Different Measurement Methods

The term electrical impedance is to describe a characteristic defined as the total opposition a

device or circuit offers to the flow of an alternating current (AC) at a given frequency. It’s often

referred to complex impedance since it has a complex quantity and can be graphically shown in

complex plane.

Figure 2.8: Symbolic representation for RLC.

In basic electrical theory, there are three fundamental electrical components, which are resis-

tors, capacitors and inductors, Figure 2.8 shows their symbolic representations. A resistor is a

component that impedes the movement of carrier in flow path. The resistance is proportional by

resistivity of material and the length along with carrier flow, is inversely proportional to the cross

sectional area. The relationship is simply the ratio of voltage and current without any phase shift,

ZR = R = |V |
|I| . A capacitor is a storage component, which allows charge to accumulate on both
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capacitor plates. The size of capacitor indicates the capability to store the amount of charge per

unit voltage. No current can go through a capacitor at steady state when direct current (DC) volt-

age is applied. While an AC signal is applied across a capacitor, an altering current is created

with a -90 degree phase shift, its mathematical form in complex plane is ZC = − j

ωC
= − 1

jωC
, j

is Imaginary unit, ω is Angular frequency. An inductor can store magnetic field as energy when

AC signal is applied. The inductive impedance expression is ZL = jωL , L is the inductance. In

complex domain, an inductor can cause +90 degree phase shift.

Theoretically, the impedance of any device under test (DUT) is affected by its resistive, ca-

pacitive and inductive properties. Therefore an impedance usually has both a resistive part and a

reactive part. The undesirable electrical component is call parasitic. For instance, a resistor could

have unwanted inductor if it has wire-wound shape, a capacitor can potentially be modeled with a

big resistor in parallel with it for leakage current, and an inductor could have resistor in series with

it since any material has its resistivity. However, in reality, the unwanted parasitic resistance/ca-

pacitance/inductance can be ignored in most of case, if we know what’s the test setup. Such as the

inductive impedance can be ignored at low frequency, the big resistor in parallel with capacitor can

be ignored at high frequency. Therefore it’s reasonable to neglect some parasitic when analyzing

an impedance response.

2.4 Bridge Method to Detect Impedance

The history to detect impedance can be traced back to early twentieth-century [31]. Some of

the early techniques are derived based on the bridge method. In Figure 2.9, it shows the schematic

of a Transformer Ratio Arm Bridge. In this technique, an oscillated AC signal is carried through

the transform and the magnitude of the signal can be controlled by its turns ratio. Once the bridge is

balanced with tuning the standard resistor and capacitor as well the ration of transform, the detector

will give a null signal, Eq. (2.4) shows the relationship among the parameters when it’s balanced.

This approach can provide wide impedance detection range, high accuracy and is insensitive to
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parasitic capacitance [32]. On the other hand, since it relies on the transformer, the low frequency,

such as at 200 Hz or less, the detection response is poor due to signal loss.

r1
Zx

=
r2
Rs

+ jωCsr3 (2.4)

Figure 2.9: Schematic of transformer ratio arm bridge [31].

Another technique is based on audio frequency bridges, as illustrated in Figure 2.10. This

measurement is achieved by applying an audio frequency (20 Hz-20 kHz) and monitor the output

null status to find a balance point. The DUT impedance Zx equals calculated by Eq. (2.5), Zs is

the standard impedance consists of resistor and capacitor. Such technique, however, is limited at

high frequency as a result of the inductor effect of resistor and parasitic capacitance shunt.

Zx =
R1

R2

Zs (2.5)
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Figure 2.10: Schematic of audio frequency bridges method [31].

The Berberian-Cole Bridge is a technique that overcomes the drawbacks from the previous

bridge measurement methods. It has a wide detection frequency range and can operate as low as

DC, Figure 2.11 shows the schematic. This technique uses a potentiostat to stabilize the stimulus

signal. At the output of the potentiostat, a resistor R’ convert the voltage into current, and the

current will go directly to the ground since the input impedance at the input of amplifiers are

usually high. Two amplifiers are adopted to measure the voltage across the reference resistor R′ as

well as DUT. Then, the signals at output of amplifiers are further converted into current through

resistor and capacitor and merged at same node. According to the Kirchhoff’s Current Law (KCL),

i1 + i2 + i3 = 0 when detector has high input impedance. Eq. (2.6) (2.7) (2.8) and (2.9) represent

the impedance when the bridge is balanced, in other word when Vs equals to 0 V. If the operating

frequency go beyond the bandwidth, the measurement will suffer from gain and phase error.

i1 = A
VA

R1

, (VA = IZ) (2.6)

i2 = A
VA

jωC
, (VA = IZ) (2.7)

i3 = B
VB

R′′ , (VB = IZ) (2.8)
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Z =
BR′R1

AR′′
1− jωR1C

1 + ω2r21C
2

(2.9)

Figure 2.11: Schematic of Berberian-Cole bridge method [31].

The bridges methods are mainly used in early and middle twentieth century when transistor

technique was not advanced and processors were not prevailing. These techniques have a common

drawback that requires tuning to reach a null status in order to measure. This increases cost by

adding more standard resistors and capacitors for better resolution. At the same time, the manual

tuning process makes the measurement inconvenient.

2.5 CMOS Based Impedance Measurement Circuits

2.5.1 CMOS Technology

Complementary Metal Oxide silicon (CMOS) is a modern technology for integrated circuit.

The transistor used in this technique is metal-oxide-semiconductor field-effect transistor (MOS-

FET) and term complementary is referring to the complementary and symmetrical nature between

p-type and n-type doped MOSFET [33]. Figure 2.12 shows the MOSFET structure for both n-type

and p-type. The n or p notation indicates the type of carriers in the device are either electrons or

17



holes. MOSFET is a four terminal device, which has body, source ,drain and gate. Gate is where

the electrical potential can be applied to create a conductive channel. Source and drain are named

after the active region which acts the source/drain of carrier in the device, but not the source/drain

of current direction. Body is the lightly doped substrate by complementary carrier. MOSFET has

three operating regions as the cutoff region, the triode region, and the saturation region. Eq. (2.10)

(2.11) and (2.12) show the condition for each region, where Vth is the threshold voltage that creates

an inversion layer in MOSFET substrate to form the conductive channel.

|Vgs| < |Vth|, (Cut− off) (2.10)

|Vgs| > |Vth| and |Vgd| > |Vth|, (Triode) (2.11)

|Vgs| > |Vth| and |Vgd| < |Vth|, (Saturation) (2.12)

Figure 2.12: CMOS structure for both n-type and p-type.

MOSFET has several advantages over other types of transistors. First of all, the on-off op-

eration is straightforward as a result of applied gate voltage, this makes it ideal to perform as a

switch in any analog or digital circuit. The oxide insulating layer at the gate can almost get rid

of input bias current, and therefore reduces the power consumption. On the other hand, the oxide

layer provides a high impedance configuration, which reduce the effect as a load to previous stage

circuitry. From manufacturing perspective, MOSFET is also area efficient, the transistor length
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and width are controllable. With academic and industry researcher’s effort, MOSFET technology

is scaled down to as small as 5nm [34] which enabled the integration of billion of transistor on a

single chip.

2.5.2 Synchronous Voltage-to-frequency Convertert Technique

In [10], a synchronous voltage-to-frequency converter (SVFC) technique was proposed to mea-

sure the impedance, as shown in Figure 2.13. A sinusoidal voltage signal is applied as stimulus

through the DUT and the response signal in current coming out to charge/discharge the integrator

circuit. The push/pull current source switched by the output of the D-flipflop can help acceler-

ate the charge and discharge processes and provides the counting function. When Vint > Vref ,

Iref1 + Iin charges Cf , and causes V int to drop. Once Vint < Vref , the Q output flips and enables

Iref2. −Iref2 + Iin in this case starts to discharge Cf and causes V int to raise. The duty cycle of

Q indicates whether Iin is positive or negative. These happen periodically during an input cycle

and a counter circuit is used to record the flipping event. Eq. (2.13) is an approximation of trans-

ferred charge qin, the real part expression of the current in this approach is based on Eq. (2.14),

where Tclk is the time period of clock and D is the counts within one cycle period of input signal.

The imaginary part of the current is acquired by introducing a quadrature phase shifted signal that

controls the integrator sample period. Eq. (2.15) represents the calculation for the imaginary part

of the input current. The impedance in complex number can be presented as in Eq. (2.16).

qin ≈ IrefTclkD, (2.13)

Re{Iin} = IrefTclkD
π

Tin

, (2.14)

Im{Iin} = −IrefTclkD
π

Tin

, (2.15)

Z =
Vin

Re{Iin}+ Im{Iin}
, (2.16)
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Figure 2.13: SVFC technique schematics [10].

The dynamic detection range in this technique is largely determined by the choice of Iref , cur-

rent source with different magnitude needs implemented for practical measurement. The measured

frequency in this technique is largely limited by the clk frequency in order to have a counter output.

Nevertheless, compared to the bridge methods, such approach has better integration and converts

the output into digital signal which is more accessible to process. There is no need for tuning

resistor/capacitor in this technique, since the impedance can be calculated by the digital counts.

2.5.3 Lock-in Amplifier Based Technique

Lock-in amplifier is a system that extracts a specific frequency of interest to analyze. As shown

in Figure 2.14, it usually consists of a pre-amplifier, such as transimpedance amplifier (TIA), a

signal mixer and a low pass filter. The pre-amplifier is to convert the current signal from DUT

to voltage. Signal mixer is a unit that multiplies the signal from DUT with a reference signal

from the local oscillator (LO) and results in a superposed signal. Eq. (2.18) expresses the math

representation for signal at the mixer output. When the frequency of the input and reference signals

are equal, the expression can be simplified as Eq. (2.19) shows which consists of a DC and high

frequency component. The low pass filter (LPF) is used to eliminate the high frequency part and

the signal ends up with a pure DC, eventually Vout =
1
2
VsigVLOcos(∆θ) .
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Vmix = Vsigsin(ωsigt+ θsig)× VLOsin(ωLOt+ θLO) (2.17)

=
1

2
VsigVLOcos([ωsig − ωLO]t+ θsig − θLO) + cos([ωsig + ωLO]t+ θsig + θLO)) (2.18)

Vmix =
1

2
VsigVLO(cos(∆θ) + cos(2ωsigt+ θsig) + θLO)) (2.19)

Figure 2.14: Block diagram of lock-in amplifier

In [9], a CMOS based lock-in amplifier technique for impedance measurement was proposed,

as shown in Figure 2.15. An in-phase and 90 degree out of phase signal are applied to lock-in the

signal, and to acquire the real and imaginary part respectively. The frequency detection range can

go as high as 50 MHz till it reaches the TIA bandwidth limit. The impedance detection dynamic

range depends on the gain range of TIA. Once the in-phase and quadrature phase voltage response

are acquired, the impedance magnitude and phase can be calculate from Eq. (2.20) and (2.21),

where A is the total gain from TIA and mixer.

Z(ω) =
A|Vx(ω)|

√

V 2
I + V 2

Q

(2.20)

∠Z(ω) = 90− arctan(
VQ

VI

) (2.21)
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Figure 2.15: Lock-in amplifier based impedance measurement diagram [9].

2.6 Some Existing Potentiostat/Impedance Analyzer System

So far, various approaches in terms of bio-sensing as well as current/impedance measurement

have been discussed. It bring more practicality when it comes to integrated system that physically

allows any user for their specific applications. In this subsection, several existing designs which

consist of complete front-end user interface and back-end sensor interface will be discussed.

2.6.1 CheapStat

The concept in CheapStat, proposed in [35], is to develop a home-made potentiostat at low cost

to help users to explore their sensor application. In this design, costs have been lowered down to

less than $80. Figure 2.16 shows the PCB layout for this design.

The proposed device supported cyclic, square wave, linear sweep and stripping voltammetry

over the potential range -990 to +990 mV and over frequencies from 1 to 1000 Hz. The device was

also validated with 1mM/2mM Ferricyanide and observed peak current difference in uA range.

Additionally, the device was applied in a DNA hybridization experiment to measure the event of

binding from complementary DNA. The results, in Figure 2.17, showed a decreasing peak current

when apply linear scan voltammetry.

While this integrated system had been proven to be suitable for educational use and some

analytical applications. The unavailability in applying impedance measurement set limits to appli-

cations that require impedance spectroscopy.
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Figure 2.16: Physical PCB layout for CheapStat [35].

Figure 2.17: DNA hybridization experiment measured by CheapStat [35].
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2.6.2 A Smartphone-controlled Electrochemical Impedance Spectroscopy

Analyzer

In [12], the researchers proposed a smartphone-controlled electrochemical impedance spec-

troscopy analyzer that can scan from 10 Hz to 10 kHz. The design architecture is shown in Fig-

ure 2.18, and Figure 2.19 shows the physical PCB boards and device. The device had been val-

idated by BSA absorption test through EIS, and a limit of detection at 1.78 ug/ml with 3δ slope

calculation had been achieved. Different non-specific target proteins had also been study and

shown lower signal in impedance change to prove the specificity of the proposed protein sensor.

By taking advantage of AD5933, which is a commercial impedance analyzer chip that have

integrated signal generator, data acquisition, signal processor as well as I2C protocol converter,

this overall design efforts had been relieved to simplified the board design. This design was bat-

tery operated, and able to communicate wirelessly through Bluetooth protocol with an android

app. All these features allow the device to be suitable for point-of-care application which requires

portability and simplicity. However, the designers didn’t take further step to integrate the sys-

tem and reduce the redundancy to cut down the cost, such as getting rid of commercial Arduino

board or integrate the Bluetooth module on board. Further, the dedicated impedance analyzer chip

can only perform EIS experiments and can’t be applied to other electrochemical methods, such as

cyclic voltammetry (CV), amperometry, differential pulse voltammetry (DPV). Therefore, it’s not

applicable to general electrochemical applications.
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Figure 2.18: The smartphone-controlled EIS analyzer architecture [12].

Figure 2.19: The smartphone-controlled EIS analyzer device [12].
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Chapter 3

The Components Used in CrexensTM Architecture

3.1 ADC Techniques

Signals, such as voltage, audio, light, temperature, are classified as analog signals. This type of

signal is naturally continuous and time varying [36]. However, an analog signal can’t be directly

processed by digital signal processor (DSP) to do any calculation or storage. Therefore, an analog-

to-digital conversion (ADC) method is needed as an interface to turn the analog signal into binary

numbers.

3.1.1 ADC Resolution and Errors

Figure 3.1: Distortion error due to low full-scale voltage .

There are many different implementations in ADC family such as, successive-approximation

(SAR), direct conversion, sigma-delta (Σ − ∆), and pipelined ADCs. Different techniques can
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make different trade-off and be applied to various applications. ADCs have common design speci-

fications and need to improve to avoid certain problems. One of important aspects is the resolution.

(a) (b)

(c)

Figure 3.2: Quantization error for different LSB

Resolution of an ADC indicates the minimum difference in an analog signal that can cause

one bit change in digital output. Therefore, it’s also referred to least significant bit (LSB). When

an ADC is sampling voltage signals, the resolution is determined by the full-scale voltage and the

number of bit. Since each bit is storing a ’1’ and ’0’, for N -bit ADC it can represent 2N decimal

values. And the LSB voltage is defined as Vfullscale

2N
.
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The choice of the full-scale voltage and LSB are both essential. If the full scale voltage is

smaller than peak to peak amplitude of the sampled signal, the digitized signal will be distorted.

Figure 3.1 shows an example in which the signal is distorted from the original sinusoidal due to

insufficient full scale voltage.

Quantization error is another error due to large LSB. It happens on each sampled point. Just

like the sample result from ADC is discrete in time, the resolution in amplitude can’t be infinitely

small. Therefore the quantization error is the difference between the original value and the sampled

value at the same time. Figure 3.2 shows the quantization error under different ADC bit which

indicates the error is reduced as resolution is increased. Since LSB is affected by both the full-

scale voltage and number of bits, low full-scale voltage and more ADC output bits are preferred to

reduce such error.

(a) (b)

(c) (d)

Figure 3.3: Sample error due to low OSR in worst case scenario
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3.1.2 ADC Sample Rate

Sample rate determines the time interval between two data acquisition attempt for an analog

signal. According to the Nyquist theorem, the sample rate should be at least twice faster than the

analog signal needs to be sampled, which is also referred as Nyquist rate. Oversampling ratio

(OSR) is parameter indicates how much faster the actual sample rate is than Nyquist rate. Even

though samples at Nyquist rate is plausible in principle, there are issues brought by such scenario.

One of the critical problems is the sample error due to phase shift. For instance, when ADC

samples at the Nyquist rate for single sinusoidal signal, the reconstructed digital signal amplitude

can be any value in between the original signal amplitude to 0. Figure 3.3 shows the reconstructed

sampled signal with phase shift sample error in the worst case, which implies its preferable to

choose higher sample rate to reduce sample error.

3.1.3 Choice of ADC

Figure 3.4: Design trade-off chart for ADC [37].

The conclusion drawn from the previous discussion can be generalized as it’s always prefer-

able to have more ADC output bits and high sample rate. However, this is hard to achieve since

the design of ADC among different technique are typically making trade-off between sample res-

olution and sample rate [37]. Figure 3.4 generalizes the design trade off in ADC, which shows
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a clear trend that lower resolution can achieve higher sample rate and vice versa. Consequently,

a high resolution and high sample rate ADCs can be costly, since these ADCs are usually taking

advantage of advanced technology scale. Therefore, it is important to know the tolerance of error

from the non-ideal ADC when comes to make a decision on specification of ADC.

3.2 Signal Processing Technique

3.2.1 Fast Fourier Transform Algorithms

In order to measure impedance, the key is to find out its complex expression. The CMOS

techniques discussed in the previous chapter all impulsed a quadrature phase shift signal for the

imaginary part and a in-phase signal for the real part with analog approaches. With ADC technique,

once signal gets sampled and have binary representation, algorithms can be introduced to process

the signal and acquire the information needed. One of the many algorithms for this purpose is Fast

Fourier Transform (FFT).

FFT is one of the most widely used algorithms for signal processing, which can convert signals

from the time domain to the frequency domain, Figure 3.5 shows an example of such conversion

from the time domain to the frequency domain by FFT.In this example, the analyzed signal is

superposed by two pure sinusoidal signal with different magnitude and frequency, while it’s hard

to tell from the time domain, the individual signals are clear once projected into frequency domain

through FFT. Mathematically, FFT can be expressed by Eq. (3.1) and Eq. (3.2), where WN is the

twiddle factor, Xk is signal in the frequency domain and xn is signal in the time domain.

By performing FFT, signals with different frequencies and magnitudes can be extracted from

their time domain counterpart, which allows subsequent analyzers to determine the signal compo-

nents that form a given input signal.

Xk =
1

N

N−1
∑

n=0

xn exp(
−j2πnk

N
) =

1

N

N−1
∑

n=0

xnWN
nk (3.1)
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WN = exp(
−j2π

N
) = cos(

2π

N
)− j sin(

2π

N
), where 0 ≤ k ≤ N − 1 (3.2)

Figure 3.5: Signal after fast Fourier transform.

3.2.2 FFT and Radix-2 Structure

Hardware implementation of FFT can be realized by using the Radix-2 butterfly structure [38],

as shown in Figure 3.6. The Radix-2 butterfly structure essentially consists of two multiplications

and three additions/subtractions.

Figure 3.6: Radix-2 butterfly structure unit

For FFT to be practical for signal processing applications in biomedical devices, the number

of data points an FFT can handle is an important parameter. With a fixed sample frequency fs
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from ADC, the frequency resolution is determined by fs
N

, where N is the FFT points.The more

number of data points an FFT can handle, the more accurate the spectrum output will be. However,

increasing the number of data points will significantly increase the hardware complexity of FFT,

and consequently, its power consumption. For example, a simple 2-point FFT needs 4 multipliers

and 6 adders/subtractors as datapath for both real and imaginary part, a 64-point will need 32×6 =

192 times bigger area than 2-point one, a 1024-point then will be 512X10 = 5120 times greater

compared to 2-points.This is because the complexity of FFT increases not only as a function of

the number of input points but also that of the number of stages. Specifically, for 2N points FFT,

it will end up with N stages and 2N entrances using the Radix-2 architecture, Figure 3.7 shows an

example for 64-point FFT based on radix-2 butterfly.

Figure 3.7: 64-point FFT butterfly structure

3.2.3 Smoothing Algorithms

Noise is a practical concern when deal with analog signals. When electrical signals propagate

through electrical circuits, the final output will add up the accumulated noise upon the ideal signal.
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Noise source can come from the components such as resistor and transistor which contribute to

thermal noise and flicker noise. Thermal noise is caused by the thermal agitation to carriers in any

circuit [39]. For resistive component, the noise power spectrum is proportional to 4kBTR, where

kB is Boltzmann constant which approximately equals to 1.38× 10−23J/K, T is temperature and

R is resistance. The flicker noise is caused by the trapping and release of carrier when it flows

through [40]. In MOSFET, the flicker noise occurs when carrier is trapped by the oxide layer

beneath the gate, and therefore fluctuate the surface mobility. Because the flickers noise power

is inversely proportional to frequency, it’s also referred as 1
f

noise. Additionally, the signal from

elctronics also suffer from electrical magnetic interference (EMI) from on-board and off-board

sources.

Smoothing algorithms can be applied to relieve the burden on hardware filtering. The idea

behind the smoothing is generally moving average. Such approach smooths a data point by taking

reference points at its vicinity, as in Eq. (3.3). The number of reference points for each calculation

determines the average window. A proper window size should be selected to avoid distortion as

well as to maximize the filtering effect. Figure 3.8 shows the effect after applying the smoothing

algorithm including an distortion example when the smoothing window size is too large .

Yi,smoothed =
Yi−j + Yi−j+1 + ...+ Yi + Yi+1 + ...+ Yi+k

n
, n = j + k + 1 (3.3)

3.3 A Low Power 64-point Bit-Serial FFT Engine

As FFT acts as the core algorithm to acquire the complex impedance data, we proposed a

customized FFT CMOS processor chip to minimize the area and cost.

3.3.1 Existing FFT Implementations

FFT algorithm essentially consists of multiplications and additions/subtractions, therefore it

can be implemented with using existing co-processor such as FPGA with programming [41].

However, FPGA board is normally designed for general purpose application rather than FFT, which
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Figure 3.8: Results With smoothing algorithms

introduce a lot of redundancy in terms of chip size and power consumption. For applications that

don’t need digital signal processing functions other than FFT, customization would be a better

choice.

Existing works such as [42] [43] are customized FFT implementation. The design complexity

of such FFT grows as number of points and number of bits increase, the size of chip and power

consumption could be too high that they are not suitable for battery based implantable devices.

The proposed implementation in [44] attempted to make a better tradeoff among performance,

complexity and power consumption by developing a two-dimensional structure of 8-point FFTs,

which reduced the complexity of multiplication and managed to save storage unit. In [45], Radix-4

butterfly is used to implement the FFT for latency purpose. As the arithmetic components are get-

ting reduced, it takes more time to wait for data from previous stage of Radix-2 butterfly structure

and proceed operation, which is the cause of its latency growth. With the Radix-4 structure, more

incoming data are grouped and proceeded together which reduce the number of stages equivalently

compared to the Radix-2 counterpart. The amount of time for the FFT to hold and wait for data is

therefore reduced, which improve the latency.
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Figure 3.9: Bit-serial vs bit-parallel adder

3.3.2 Bit-serial vs Bit-parallel Logic

The hardware implementation complexity of FFT grows as the number of point increases. In

general, the complexity of N-point FFT requires N
2
× (log2N) Radix-2 butterfly structures. In

addition, the complexity of the basic arithmetic components as multipliers and adders are getting

more complicated as the number of bits grows. Even though the problem in the adder is not

significantly severe since its complexity goes up linearly, complexity of multiplier is a quadratic

function of the number of bits it handles which can be huge in terms of area when dealing with 10

more bit and results in more power consumption.

Bit-serial logic is different from traditional bit-parallel logic in a way that the data flow is

coming out in a serial manner. Figure 3.9 compares a bit-serial adder with a bit-parallel adder.

Bit-serial arithmetic trades performance with complexity and scalability.

In traditional bit parallel logic, the number of full adder in a multiplier is a quadratic function of

number of bits. In bit-serial logic, as shown in Figure 3.10, the complexity of full adder is a linear

function of the number of input bits [46] [47]. Although extra components such as D-flip flops
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(D-FF) are needed, the amount of D-FF is still in a linear relationship with number of bits. Such

complexity would become more prominent as the number of bits increases for high resolutions.

Figure 3.10: Bit-serial multiplier

At the logic level, the design complexity can be represented by the number of transistors. Using

the standard CMOS gate structures, Table 3.1 shows the typical transistor cost for basic building

blocks for digital FFTs.

Table 3.1: Transistor counts for different gates.

Logic gate component Transistor counts
Inverter 2

NAND-2 4
NOR-2 4
D-FF 12

Figure 3.11 shows the complexity growth of bit-serial and bit-parallel implementations of

adders and multipliers as a function of data word length. However, bit-serial logic has longer la-

tency. For an N-bits adder, the latency is N cycles, and for an N-bits multiplier, the latency is
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3N cycles. Nevertheless, in applications not sensitive to prompt data processing, bit-serial tech-

nique can be a worthy tradeoff since silicon area and power consumption are more stringent than

performance and therefore can be safely applied for FFT implementation.

Figure 3.11: Bit-serial vs bit-parallel in number of transistors.

3.3.3 Top Level Architecture

The top level diagram for the 64 point bit-serial FFT is illustrated in Figure 3.12. In this design,

the bit inputs go into logic component in serial and pass through a multiplier, two adders/subtrac-

tors and a first in first out shift register (FIFO) at each stage. For 64-point design, it has 6 stages

in total, but only with one row of Radix-2 unit in a serial manner rather than 32 of them. In other

words, all the Radix-2 butterfly operations at each stage are sharing the same arithmetic unit. Pro-

cessing gets started from the first stage, the digital data bits that represent time domain information
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for given signal would be aligned in serial and go into the Radix-2 butterfly in pairs. Equivalently

speaking, such structure would finish the operation row by row in each stage and then proceed to

the next one. On the other hand, since each stage does not need to wait for the previous stage to

finish all of calculations for initiating itself, the advantage of pipelining will result in improvement

in throughput. Once the result from the Radix-2 butterfly has been stored in the FIFO, a logic

controller will gate the clock signal in the FIFO to make the data bit stays in each D flip flop (DFF)

as well as save power. Meanwhile, it would allow the next set of inputs to proceed starting a new

period. In addition, the control logic for each stage is also responsible for the next stage to have

it fetch data stored in the previous stage’s FIFO and initiate the next stage’s operation when it’s

ready, which makes such design highly dependent on control logic.

Figure 3.12: Proposed bit-serial FFT topology

3.3.4 Radix-2 Unit Design

Inputs a , b as well as twiddle factor WN in FFT algorithm are complex number which consist

of real part and imaginary part, therefore a = aR + aIi , b = bR + bIi and WN = WNR −WNIi.
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The equations for calculating A and B are shown in Eq. (3.4) and (3.5), respectively. And if

the real part and imaginary part are separated out, it ends up with Eq. (3.6) (3.7) (3.8)and (3.9).

These equations indicate that the Radix-2 butterfly can be implemented by using 2 multipliers and

3 adders/subtractors for either the real part or the imaginary part. In order to calculate a complex

number, a Radix-2 for AR and BR and another for AI and BI are needed.

A = aR + bRWNR + bIWNI + (aI + bIWNR − bRWNI)i (3.4)

B = aR − (bRWNR + bIWNI) + (aI − (bIWNR − bRWNI))i (3.5)

AR = aR + bRWNR + bIWNI (3.6)

BR = aR − (bRWNR + bIWNI) (3.7)

AI = aI + bIWNR − bRWNI (3.8)

BI = aI − (bIWNR − bRWNI) (3.9)

Figure 3.13: Radix-2 implementation for real part

Figure 3.13 shows the diagram for real part Radix-2 hardware realization. Since the number

of bits will grow after each stage, the latency for each stage Radix-2 will be different. To simplify

the control logic design, data words are padded to make the execution period uniform at 90 cycles

for each input pair in each Radix-2 calculation throughout the pipeline. Shift register string(D-FF

string) is introduced in Radix-2 butterfly as a compensation delay line to allow data padding. In
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addition, another D-FF set is needed to hold the input data bits, because even the input pair is

latched into Radix-2 component, one of them needs to go through multiplier and compensation

D-FF string while the other does not.

3.3.5 Multiplier Design

The implementation of the bit-serial multiplier is shown in Figure 3.10.In addition to standard

bit-serial multiplier design using bi-serial adders, we would like to highlight two design details.

First of all, since there is a pulse signal that will be needed as a trigger to latch in the data coming

from D-FF of the previous stage, it may cause logic error if the incoming data bit does not catch

the trigger edge. Therefore, buffers were inserted in this design to delay the clock signal slightly to

eliminate this hazard. Secondly, for N-bit two’s complementary multiplication, there is very often

overflow condition that results in incorrect outcome. For instance, for 20-bit binary number 1111

1111 1010.0000 0111 × 0000 0000 0000.1011 0101, rather than result like 1111 1111 1011.1100

0110, it ends up with 1011 0100 1011.1100 0110 instead. A solution in [48] was to pad the input.

If there is an input as 16-bit, it will be extended to be 32 and then proceed processing. However,

in this design, 8 MSB bits are assigned for integer and 8 LSB bits are for decimal, it would end up

with 64-bit output which contains the highest 48-bit for integer and the lowest 16-bit for decimal

after multiplication. Nevertheless, since the twiddle factor is in -1 to +1 range, the highest 40-bit

and lowest 8-bit can be discarded which makes the output bit remains at 16. In other words, the

number of bits after multiplication does not grow.

3.3.6 Adder Design

Although the result after multiplication does not increase, the result grows after addition/-

subtraction, and therefore overflow detection and bit extension techniques are required for bit-

serial adder implementation. The overflow detection is designed by comparing CarryoutN+1 and

CarryoutN with XOR gate, which is a well-known technique. For bit-serial logic, extra D-FF and

a control logic are need to store the CarryoutN and give signal at certain clock cycle to detect
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overflow event receptively. And control logic is also responsible for extending the MSB of digital

output to grow the number of bits.

3.3.7 FIFO Design

Figure 3.14: FIFO structure for each stage.

As the number of Radix-2 units is reduced in bit-serial architecture, the availability of interme-

diate value for FFT operation is an issue. Since the FFT implementation is based on the Radix-2

butterfly,the later stage will need results coming from previous one. For instance, in stage two,

in order to calculate the result from Row0 and Row3, it needs to hold for at least two operation

periods (180 clock cycles) to have both of them available. As a consequence, storage components

are needed to hold the values that can’t yet be operated. FIFO structure is chosen in this design

to store intermediate results, Figure 3.14 shows the FIFO structure in the proposed design. Since

it needs more time to hold the intermediate variable as processing progresses, FIFO structure is

lesser reusable and therefore results in more register components as stage increments. Neverthe-

less, since FIFO is normally built based on D flip flop which can be as simple as 12 transistors, it

can still be area efficient. Each FIFO has a corresponding set of mux and decoder to handle FIFO

inputs and outputs.
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Chapter 4

The CrexensTM Architecture

4.1 CrexensTM Electrochemical Analyzer: Generation 1

In this section, an initial electrochemical analyzer design is proposed. The design consists of

signal stimulus generation and signal acquisition for EIS. Figure 4.1 shows the overall architecture.

The circuit is capable of generating a stimulus signal consisting of 32 frequencies with a resolution

of 2 Hz at low frequency band and 62Hz at medium frequency band, the signal is designed as

shown in Figure 4.2. The frequency range for the stimulus signal is from 2 Hz to 2 kHz which

is divided into two bands. The circuit generates a composite signal for one band at a time. The

composite signal provides a compact representation of the desired signal spectrum with 0.3% error

in amplitude. The response signal acquisition is accomplished with signal amplification using

a transimpedance amplifier, followed by an analog-to-digital converter (ADC). An average error

lesser than 2.14% in measured impedance was achieved. The limit of detection 10 Ohms was

obtained. The design was implemented on a 2-layer PCB board with a total footprint of 75.26

cm2. The design was intended as a low-cost and high accuracy point-of-care (POC) platform for

pathogen detection.

4.1.1 Stimulus Signal Generator

The stimulus signal generator combines 32 sinusoidal signals into an aggregate analog sig-

nal. Figure 4.2 illustrates the processing of combining sinusoidal signals at different frequencies

into one composite signal (black line). To reduce the peak-to-peak value of the combined sig-

nal, a low crest factor signal was designed by inserting phase offset to each individual sinusoidal

signal frequency similar to that in [49]. Table 4.1 shows the phase pattern used to generate the

aggregate signal. Each frequency component was designed to have a 10 mV amplitude. A pro-

grammable microcontroller unit (MCU) is used to initialize the SRAM with digital samples of the
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Figure 4.1: System level architecture for generation 1 design.

Figure 4.2: Illustration of multi-sine signal in time and frequency domain.
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Table 4.1: Phase shift for each frequency component.

Sine i φi (rad) Sine i φi (rad) Sine i φi (rad)

1 0 12 2.7873 23 -1.2014

2 3.1067 13 -2.0961 24 0.8386

3 0.0835 14 1.3176 25 0.3342

4 -2.2936 15 2.0630 26 -0.3860

5 2.0544 16 2.6231 27 2.0323

6 -1.5791 17 -0.9922 28 -2.7892

7 -3.0282 18 0.7026 29 0.9178

8 1.6772 19 -0.6575 30 -2.0236

9 -2.2803 20 -2.0723 31 -0.9686

10 2.4914 21 -2.4123 32 2.6719

11 1.7254 22 -2.0217

composite signal. Each composite signal has 256 data points. The SRAM is driven by an address

counter to select composite signal values in an incremental fashion. Multiplexers (MUX) controls

the selection of two different frequency bands. The digital values of the composite signal are con-

verted to their analog counterparts by a 12-bit DAC before being applied to sensor for impedance

measurement. A clock generator synchronizes the composite signal generation process.

4.1.2 Impedance Measurement Unit

The impedance measurement unit consists of a transimpedance amplier (TIA) for converting

the response current to an output voltage. The transimpedance amplifier uses an operational am-

plier (opamp) with a reference resistor in the feedback. A capacitor Cf in parallel with the reference

resistor is used for reducing TIAs output noise at the cost of reducing TIA bandwidth. For a given

Rref and Vin , the sensor impedance Zsensor is determined by Vout as shown in Eq. (4.1). The

choice of Rref and Cf is to prevent output railing within the estimated range of Zsensor and TIAs

bandwidth and noise tradeoff requirement. In this design, a 1.91K ohms resistor and 470 pF feed-

back capacitor were chosen.
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ZDUT = −Rref × Vin

Vout

(4.1)

Two steps are taken to measure sensor impedance: 1) .Select and sample Vin and Vout channel

respectively to acquire digital data, 2) Use PC processor to run FFT and calculate impedance for

both magnitude and phase.

4.1.3 Response Signal Preparation and Data Processing

The sensor response signal from the TIA is digitized by a 12-bit analog-to-digital converter

(ADC). The digitized data can then be sent to host computer for further processing. The data

processing consists of calculating magnitude and phase information about the sensor impedance

using Eq. (4.2) and (4.3).

ZDUT =
Rref ×

√

V 2
in,Real + V 2

in,Imag
√

V 2
out,Real + V 2

out,Imag

(4.2)

θDUT = arctan
Vout,Imag

Vout,Real

− arctan
Vin,Imag

Vin,Real

− 180 (4.3)

4.2 CrexensTM Electrochemical Analyzer: Generation 2

Figure 4.3 shows the system level view for the proposed platform and the goal is to increase

the system’s functionality for applications. The platform is powered by a USB based rechargeable

battery 3.3 V. Signal generation, digital data acquisition/processing are managed by an on-board

microcontroller. Automatic gain control and noise reduction filter are implemented to meet the

signal-to-noise ratio (SNR) requirements of the applications. The final data are transmitted through

Bluetooth 4.0 protocal to user’s smart-phone or tablet.
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Figure 4.3: System level architecture for generation 2 design.

4.2.1 Signal Generation

This approach has two modes to generate stimulus, a signle-tone mode and a multi-tone mode.

In the single-tone mode, one sinusoidal signal at specific frequency will be applied to the DUT and

gathered for processing at each time. In the multi-tone mode, a 32 sinsoidal at different frequencies

are superposed to become one stimulus, this composite analog signal will then go through DUT,

transimpedance amplifier (TIA) and sampled by ADC. The signal processing step will analyze the

32 tone together at once. Therefore, the multi-tone approach can reduce the sweeping effort and

save time. One of the issue in multi-tone mode is overshooting as a result of supperposition. To

reduce the peak-to-peak magnitude of the combined signal, a low crest factor signal was designed

by inserting phase offset to each individual sinusoidal signal frequency similar to that in [49].

The signal for both the single-tone and the multi-tone modes are pre-sampled in Matlab by 256

data points. These data points were then loaded into the non-volatile memory in the microcontroller
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unit (MCU) for the 12-bit digital-to-analog converter (DAC). To reduce the impact of stimulus on

electrodes, the amplitude of stimulus was controlled to be no greater than 30mV rms.

4.2.2 Read Channel and Data Acquisition

The analog front-end of the read channel is a transimpedance amplifier (TIA). The close-loop

gain of the TIA is controlled by a potentiometer or a multiplex resistor array. An array of filtering

capacitors in parallel with resistive feedback are multiplexed to reduce noise. The data are sampled

at the output of the DAC and TIA through two 12-bit analog-digital converter (ADC) in MCU.

Based on ADC data feedback, the potentiometer and mux for the capacitors can be automatically

adjusted to maintain the maximum gain without railing issue as well as the best filtering without

affecting of signal. This auto gain control and auto filter control feedback can help SNR.

4.2.3 Data Processing and Transmission/Receiving

Once the response signal was sampled, they were fed to the micro-controller to obtain the spec-

trum information using FFT. The impedance and phase can be further deduced based on Eq. (4.4)

and (4.5).

Z(ω) =
Rref ×

√

V 2
inRe + V 2

inIm
√

V 2
outRe + V 2

outIm

(4.4)

∠Z(ω) = arctan(
Vout,Im

Vout,Re

)− arctan(
Vin,Im

Vin,Re

)− 180 (4.5)

The impedance and phase data were then sent out to the Bluetooth chip and further transmitted

wirelessly to the user’s cellphone. The Bluetooth chip is CC2540 from Texas Instruments. It

supports the Bluetooth 4.0 protocol which makes it more compatible with the latest versions of

smart-phone devices or tablets.
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4.2.4 The Graphic User Interface (GUI) on Android Smart-phone

The handheld device is controlled by an Android smartphone. The phone application is pro-

grammed in Java using Android studio. The application can be freely installed on any android

system has an android 4.0 or higher version. Bluetooth 4.0 is needed on the smart phone for data

transceiver. At the beginning when the GUI is started, a scanning sequence will be launched to

find all available Bluetooth device around as well as signal strength, as shown in Figure 4.4. Users

need to choose the correct device name to pair with the one in use.

Figure 4.4: GUI interface for device pairing.

The GUI allows user to start EIS test under +200 mV,+100 mV,0 V,-100 mV or -200 mV bias,

and automatically sweep from 0.16 Hz to 15 kHz with 96 data point.

Additionally, the system allows user to launch cyclic voltametry (CV) between -1.1 V to +1.1

V in 100 mV/s scan rate, and fast scan cyclic voltametry (FSCV) between -1.1 V to +1.1 V in 100

V/s. The monitor can track the data when it’s collecting from the handheld unit, and generate plot

once finished, as shown in Figure 4.5. The data will be saved in smartphone’s internal memory for

the record.

The final product is enclosed in a plastic package. The case has a USB port to connect device

to electrode, as in Figure 4.6. It has an on-off rocker button and micro USB-port for charging the
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(a) (b)

(c) (d)

Figure 4.5: (a). CV plot. (b) FSCV plot. (c) Bode Plot for EIS. d) Nyquist plot for EIS.

rechargeable battery. The package is designed with Fusion 360 3D model software and printed

through 3D printer at CSU idea to product (I2P) prototyping lab.

4.3 CrexensTM Electrochemical Analyzer: Generation 3

The 3rd generation of electrochemical analyzer is aimed to explore its reconfigurability that

allows user to define the capability of the electrochemical analyzer without having too much re-

dundancy that adds up the cost.

4.3.1 The Reconfigurable Electrochemical Analyzer Platform

In order to achieve the desired degree of reconfigurability, both digital and analog parts are

made reconfigurable. The general design philosophy for the proposed platform is to have sepa-

rate analog or mixed signal component on add-on modules, and have a digital controller on the

base module to be reprogrammed depending on which type of module is used. The CrexensTM
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Figure 4.6: Final Product Package (Top View).

Figure 4.7: Final Product Package (Side View).
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architecture is shown in Figure 4.8. Spartan-6 series field programmable gate array (FPGA) unit

was chosen to act as the central digital controller on the base module due to its high speed and its

parallelism capability for handling multiple tasks/modules.

Figure 4.8: System level architecture for generation 3 design.

4.3.2 The Base Unit

The base unit acts as the motherboard for all other add-on modules and it is by itself a fully

functional electrochemical analyzer. It comprises three parts: power supply, digital control, and

mixed signal circuit. The power supply part is designed to have a number of boost-buck converters

and voltage regulators to provide a wide range of supply voltages for not only the base unit itself,

but also for the potential add-on modules. The base unit can be battery driven and can operate

at a potential >+3.3V. A microcontroller unit (MCU) (ATMEGA32U4 from Atmel) was used as

interface between the FPGA unit and the PC-based graphical user interface (GUI). It also acts as

pro- gram loader to configure the FPGA routing for specific functionalities. Since the FPGA does

not have the internal dedicated memory to store configuration data, an external SPI-based flash

memory was used to save the configuration file for the FPGA unit. The configuration file in the

51



flash memory is read automatically by MCU when the device is powered on and then MCU will

load the current configuration data into the FPGA unit. For the reconfiguration purpose, all add-

on modules have their own flash memory for storing the preloaded configuration file. The mixed

signal part in the base unit is for signal genera- tion and data acquisition, it consists of a 12-bit

digital-to-analog converter (DAC), a 14-bit analog-to-digital converter (ADC), a potentiostat, and

a read channel. The potentiostat was designed using two closed-loop opamps in the unity gain

configuration. The read-channel provides automatic gain control in the range from 10 Ohms to

100 MOhms. The output voltage scale of potentiostat was designed in the range of +-3V with

resolution at 1.46 mV. The compliance voltage for the potentiostat is 10V.

4.3.3 The Low-noise Module

The low-noise module provides high sensitivity measurement for applications that require de-

tection of current in the range of sub-nanoamp scale. The low-noise module can be in- serted into

the base unit and be automatically recognized by the based unit and allow it to be reconfigured

for high-sensitivity measurements. One of the biggest issues in detecting small scale current is

the possible leakage on the critical signal path, such as the leakage through transistor gate in the

opamp, analog multiplexer channel in off-state, or even poor PCB routing/guarding scheme. To

address these issues, opamps that have input bias current at fA range were used for both poten-

tiostat and read channel. Additionally, relay switches were used in- stead of analog multiplexers

since they have nearly infinity off- state impedance similar to mechanical switch. These efforts can

reduce the distortion of original electrochemical signal before it gets amplified. Meanwhile, the

gain control stage was designed to have 4 different gains from 40 kOhms to 5 GOhms to reduce

the relay area. An 18-bit ADC and an 18-bit DAC were chosen for the low-noise module with the

compromise of operating the module at a lower sampling rate. The potentiostat was de- signed to

have +-5 V full scale range with 38 uV resolution. The compliance voltage was in this module

becomes 24 V.
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4.3.4 The Quad-channel Module

This module was designed for applications that measures four sensor outputs simultaneously.

This module consists of four replicated read channel and an auto-gain control circuit. The signal

generation and data acquisition were carried out by the DAC, the ADC and the potentiostat on the

base unit. The four sensor signals are multiplexed from the on-board multiplexer controlled by the

based unit in a user preferred fashion.

4.3.5 The High Performance Module

When it comes to EIS measurements that require operating at a higher frequency range (up to

tens of MHz), the high-speed module can be used as a plug-in to extend the performance of the

base unit. For high speed applications, the use of ADC/DAC with SPI interface is not appropriate

since the serial data communication will push the digital processor to operate at an even higher

clock rate, making it cost prohibitive. Therefore, a 14-bit parallel ADC and a 14-bit DAC were

used in the high-speed module. They communicate with the FPGA unit on the base unit through

the parallel input/output (I/O) ports. By taking advantage of the parallel I/O pins, the FPGA unit

does not have to be operating at an extremely high frequency, thus, reducing the overall cost for the

CrexensTM analyzer. The ADC and DAC in the high-performance module were synchronized by a

dedicated clock generator and operate at 150 MHz and 75 MHz, respectively. The FPGA unit was

also synchronized through an output clock from the ADC whenever samples are ready in order to

avoid any control failure due to the asynchronous nature of the design in this part. The potentiostat

in the high performance module has output swing from -3 V to 3 V with a resolution of 366 uV,

and compliance voltage of 10 V.

4.3.6 GUI Design

The GUI provides user control functions such as connection/disconnection from the device,

experiment mode options (Amperometry, CV, EIS, etc.), experiment run/stop the measurement,

reset the data buffer and export data into excel automatically in real time. It also allows user to set
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run-time parameters depend on the user’s need. The GUI was implemented in Python. Figure 4.9

shows the snapshot of the GUI.

Figure 4.9: CrexensTM GUI on windows PC.
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Chapter 5

Design Implementation and Validation

In these chapter, design implementation and validation results from all proposed electronic

designs will be shown and discussed.

5.1 Result for the Proposed 64-point Bit-serial FFT Processor

5.1.1 Simulation Setup

To validate the proposed FFT design, a time domain signal is given for testing. The data input

to FFT is a superposition of two signals as shown in Eq. (5.1). The sine signal has a 2 V amplitude

with 16.67 Hz frequency and cosine signal has a 3V amplitude with 12.5 Hz frequency respectively.

A Matlab testbench was created as a baseline comparison to the results from the proposed hardware

design. With 100Hz sample rate and 64 data points, the results for both time domain and frequency

domain output from Matlab testbench are shown in Figure 5.1 (a), (b).

xn = 2× sin(2× π × 100

6
× t) + 3× cos(2× π × 25

2
× t) (5.1)

The entire 64-point FFT was implemented in a commercial 0.18µm CMOS process. The test

for proposed FFT processor is subject to the same input signal as shown in Eq. (5.1) with the same

sampling rate. Figure 5.1 (b) shows the FFT outputs from both the proposed hardware implemen-

tation and from the Matlab testbench. Figure 5.1 (c) (d) further illustrates the error between two

implementations in percentage, which shows that the error is a function of amplitude. As spec-

trum amplitude goes up, error goes down. This is because 8 bits are assigned for decimal value

in the proposed design which provides a resolution of 3.90625 × 10−3. Therefore for spectrum

amplitude close or even lesser than that, error will increase a lot. That’s why the errors for the very

last two frequency are significantly higher, since their amplitude are 3.6× 10−3(with 12.6% error)
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(a) (b)

(c) (d)

Figure 5.1: (a) Test Signal in Time Domain. (b) Frequency Domain Signal. (c) Error Compared to Matlab
Implementation. (d) Error in Real Part and Imaginary Part.

and 1.8 × 10−3(with 32.2% error) respectively. Therefore, the errors in these frequency bias are

meaningless. The errors near the input frequency are extremely small.

5.1.2 Performance

In proposed design, it needs 8861 clock cycles to complete one set of 64-point operation. This

is 177.22 µs latency at 50MHz clock rate. By taking advantage of pipelining, the execution cycle

can be reduced to 2 × 32 × 90 = 5760 for continuous input, which results in 115.2µs for each

set of 64-point FFT. Therefore, the throughput is 0.55 Mpoints/s. Since this design is aimed at

minimizing complexity, the FIFO size of the penultimate stage is designed as half as it supposes
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to be, which consequently reduces the capability to store intermediate data and results in longer

execution time. By doubling the FIFO size of second last stage, the throughput can potentially

be improved to be 32 × 90 = 2880 clock cycles, which is 57.6µs or 1.11 Mpoints/s. Although it

looks like a good tradeoff by increasing some area and power to get throughput twice faster, the

execution time within hundred of microsecond is sufficient for slow throughput application.

5.1.3 Comparison Among Different Designs

Normalized Area =
Area

(Technology/0.5µm)2
(5.2)

Table 5.1 compares the proposed design with the existing FFT implementations in the past.

To make the comparison more objectively, the silicon areas of all the reported design have been

normalized to an equivalent of 0.5µm process as shown by Eq. (5.2). The power consumption has

been normalized by measuring power per FFT point to make different data point implementation

comparable. Performance is measured by the processing time per FFT point. Table Table 5.1

shows the proposed design can reduce the power consumption and size. However, this is largely at

the expense of performance as intended.

Table 5.1: Comparison among different FFT approaches

CMOS Power FFT Clock Power Norm Perf

Work Tech Supply Freq Per Point Area per point

(µm) (V) Point (MHz) (mW/point) (mm2) (µs/point)

This 0.18 1.8 64 50 0.22 11.1 1.8

[44] 0.25 1.8 64 20 0.64 27.2 0.050

[50] 0.13 1.2 64 20 0.35 24.5 0.050

[51] 0.6 3.3 64 36 15.625 43.3 0.056

[52] 0.35 3.3 64 65 8.51 13.8 0.05

[53] 0.5 3.3 1024 66 5.86 167 0.59× 10−3

[43] 0.75 / 1024 40 7.52 1104 9.3× 10−3
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5.1.4 Layout Implementation

Since the overall design costs around half million transistors, which largely increase the routing

effort, it was converted into Verilog files and then imported into Cadence Encounter for auto-

routing. In order to minimize the overall design area, the utilization effort was set to be 95 %.

The design was implemented based on a commercial standard cell library that’s built upon 180 nm

CMOS technology. The overall layout is shown in Figure 5.2 , which is measured at 1.44mm2

and is adequate for manufacturing.

Figure 5.2: Layout of Proposed FFT Design.

5.2 System Validation: Electrochemical Analyzer, Generation 1

5.2.1 Final PCB Implementations and Measurement Results

The input stimulus generation and output response acquisition circuits were implemented on

a PCB using off-the-shelf components. Figure 5.3 shows the PCB realization of the proposed

design.An equivalent RC test bench was built to mimic the electrode-electrolyte interface with a
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Cdl=15.6 uF, Ret=100 Ohms and Rsol=100 Ohms as shown in Figure 4.1, where Cdl and Ret are

the double layer capacitance and electron transfer resistance respectively at electrode-electrolyte

interface, Rsol is the solution resistance.

Figure 5.3: PCB layout for proposed design

Figure 5.4 show the output from signal generator at output of DAC. The average amplitude for

each frequency component is about 10.02 mV with a 3 standard deviation of 85.9 uV. The signal

spectrum is obtained using an ADLINK DAQ2208 data acquisition unit with an off-line FFT on

a host computer. The output signal shows an excellent spectrum purity for the desired frequency

range.

The response from the RC test bench under the input stimulus from 2Hz to 2KHz was acquired

with the two measurement steps. Figure 5.5 shows the bode plot of the response signal from the

RC test bench using the on-board acquisition circuit (blue line) and using HP4192A impedance

analyzer. Figure 5.6 shows impedance measurement error for each frequency in the desired range.

The averaged impedance magnitude error is in 0.8% while the phase error is 0.95 degree. The cor-

responding Nyquist result from this setup is presented in Figure 5.7 for both the results generated

by the on-board circuits and that generated by HP4192A impedance analyzer.
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Figure 5.4: Time and frequency domain composite signal from the stimulus generator

Figure 5.5: Measured Bode plot with off board DAQ
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Figure 5.6: Measurement error with off board DAQ

Figure 5.7: Measured Nyquist plot with off board DAQ
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Figure 5.8 illustrates the noise spectrum density at output of TIA measured using the ADLINK

data acquisition board. The integrated input inferred noise of TIA is 1.58 uA , the limit of detection

is when the input signal is equal to the noise. Eq. (5.3) and (5.4) shows the relationships between

the overall sensor impedance and the components in the equivalent circuit in Figure 4.1. If Vrms

= 7.14 mV with 10mV amplitude, I = 1.58 uA, Ret = 100 Ohms, Rsol = 100 Ohms, Cdl = 15.6 uF,

the detection limit is 9.2 Ohms.

Figure 5.8: Input inferred noise spectrum density from TIA

δZDUT =
δI × |Z(ω)|2

VRMS − δI × |Z(ω)| (5.3)

Z(ω) = Rs +
Ret

1 + ω2R2
etC

2
dl

− jωR2
etCdl

1 + ω2R2
etC

2
dl

(5.4)

Test with on-board analog digital converter is also included in this session to be compared with

the performance from commercial data acquisition board. As results shown in Figure 5.9 and
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Figure 5.10 the averaged error for impedance magnitude is 2.14 % and is 1.58 degree for phase.

This is because on board ADC is a much simpler and cheaper implementation than a commercial

data acquisition board. In order to save a ADC from design, signal from input and output of

TIA was multiplexed which introduced more variation from sampling error. Figure 5.11 shows the

resulting Nyquist plot, which looks more zigzagging. Nevertheless, this approach reaches a lower

cost and higher integration level as a point of care device.

Figure 5.9: Measured Bode plot with on board DAQ

5.2.2 Improvement with Double Sampling Technique

Correlated double sampling (CDS) is a technique frequently used in switched-capacitor circuit

to reduce the common mode noise, by sampling the signal twice at a known and unknown condition

respectively. Borrowing the concept from such technique, the multi-tone signal was modified as

shown in Figure 5.13. In this case, the sampling rate will be doubled in order to sample both the
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Figure 5.10: Measurement error with on board DAQ

Figure 5.11: Measured Nyquist plot with on board DAQ
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unknown signal and the common mode. The common mode error then gets subtracted from it’s

own signal period to calibrate the error cause by common mode noise or shift.

(a) (b)

Figure 5.12: (a) Original multi-tone signal. (b) CDS modified multi-tone signal

Without applying smoothing algorithms, the averaged error with and without CDS technique

are very similar, and the improvements were nearly negligible. As shown in Figure 5.13, the

measurements with CDS modified signal reached an average error of 2.628 % in impedance and

2.1 degree in phase, while the error without CDS technique were 2.363 % in impedance and 1.957

degree in phase. However, when the smoothing algorithms were applied, measurements were

improved in general, while signal modified by CDS technique had a much significant improvement.

The CDS modified signal with smoothing algorithms (with a smoothing window size at 70 points)

had a 1.269% impedance error and 0.4587 degree phase error. The error without CDS technique

after smoothing were 1.91% and 1.084 degree in phase. These data have shown that by smoothing

and canceling common mode noise can improve and reduce the measurement error.

5.3 System Validation: Electrochemical Analyzer, Generation 2

Figure 5.14 shows the major components of the proposed platform and the physical implemen-

tations. A Ret|Cdl − Rs model was built with standard resistor and capacitor to mimic electrode-
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(a) (b)

Figure 5.13: Measurement error with/without CDS (a)without smoothing algorithms. (b)with smoothing
algorithms

electrolyte interface. The Cdl=2 uF, Ret=2088 Ohms and Rs=50.7 Ohms. The Cdl, Ret and Rs

represent double layer capacitor, electron transfer resistor and solution resistor respectively.

5.3.1 Single-tone Response

The system was first tested under the single-tone mode. In this mode, signals were sent with

one frequency component at a time. The frequency sweeping range was from 0.16 Hz to 15.1 kHz

with 96 frequency points in between. The results were compared with the measurements from

Zive SP1 EIS benchtop (Seoul, Korea) as well as the ideal value derived from the circuit transfer

function shown in Eq. (5.5) and (5.6).

Real = Rs +
Ret

1 + (2πf)2R2
etC

2
dl

(5.5)

Imag = − 2πfCdlR
2
et

1 + (2πf)2R2
etC

2
dl

(5.6)
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Figure 5.14: Proposed EIS Platform Components.

Figure 5.15: Bode Plot for the Single-tone Measurement.

67



Figure 5.15 shows the measured results in Bode plot. The average error of the proposed

system compared to the ideal expected data is 2.6% for impedance and 1.4 degree for phase, while

the benchtop counterpart is at 1.6% average impedance error and 0.67 degree average phase error.

5.3.2 Multi-tone Response

A 32-tone combined signal was designed and generated from DAC. The signal was fed to the

same RC model, and ran for 3 times in low, medium and high band to form 96 frequency points.

The frequency range in this case is from 0.16 Hz to 8 kHz. Figure 5.16 shows the measured results

in Bode plot for the multi-tone operation. The average error at the multi-tone mode was 9.2% in

impedance and 6.4 degree in phase. The increased errors in the multi-tone mode can be attributed

to the additional errors generated by the multi-tone stimulus signal in hardware.

Figure 5.16: Bode Plot for the Multi-tone Measurement.

5.3.3 Simulation Result with Redox Couple

In electrochemistry, oxidation and reduction reaction happen at electrode/electrolyte interface.

Potassium ferricyanide (K3[Fe(CN)6]) and ferrocyanide (K4[Fe(CN)6])are commonly used as

redox couple to provide electron transfer. The chemical reaction is as in Eq. (5.7) and (5.8). The
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redox measurement was performed under the single-tone mode. 5 mM potassium ferricyanide

and 5 mM potassium ferrocyanide were mixed with 100 mM KCl solution for testing. Figure 5.17

shows the redox measurement results in Bode plot and Nyquist plot. The proposed system per-

forms similarly compared to Zive SP1 benchtop. Because the Redox couple are responsive to the

bias voltage across the electrode, the offset voltage difference between instrument could introduce

some variation.

Reduction : [Fe(CN)6]
3− + e → [Fe(CN)6]

4− (5.7)

Oxidation : [Fe(CN)6]
4− − e → [Fe(CN)6]

3− (5.8)

(a) (b)

Figure 5.17: (a). Bode plot for the Redox Couple Measurement. (b) Nyquist Plot for the Redox Measure-
ment.

5.4 System Validation: Electrochemical Analyzer, Generation 3

5.4.1 Performance Analysis

The noise performance of the 3rd gen analyzer was analyzed by integrating the power spectrum

density among different modules as shown in Figure 5.18.
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Figure 5.18: Power spectrum density in current for different modules.

The noise spectrum was integrated up to 1 kHz to obtain the root-mean-square (rms) input-

inferred current noise. The low- noise module reached input inferred noise in 333 fA. Detection

as low as picoamp current can , therefore, be achieved. The base unit has the input-inferred current

noise of 630 pA. This noise performance for the base unit is sufficient for applications with input

current above the nanoampere range. The results in Figure 6 also compare the noise performance

of the 3rd gen CrexensTM analyzer with that of Palmsens 4 analyzer (Houten, Netherland) which

had a 10 pA noise.

The measurement accuracy of the CrexensTM analyzer was examined using the EIS mode as it is

more indicative of the overall accuracy than that from the other modes due to its high performance

nature. RC calibration circuits were built and used for validation.

Figure 5.19 shows the RC model and the measured result compared to its theoretical Bode

plot for the base unit. The results were also compared to these obtained using the Palmsens 4

unit (Houten, Netherlands). The average impedance magnitude error from the 3rd gen CrexensTM

base unit was 0.55% while the aver- age magnitude error from the Palmsens 4 unit was 1.28%. The
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Figure 5.19: Base unit EIS measurement result in Bode plot.

Figure 5.20: Low noise module EIS measurement result in Bode plot.
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average phase error from the 3rd gen CrexensTM base unit was 1.89 degrees while the average phase

error from the Palmsens 4 unit was 0.1 degree. For the low-noise module, a different RC calibration

circuit was chosen to provide a relative high impedance to suitable for testing the scenario of

low input current. Figure 5.20 shows the RC model and the measurement results for the low-

noise module. The average impedance magnitude error from 3rd gen CrexensTM was 4.4% while

average magnitude error from the Palmsens 4 unit was 1.2%. The average phase error from 3rd

gen CrexensTM for the low- noise module was 2.16 degrees while the average phase error from the

Palmsens 4 unit was 1.47 degrees. The measurement errors in impedance and phase were expected

to be slightly higher for the CrexensTM analyzer due to its target of significantly low cost. However,

the overall accuracy is comparable to that of Palmsens analyzer. Nonetheless, the use of a better

adaptive filtering scheme that shift cut-off frequency for filtering according to EIS frequency can

improve 3rd gen CrexensTM accuracy further.

Figure 5.21 shows the implementations of all the modules used in CrexensTM. The add-on

modules are inserted face to face to the base unit by the 80 pin connector strip. In Table 5.2, the

full performance specification for the base unit and low-noise module are listed. The performance

specification for the quad- module is not listed in the table as it has the same specs as base unit.

The base unit has sufficient performance that can cover a wide range of electrochemical applica-

tions, and the add-on modules are able to further extend the base unit’s capabilities in sensitivity

and speed to cover applications where the performance of the base unit is unable to reach. The

power consumption for the proposed platform is 0.62 W in the worst case which allows it to oper-

ate for more than 10 hours when the device is driven by 2000 mAh Lithium-ion battery. The goal

of the implementation of the base unit and the modules was to pack the design into a PCB area

less than 70 cm2.Adding the plug-in modules shifts the area constrain to the thickness of the device

instead of further increasing the overall area. With low power, small area and good performance,

the proposed CrexensTM electrochemical analyzer is capable of providing general-purpose electro-

chemical analysis with comparable performance as the existing commercially available units, but

with desired flexibility and lower cost. It is, therefore, more suitable for point-of-care use.
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Figure 5.21: PCB implementation for proposed platform. a) based unit, b) low noise add-on module, c)
quad-channel add-on module,d) high performance add-on module, e) base module with high performance
add-on module, f) base module with low-noise add-on, g) base module with quad-channel add-on.

Table 5.2: SPEC for the proposed reconfigurable electrochemical analyzer in details.

Module Vout VLSB Vcomp Ilimit fmax (Hz) CV rate Power Area

Base ±3 V 1.46 mV 10 V 630 pA 0.2-12 k 1900 V/s 0.62 W 67 cm2

Low noise ±5 V 38 uV 24 V 333 fA 0.1-10 k 1700 V/s 1.25 W 29 cm2

High perf ±3 V 366 uV 10 V / 0.1-9.375 M >10 kV/s 2.3 W 37 cm2
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5.4.2 Discussion for High Performance Module

The high performance add-on module turned out to be problematic for measurements due to

unexpected dominant noise while being operated. The unexpected noise occurred when the ADC

was sampling at 150 MHz and it caused significant switching noise on all associated power supply

rails in the system. The analog read channels were, therefore, affected and caused sampling error

that resulted in inaccurate measurement. After detailed diagnosis, it was determined that this

could be caused by the poor routing scheme on a 4 layer PCB, as shown in Figure 5.22, plates

for different power supplies were largely splitted by routes and increases the ground loop due to

limited space [54]. Furthermore, by failing to do common mode shielding, the high speed traces

could cause coupling among them (highlighted in Figure 5.22) resulting in digital glitches [55].

Figure 5.22: 3rd gen CrexensTM high performance module 4 layer PCB layout. The highlight traces are the
high speed traces running up to 150 MHz, they were not well shielded from one to another

The PCB layout was redesigned on a 6-layer PCB, as shown in Figure 5.23, with shielding

for every high speed digital trace. The high speed traces are also buried between two power plate

as much as we can to reduce Electromagnetic Interference (EMI). By taking advantage of more

routing space, the power and ground plate can be more complete with bigger area to reduce the

return current path.
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Figure 5.23: 3rd gen CrexensTM high performance module 6 layer PCB layout. The highlighted high speed
traces were shielded by large ground plate and buried as much as they can be on the middle layer.
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Chapter 6

Experimental Results

In this chapter, several electrochemical experiments will be introduced and discussed as proof

of concepts. First of all, a micro-electrode array based neurotransmitter sensor will be presented.

Electron transfer events were measured by home-made transimpedance amplifiers (TIA) at dif-

ferent gain to observe the existence of electrochemical active analyte, which in this case is nore-

pinephrine. A capacitive DNA sensor will be discovered to monitor complementary hybridization

event. And another ZIKV sensor measurement by electrochemical impedance spectroscopy (EIS)

technique will be talked. At the end, a glutamine enzymatic sensor will be introduced which was

validated by the proposed electrochemical analyzer.

6.1 A Neurotransmitter Sensor with Micro-array Electrodes

6.1.1 Motivation

As biologists have grown interests in monitoring biologic events, different approaches have

been developed in order to provide a real time feedback. Among various techniques, optical and

fluorescence microscopes have been widely adopted to observe biologic behavior in molecular

level [56]. For some target molecules in a living tissue that’s interested, further modifications

won’t be needed since they have endogenous fluorophores, such as nicotinamide adenine dinu-

cleotide (NADH) and hemoglobin [57] [58]. This can maintain the integrity and sustainability of

tissue cells. On the other hand, some other molecules don’t have such fluorophores by nature can be

conjugated with fluorescent proteins to keep track of those. However, the extra probe required typ-

ically add undesired activities to the molecule behavior [59] [60] [61]. While microscopy methods

have been accessible and popular in monitoring biological events, electrochemical based sensing

techniques stands out as alternatives to track certain molecules due to its label-free and non-optical

features. These inherent features allow to reduce the cost and simplify the monitoring process
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without introducing expensive optical objectives and well controlled environment. In this work,

norepinephrine was chosen to be studied as a model neurotransmitter to mimic the neurotransmitter

released by exvivo tissue slice for imaging purpose when the tissue are stimulated.

Figure 6.1: Electrode array on CMOS chip [56].

6.1.2 Experiment Setup

The sensing electrodes were fabricated on 500 nm 4-layer metal CMOS chip by Avago (Fort

Collins, Colorado). The electrodes were topped by Pt metal, and each chip has 8 by 8 electrode

subarrays. Each individual electrode subarray has 64 pairs of working electrode in interdigitated

shape [62], and a global Pt counter electrode and Pt pseudo-reference electrode, as shown in Fig-

ure 6.1. The CMOS chip has an internal on-chip potentiostat to maintain the potential. Exter-

nal trans-impedance amplifiers (TIA) were designed on PCB board and a data acquisition card

(ADLINK DAQe-2200) was used to sample the analog signals for further processing. A two layer
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polydimethylsiloxane (PDMS) well was made and attached onto the CMOS chip with electrode

area exposed. The top layer was made with 10-parts base elastomer and 1-part curing agent, while

to bottom layer that’s attached to the CMOS chip was made with 30-parts base elastomer and 1-

part curing agent in order to take advantage of the stickiness. The peripheral of the well were then

sealed by resin to avoid possible leaking.

6.1.3 Norepinephrine Calibration Curve

Different concentrations of norepinephrine were diluted into neurobasal media for the measure-

ment. The reference potential for the on-chip potentiostat was set to be at +0.6V (vs. Pt). Figure 6.2

shows the amperometric redox reaction for norepinephrine. Two different TIA gains have been ap-

plied in these experiment to confirm the results and linearity. The measurement of norepinephrine

went from 100uM, 200uM, 400uM, 700uM to 1mM. In this case, 8 random channels among 128

working electrodes were picked to observe the signal trend. Four of selected channels are measured

through TIA at 10 MOhms gain and the other four were measured at 22 MOhms. Each channel

has 4 data points as replicates. As it illustrated in Figure 6.3, the channels with different gain can

be separable after 320 mM concentration in the worst case. The slope among different channels

with the same TIA gain are nearly the same expect some baseline drift. With the linear fitting, the

calibration curve around 500 nA/M for Norepinephrine.

Figure 6.2: Norepinephrine redox reaction.

These experiments was preliminary for tissue imaging and set good foundations in terms of

experimental protocol and signal processing for future works [63].
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Figure 6.3: Norepinephrine calibration curve.
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6.2 A DNA Capacitive Sensor Measured by Commercial

Impedance Analyzer

In this section, a DNA capacitive sensor will be discussed. This work was done in collaboration

with Lei Wang and Milena Veselinovic.

6.2.1 DNA Structure

As universal biological information storage entities, nucleic acids (DNA and RNA) are unique

biorecognition molecules, and the detection of pathogen genomic DNA or RNA provides one of

the most reliable methods for viral infectious disease diagnostics [64]. DNA also has relatively

simple structure results in less complex to study. The basic unit is nucleotide which is made of a

phosphate group, a Five-carbon sugar and Nitrogenous base, as shown in Figure 6.4. The phos-

phate group at back bone caries a negative charge. The nitrogenous base determines the sequence

of a DNA strain as every nitrogenous base can be bonded with it’s complementary nitrogenous base

through hydrogen bond, such as Adenine (A)-Thymine (T),Cytosine (C)-Guanine (G). Therefore

the specificity to detect a target single strain DNA can be achieved by designing its complementary

DNA as bioreceptor probe.

6.2.2 Sensing DNA Protocol and Measurement Model

As capacitive sensor, the detection is based the change at electrode/electrolyte interface, which

is known as double layer capacitor [65]. Upon binding to the electrode area, the biomolecule

act as dielectric material that repels the free ions in the solution, and therefore causes a drop in

capacitance.

In this proposed DNA sensor, the bare gold electrode surfaces are cleaned before use. To pre-

pare the surfaces, the chips with the gold microelectrodes were immersed in a solution of 50 mM

KOH and 25% H2O2 for 10 min [66], then followed by a through rinse with Milli-Q water. The

surface is oxygen plasma treated afterward by Plasma Etch PE-25 (Plasma Etch, Carson City, NV,

USA) for 5 mins. The 5’ thiol-modified oligomers are used as single stranded DNA probe and cre-
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Figure 6.4: Nucleotide structure.

ate covalent bond on the gold-surface [67], the structure is shown in Eq. (6.1). The disulfide bonds

on oligomers need to be reduced for a strong Au-S bond. The 10 uM ssDNA probe solution was

prepared in 100 uM 1×TE-MgSO4 buffer, and the gold microelectrodes were immersed overnight

in 30 uL of the solution.

5′ − ThioMC6−D − TAGTATGCACTGGTGTCTATCCCT − 3′ (6.1)

The 11-Mercapto-1-undecanol (MCU) is used as self-assembled monolayer to block the empty

space to reduce any non-specificity for target detection. In this protocol, a 100% complementary

ssDNA and a non-complementary ssDNA are used for specific detection and non-specific detec-

tion, the structures are shown in Eq. (6.2) and (6.3).

5′ − AGGGATAGACACCAGTGCATACTA− 3′, (100%complementary) (6.2)

5′ −GCAATATAGATAACGCCAGATGGC − 3′, (Noncomplementary) (6.3)
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6.2.3 Equivalent Circuit Model and Estimation

(a) (b)

(c) (d)

Figure 6.5: Equivalent Circuit Model (a). for Bare Electrode. (b) After Probe Immobilization. (c) After
MCU Incubation . d) After Complementary Target Hybridization.

The Debye length in solution is calculated by Eq. (6.4) [68], where k is Boltzmann’s constant,

T is the absolute temperature, e is the proton charge, ǫ is the permittivity of the solvent, Zi and

nB
i are the charge and bulk concentration of ion species i, respectively, and the sum extends over

all ion species in solution. By assuming symmetric monovalent electrolyte and solvent is water, at

room temperature a 100 uM MgSO4 solution can have about 15 nm, the Debye length is ∝ 1√
C

.

Consider the area within the Debye length is pure dielectric layer with water, the double layer

capacitance can be estimated from C/A = ǫoǫr
1
d
, which is about 5uF/cm2. Given the electrode

are is about 8.45mm2 and two double layer capacitor are in series, the theoretical bare electrode
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capacitance should be around 200 nF. For each step of incubation, the equivalent circuit model are

build as in Figure 6.5, which indicates an extra capacitor can be modeled in series for MCU and

target DNA hybridization .

k−1
D = (

ǫkT

e2
∑

i Z
2
i n

B
j

)
1

2 (6.4)

6.2.4 DNA Capacitive Sensor Measurement Setup

Capacitance measurement data were collected using the Instek LCR-821 benchtop LCR meter

(New Taipei City, Taiwan), which interfaces with a PC for data acquisition. A graphical user

interface (GUI) on the PC was used for sending command signals to the LCR meter. Since the

measurement is obtained from non-faradaic current, a 0 V DC bias voltage was applied across the

IDE sensor. A 20 mV root mean square (RMS) AC voltage with 20 Hz frequency was applied to

the IDE sensors. All capacitance readouts were recorded under 20 uL of 100 uM 1×TE-MgSO4

buffer on the electrodes and 50 data points were collected per reading.

From this impedance analyzer, the original data is collected in real and imaginary as part of the

complex form for impedance, as in Eq. (6.6). The equipment has two build-in model to analyze

the data, which are series mode and parallel mode. In series mode, the sensor equivalent circuit is

modeled as a resistor (Rs) in series with capacitor(Cs), Cs and Rs are calculated from Eq. (6.6)

and (6.7). In parallel mode, the model is a resistor(Rp) in parallel with capacitor(Cp), the values

derive from Eq. (6.8) and (6.9). Since the parallel mode is more resemble to the proposed model,

the analysis of capacitance are based on this.

Z = Re+ jIm (6.5)

Cs = − 1

ωIm
(6.6)

Rs = Re (6.7)

Cp =
Cs

1 + Re
Im

(6.8)
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Rp = Rs(1 +
Im

Re
) (6.9)

6.2.5 DNA Capacitive Sensor Measurement Result

Specific and non-specific target DNA are tested from 20 to 2 Million molecule number for

sensitivity. By taking the difference after and before target DNA incubation, the measurement re-

sult is shown in Figure 6.6. The complimentary targets showed a linear response in capacitance

change with increasing target concentration, indicating an excellent correlation between low-range

target concentrations and capacitance responses. While the non-specific target response is negligi-

ble compared to complementary counterpart. The fitting curve shows about -12 nF/log(number of

molecule).

Figure 6.6: Capacitance Response from Complementary (red line) and Non-complementary (black line)
DNA Targets [64].
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6.3 An EIS Affinity Sensor for ZIKV Detection

6.3.1 Motivation

Although, the methods already exist for direct flavivirus detection, such as reverse transcrip-

tion and polymerase chain reaction (RT-PCR) [69] [70], enzyme-linked immunosorbent assay

(ELISA) [71], Reflective Phantom Interface technology [72], these techniques typically require

complex process, well trained personals and specialized laboratory. As for point-of-care (POC)

application which people need instant response and simplicity, elelctrochemical methods become

an alternative to fit such need.

Researchers in the field have been studying affinity sensors for proteins and virus for a long

period of time. Protein detections have been explored in folate receptor (FR) [29], Human pro-

static acid phosphatase (PAP) [30], C-reactive protein (CRP) [28] [73], hepatitis B virus surface

antigen(HBsAg) [74], Prostate-Specific Antigen (PSA) [75], etc, and good sensitivities had been

reported. Although these researches have laid foundation for the proof of concepts towards protein

sensing based on EIS method, a direct measurement for viral pathogen would be more interesting

as a step further for point-of-care diagnosis.

In this study, done in collaboration with Jessie Filer, an EIS based affinity sensor was introduced

for ZIKV detection. By taking advantage of multi-array electrode, 24 electrode pairs on a single

chip, this project can achieve high throughput for replicates data. Similar researches in detection of

flavivirus with EIS approaches had been done in [76] [77] [78] [79] [80], limit of detection from

0.12 Plaque-forming unit (PFU) to 167 PFU were reported. A limit of detection 22 focus forming

units (FFU) in this work have been achieved.

6.3.2 Electrode Fabrication

The sensor electrode array were fabricated by photolithography process [81]. Figure 6.7 illus-

trates the process step by step. First of all, a 1 inch by 3 inches glass slide is cleaned by acetone

then followed by isopropyl alcohol (IPA) and deionized (DI) water rinsing. Then, the glass was

dried with nitrogen gas and left on hot plate at 135 Celsius to evaporate any residual moisture for
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5 minutes. The cleaned glass was loaded onto spin-coater, and S-1813 photo-resist was applied

onto the glass surface to fill and entire area. Spin-coater was set to be accelerated to 3000 rpm

in 5 s, and stay 3000 rpm for 30 s. After the photo-resist coating was done, the coated glass was

placed onto hotplate for soft-baking for 1 min at 135 Celsius. And the sample was transferred

into a UV light chamber, and a photo-mask, designed by AutoCAD and printed by CAD/Art Ser-

vices,Inc.(Bandon, OR), was aligned onto the coated glass slide. The glass slide was exposed

under UV light for 6 seconds. Remove and store the photomask from the sample for next time use

and place the sample into S-1813 developer for 1 minute. This was when a clear electrode pattern

with photo-resist on should reveal, and the glass slide was then rinse thoroughly with DI water to

stop the reaction. Inspection was needed to ensure there was no photo-resist residue on the path

where the electrode will be, a disconnection or chip failure would be expected if the inspection

was not careful. After all the photo-lithography processes were well finished, the sample was sent

to a evaporator machine for metal deposition. In this process, 10 nm Chromium (Cr) first deposit

onto the glass as adhesion layer between gold and glass, and then 150 nm gold (Au) was deposit

on top of Cr. The metal coated chip was thoroughly rinsed by acetone to remove the photo-resist

layer as well as the unwanted metal area and followed by IPA and DI water rinsing for cleaning.

After dried by nitrogen gas, the chip was stored and ready for future use.

6.3.3 PDMS Fabrication

A PDMS well that’s adaptive to the 24 electrodes array was made. The PDMS base and curing

reagent were mixed in 10:1 ratio on a clean silicon wafer [82], and stacked to a height of 3 mm.

Then the mixed PMDS in fluid form was cured in oven at 70 Celsius for 30 mins. The PDMS was

peeled off from the silicon wafer and cut into the size that fits on the sensor. A 3.5 mm diameter

biopsy punch (Technical Innovations, FL, Inc. USA) was used to punch through 24 holes to expose

the electrode area and form the well. Finally, both electrode array and PDMS were plasma cleaned

in an O2 Plasma Etch PE-25 (Plasma Etch, Carson City, NV, USA) at 200 mTorr pressure and

application of 150 W to the RF coil for 5 minutes. PDMS can form covalent bond with glass after
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Figure 6.7: Gold electrode sensor fabrication process.

plasma treatment, the side attached to silicon wafer should be faced down to the glass substrate for

better adhesion.

6.3.4 Surface Modification of Electrodes

The sensor needs to be cleaned at the beginning of any surface modification. The cleaning was

done by apply 50mM NaOH/25% H2O2 mixed solution for around 45 mins [66]. This time was

determined by keeping track of impedance change of the bare electrode, and stop till the impedance

become steady, as shown in Figure 6.8. The array was then rinsed in nanopure water and dried with

N2 gas. The array was plasma cleaned for 5 minutes in an O2 Plasma Etch PE-25 (Plasma Etch,

Carson City, NV, USA) at 200 mTorr pressure and application of 150 W to the RF coil. Right after

the O2 plasma cleaning, the whole chip was dipped into 20 mL mixed solution with 9 mM MUA

and 9 mM MPOH in reagent alcohol. This can create self-assembled monolayer (SAM), which on

one side has thiol group that binds to gold, and on the other side has carboxylic acid to bind with

protein [84].The array was then rinsed by reagent alcohol and immersed in 100 mM NHS/100
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Figure 6.8: EIS measurement for bare electrode after as a function cleaning time [83].

mM EDC in 0.1 M MES (PH=5.0) for 30 minutes to activate the SAM surface and followed by

rinsing with 20 mL 0.1 M MES (PH=5.0). 10 uL of 2.55 mg/mL 4G2 antibody was added to each

electrode and incubated for 2 hours for bioconjugation. Each electrode was then rinsed twice with

10 uL 1 M ethanolamine in PBS and then incubated with 10 uL 1 M ethanolamine for 30 minutes,

the ethanolamine was acting as blocking reagent to reduce non-specificity. The electrode were

rinsed by PBS buffer, and incubated with 10 uL 2.5 mg/mL BSA in PBS, the BSA is acting as

additional blocking reagent. Finally, the electrode were thoroughly rinsed five times with 10 uL

PBS and incubated with 10 uL clarified ZIKV for 30 minutes [83]. The electrodes were rinsed five

times again with 10 uL PBS and ready for measurement.

6.3.5 EIS Measurement and Result Discussion

EIS measurement was performed by ZIVE SP1 potentiostat (WonATech Co,Ltd. Seoul, South

Korea). 10 uL 5mM K3Fe(CN)6/5 mM K4Fe(CN)6 in PBS was added onto each electrode pair. 0 V

bias and stimulus at 10mV Vrms was applied for measuring. Frequency was swept from 800 kHz to

1 Hz. Figure 6.9 shows the actual sensor, and its corresponding circuit model for EIS and the final

surface structure after immobilization steps. Since there are two asymmetric electrode/electrolyte

interface, 2 different double layer capacitance and electron transfer resistance should be modeled.

88



Warburg impedance were ignored to simplify the analysis. The transfer function for impedance

can be calculated by Eq. (6.11), and double layer capacitance as well as charge transfer resistance

can be back calculated with known impedance and frequency.

Z(ω) = Z ′ + jZ ′′ (6.10)

Z(ω) = Rs +
Rct1

1 + ω2R2
ct1C

2
dl1

− jωR2
ct1C

2
dl1

1 + ω2R2
ct1C

2
dl1

+
Rct2

1 + ω2R2
ct2C

2
dl2

− jωR2
ct2C

2
dl2

1 + ω2R2
ct2C

2
dl2

(6.11)

Figure 6.9: The gold electrode array on glass. A)2 by 12 electrode array and individual gold electrode pair.
B) Electrode array with PDMS well bound. C) The equivalent circuit model for EIS, Rct stands for equivalent
charge transfer resistance, Cdl stands for double layer capacitance, Zw stands for Warburg impedance and
Rs stands for solution impedance. D) Final surface modification for ZIKV detection [83].

The measured EIS data are shown in Figure 6.10. In this case, PBS was added and measurement

for each step as blank control to confirm the detection of ZIKV. ZIKV concentration from 10 focus

forming units (FFU) to 11110 FFU were investigated. The final calibration results were presented

in %δRct to reduce variation introduced by different active area for electron transfer, while each

concentration has 4 replicates. The linearity for ZIKV was reasonably good (with R2=0.9843).
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Although we can observe an unwanted signal change from PBS background, the ZIKV signal has

a sharper slope to make it distinguishable to its blank control. By taking signal-noise-ratio (SNR)

equals to 3 as the limit of detection (LOD), the LOD was calculated to be 22.4 FFU, which was

comparable to other reported viral loads of 80 PFU/mL of ZIKV in saliva [76].

Figure 6.10: EIS measurement for ZIKV sensor. A)Nyquist plot result for ZIKV concentration at 10
FFU,110 FFU,1110 FFU and 11110 FFU. B) Calibration for ZIKV versus PBS control [83].
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6.4 An Glutamine Sensor Measured by Porposed Electrochem-

ical Analyzer

In additional to electrical testing resulting to show the proposed electrochemical analyzer’s

performance, we present its validation results using a custom-designed glutamine sensor. The

glutamine sensor has gained its growing importance in cancer metabolism [85] [86]. The sensor

was built as three electrode system, where we had platinum as counter electrode, gold as working

electrode and a silver wire as pseudo-reference electrode. The glutamine sensor using the proposed

analyzer achieved linearity in the range of 500 uM and a limit of detection at 50uM.

6.4.1 Glutamine Sensor Preparation and Enzyme Immobilization

The gold and platinum electrode were attached face to face with a 4 mm thick treated PDMS

in between to set the gap. The PDMS was treated on both sides by plasma for 3 minutes in order

to create covalent bond when it binds to glass substrate on both glad and platinum electrode. A

1 mm diameter silver was then pierce through the PMDS in the middle to form Au-Ag-Pt three

electrode sensor for the next use. The sensor was first rinse by acetone, then followed by isopropyl

alcohol and deionized water as initial cleaning step. The sensor was then cleaned with 50 mM

NaOH+25% H2O2 [66] for 15 minutes before replacing the cleaning solution, and the process was

repeated for 3 times. Both L-glutamate oxidase and glutaminase were dissolved in 0.1M PBS,

and the aqueous was then mixed by BSA (10% wt%), glutaraldehyde ( 2% vol%) [87] as well as

tween-20 (2% vol%). BSA was used to help adhere to the sensor surface. Glutaraldehyde was used

as corss-linker for the proteins. Tween-20 was used to help dissolve BSA in PBS. The L-glutamate

oxidase membrane was first immobilized onto the Au electrode surface by adding 2 uL (0.1 Unit)

mixed solution, and waited for drying out. Then 10 uL (0.1 Unit) glutaminase solution was added

on top of the L-glutamate oxidase membrane to create a layer with glutaminase enzyme. The

immobilized sensor is illustrated in Figure 6.12, the two steps immobilization was meant to have

a nature gradient to have H2O2 at the end from glutamine. The prepared sensor was then store in
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refrigerator at 4 Celsius and ready for the next day’s use for the measurement. Figure 6.11 shows

the prepared sensor unit.

Figure 6.11: The 3 electrode system for glutamine sensor.

6.4.2 Sensor Characterization

Before the experiment starts, it is important to characterize the electrochemical active area

on the sensor for later analysis. 5mM Ferri/Ferrocyanide in 0.1 M KCl were used as standard

redox couple for testing. Cyclic voltametry running at 100 mV/s was applied to the electrodes and

scanned from -0.8 V to +1 V. As shown in Figure 6.13, the oxidization peak is around +680 uA

and reduction peak is about -550 uA. By applying Randles-Sevcik equation as in Eq.(6.12), the

area can be estimated. For K3Fe(CN)6, n = 1, D = 7.6 × 10−6cm2s−1(0.1MKCl) [88], C is the

concentration of K3Fe(CN)6 which was 5 mM, v is the scan rate. The electrode active area was

calculated to be at 0.47cm2.

Ip = 2.69× 105AC
√
n3Dv (6.12)
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Figure 6.12: Surface of immobilized enzymatic sensor.

6.4.3 Glutamine Sensor Calibration Curve

Amperometry was conducted for glutamine enzymatic sensor with +600 mV potential [87]

applied to the working electrode vs Ag reference electrode. For each measurement, 2 ml glutamine

solution in 0.1X PBS buffer was replaced at concentration from 100 uM to 2mM within 5 steps.

The calibration curve is shown in Figure 6.14 with linear fitting in its linear region. The glutamine

sensor reached a sensitivity at 36.67 nA/mM, or 78 nA/(mM*cm2) if taking into account the active

area calculated from CV in ferri/ferrocyanide. The limit of detection is determined when the signal

is equal to standard deviation error, which turns to be around 50 uM. The fitted curve also indicated

a 0.99556 R2 value which implies a good linearity. However, when the concentration was increased

close to 1 mM range, the signal flatten out and reached a saturation region. This can be a result of

electron transfer kinetic limit at the electrode surface, in other words the electron transfer event can

not deplete H2O2 generate from glutamine, therefore the current will not keep increasing linearly

as the concentration raises. Nevertheless, this sensor could be applied to applications, such as

cancer cell monitoring, when glutamine concentration lies above the limit of detection.
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Figure 6.13: CV for glutamine sensor characterization.

Figure 6.14: Glutamine sensor calibration curve with linear fitting.
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Chapter 7

Conclusion

In this work, various electrochemical sensors have been studied and proven to have practical

meaning for point-of-care (POT) applications. The neurotransmitter sensor worked as good foun-

dation for larger scale tissue imaging technique [63], as it confirmed the electron transfer events

in amperometric experiment. The DNA capacitive sensor was carefully design, and achieved a

dynamic range for detection as low as 1 molecule/uL for target DNA. This experiment proved the

possibility of detection from non-faradic electrochemical event. Additionally, a ZIKV sensor was

developed and tested by customized gold electrode array. A clinically relevant LOD of 22.4 FFU

was calculated. All these experiments have emphasized opportunities for rapid measurement and

low-cost, low-power, ease of use features provided by electrochemical methods.

A low cost and reconfigurable electrochemical analyzer platform (CrexensTM) was designed

and tested. First of all, a CMOS FFT processor was customized. The proposed architecture at-

tempts to minimized the overall FFT silicon area and power consumption while maximizing per-

formance. The proposed bit-serial implementation may not be suitable for applications that require

high performance, it certainly provides a desired tradeoff for implantable biomedical applications

where size and power consumption are more important. Three generations of electrochemical

analyzer were designed. In the first generation, a multi-frequency EIS device is implemented to

capture impedance spectroscopy without a sweeping effort. Low input amplitude and the test with

64 frequency components between 2Hz to 2KHz were accomplished. However, its lack of auto-

gain control and adaptive filtering made its detection dynamic range inferior compared to existing

designs. In addition, the unavailability of user interface made such design unfriendly to untrained

personnel. In the second generation, the platform was greatly improved by introducing gain/filter

control mechanisms, as well as an Android app. The multi-tone and single-tone modes were also

available in the second generation design and compared. The single-tone mode was in general

a better approach for measurements that don’t have high demand on EIS timing. The platform’s
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capability and performance were validated using an electrolyte-electrode interface model circuit

with an average error of 2.6% in impedance and 1.4 degree in phase in the single-tone mode. To

further broaden the capability without adding too much cost to the system, the third generation

CrexensTM was designed. The idea of 3rd generation CrexensTM was to make it an expandable

general-purpose electro- chemical analyzer. The modular architecture allows the base unit to run

most of the electrochemical experiments without going for expensive benchtop instruments, while

the add-on modules are available as options if users need performance beyond the base unit. By

partitioning the baseline and low noise specifications, the proposed analyzer can act as a general-

purpose analyzer for electrochemistry without having users to pay for functions they do not use.

Such a customization feature for functionality can significantly reduce the cost for average users,

thus, increasing the accessibility of electrochemical instrumentation for a wider user community.

It is estimated that the cost for the based unit will be in the range of $200-300. The proposed

electrochemical analyzer obtains low cost, low power, small area, and battery-driven features that

are essential for Point-of-Care (PoC) devices. Additionally, a glutamine enzymatic sensor was

developed and verified by the proposed analyzer, which have shown good linearity in the linear

region from its calibration curve.
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Appendix A

Material and Reagents for Glutamine Enzymatic

Sensor

All chemicals were at least of ACS grade and used as received without additional purifica-

tion. Glutamine, glutaraldehyde, bovine serum albumin (BSA), tween-20 and phosphate buffered

saline (PBS) were purchased from Sigma-Aldrich (St. Louis, MO, USA). L-glutamate oxidase

(GLOD) (EC 1.4.3.11) from Streptomyces sp (>5UN/mg), and glutaminase (GLMN) (EC 3.5.1.2)

is from Escherichia coli(50-200UN/mg) were also purchased from Sigma-Aldrich. Sylgard 184

polydimethyl-siloxane (PDMS) oligomer and cross-linker were obtained from Dow Corning (Mid-

land, MI, USA). The gold and platinum electrodes were purchased from Metrohm dropsens (Llan-

era, Asturias, Spain).
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Appendix B

Partial Java Code for Android GUI

B.1 MainActivity.java

package com.yang.eis;

import android.Manifest;

import android.app.ActionBar;

import android.app.Activity;

import android.bluetooth.BluetoothAdapter;

import android.bluetooth.BluetoothDevice;

import android.bluetooth.BluetoothManager;

import android.content.Context;

import android.content.Intent;

import android.content.pm.ActivityInfo;

import android.content.pm.PackageManager;

import android.graphics.Color;

import android.graphics.drawable.ColorDrawable;

import android.os.Bundle;

import android.os.Handler;

import android.support.v4.app.ActivityCompat;

import android.support.v4.content.ContextCompat;

import android.support.v7.app.AppCompatActivity;

import android.view.Menu;

import android.view.MenuItem;

import android.view.View;
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import android.view.Window;

import android.view.WindowManager;

import android.widget.AdapterView;

import android.widget.ListView;

import android.widget.Toast;

import java.util.ArrayList;

public class MainActivity extends AppCompatActivity {

private boolean mScanning;

private Handler mHandler;

private ListView scanningDeviceListView;

private ScannedDeviceAdapter scannedDeviceAdapter;

private BluetoothAdapter mBluetoothAdapter;

private final static int REQUEST_ENABLE_BT = 12;

private static final long SCAN_PERIOD = 10000;

private static final int MY_PERMISSIONS_LOCATIONS_COARSE =

1561;

private static final int MY_PERMISSIONS_WRITE_STORAGE = 7514;

private static final int MY_PERMISSIONS_SEND_SMS = 2215;

private static final int MY_PERMISSIONS_INTERNET = 1154;

private static final int MULTIPLE_PERMISSIONS_REQUEST = 134;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_device_scan);

//Set Orientation in Landscape
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setRequestedOrientation(ActivityInfo.

SCREEN_ORIENTATION_LANDSCAPE);

//Set up action bar:

if(getActionBar()!=null){

getActionBar().setDisplayHomeAsUpEnabled(false);

}

ActionBar actionBar = getActionBar();

//Flag to keep screen on (stay-awake):

getWindow().addFlags(WindowManager.LayoutParams.

FLAG_KEEP_SCREEN_ON);

//Set up timer Handler

mHandler = new Handler();

//Initialize scanningDeviceListView Adapter:

scanningDeviceListView = (ListView) findViewById(R.id.

scanningList);

//Check for BLE Support

if (!getPackageManager().hasSystemFeature(PackageManager.

FEATURE_BLUETOOTH_LE)) {

Toast.makeText(this, R.string.ble_not_supported, Toast.

LENGTH_SHORT)

.show();

finish();

}

//Initialize Bluetooth manager

BluetoothManager bluetoothManager = (BluetoothManager)

getSystemService(Context.BLUETOOTH_SERVICE);

mBluetoothAdapter = bluetoothManager.getAdapter();
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if(mBluetoothAdapter == null) {

Toast.makeText(this, R.string.

error_bluetooth_not_supported,

Toast.LENGTH_SHORT).show();

finish();

return;

}

int permissionCheck = ContextCompat.checkSelfPermission(

MainActivity.this, Manifest.permission.

ACCESS_COARSE_LOCATION);

int permissionCheck2 = ContextCompat.checkSelfPermission(

MainActivity.this, Manifest.permission.

WRITE_EXTERNAL_STORAGE);

int permissionCheck3 = ContextCompat.checkSelfPermission(

MainActivity.this, Manifest.permission.SEND_SMS);

int permissionCheck4 = ContextCompat.checkSelfPermission(

MainActivity.this, Manifest.permission.INTERNET);

if(permissionCheck!=PackageManager.PERMISSION_GRANTED &&

permissionCheck2!=PackageManager.PERMISSION_GRANTED &&

permissionCheck3!=PackageManager.PERMISSION_GRANTED) {

ActivityCompat.requestPermissions(MainActivity.this, new

String[]{Manifest.permission.ACCESS_COARSE_LOCATION,

Manifest.permission.WRITE_EXTERNAL_STORAGE,

Manifest.permission.SEND_SMS, Manifest.

permission.INTERNET},

MULTIPLE_PERMISSIONS_REQUEST);
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} else if (permissionCheck!=PackageManager.

PERMISSION_GRANTED) {

ActivityCompat.requestPermissions(MainActivity.this, new

String[]{Manifest.permission.ACCESS_COARSE_LOCATION

}, MY_PERMISSIONS_LOCATIONS_COARSE);

} else if (permissionCheck2!=PackageManager.

PERMISSION_GRANTED) {

ActivityCompat.requestPermissions(MainActivity.this, new

String[]{Manifest.permission.WRITE_EXTERNAL_STORAGE

}, MY_PERMISSIONS_WRITE_STORAGE);

} else if (permissionCheck3!=PackageManager.

PERMISSION_GRANTED) {

ActivityCompat.requestPermissions(MainActivity.this, new

String[]{Manifest.permission.SEND_SMS},

MY_PERMISSIONS_SEND_SMS);

} else if (permissionCheck4!=PackageManager.

PERMISSION_GRANTED) {

ActivityCompat.requestPermissions(MainActivity.this, new

String[]{Manifest.permission.INTERNET},

MY_PERMISSIONS_INTERNET);

}

//Initialize list view adapter:

scannedDeviceAdapter = new ScannedDeviceAdapter(this, R.

layout.scanning_item, new ArrayList<ScannedDevice>());

scanningDeviceListView.setAdapter(scannedDeviceAdapter);

// Click Item Listener:
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scanningDeviceListView.setOnItemClickListener(new

AdapterView.OnItemClickListener() {

@Override

public void onItemClick(AdapterView<?> adapterView, View

view, int position, long id) {

ScannedDevice item = scannedDeviceAdapter.getItem(

position);

if (item!=null) {

final Intent intent = new Intent(MainActivity.this

, EISactivity.class);

intent.putExtra(AppConstant.EXTRAS_DEVICE_NAME,

item.getDisplayName());

intent.putExtra(AppConstant.EXTRAS_DEVICE_ADDRESS,

item.getDeviceMac());

if(mScanning) {

mBluetoothAdapter.stopLeScan(mLeScanCallback);

mScanning = false;

}

startActivity(intent);

}

}

});

}

private BluetoothAdapter.LeScanCallback mLeScanCallback = new

BluetoothAdapter.LeScanCallback() {

@Override

public void onLeScan(final BluetoothDevice device,
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final int rssi,

final byte[] scanRecord) {

runOnUiThread(new Runnable() {

@Override

public void run() {

scannedDeviceAdapter.update(device, rssi,

scanRecord);

scannedDeviceAdapter.notifyDataSetChanged();

}

});

}

};

@Override

public boolean onCreateOptionsMenu(Menu menu) {

getMenuInflater().inflate(R.menu.menu_device_scan, menu);

if (!mScanning) {

menu.findItem(R.id.menu_stop).setVisible(false);

menu.findItem(R.id.menu_scan).setVisible(true);

//menu.findItem(R.id.menu_refresh).setActionView(null);

} else {

menu.findItem(R.id.menu_stop).setVisible(true);

menu.findItem(R.id.menu_scan).setVisible(false);

//menu.findItem(R.id.menu_refresh).setActionView(R.

layout.actionbar_progress);

}

return true;

}
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@Override

public boolean onOptionsItemSelected(MenuItem item) {

switch (item.getItemId()) {

case R.id.menu_scan:

scannedDeviceAdapter.clear();

scanLeDevice(true);

break;

case R.id.menu_stop:

scanLeDevice(false);

break;

}

return true;

}

@Override

protected void onResume() {

super.onResume();

/**

* Ensures Bluetooth is enabled on the device - if not

enabled - fire intent to display a

* dialog to ask permission to enable

*/

if (!mBluetoothAdapter.isEnabled()) {

if (!mBluetoothAdapter.isEnabled()) {

Intent enableBt = new Intent(BluetoothAdapter.

ACTION_REQUEST_ENABLE);
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startActivityForResult(enableBt, REQUEST_ENABLE_BT);

}

}

scanLeDevice(true);

}

@Override

protected void onActivityResult(int requestCode, int

resultCode, Intent data) {

//if user chose not to enable BT

if (requestCode == REQUEST_ENABLE_BT && resultCode ==

Activity.RESULT_CANCELED) {

finish();

return;

}

super.onActivityResult(requestCode, resultCode, data);

}

private void scanLeDevice(final boolean enable) {

if(enable) {

//stops scanning after ~seconds

mHandler.postDelayed(new Runnable() {

@Override

public void run() {

mScanning = false;

mBluetoothAdapter.stopLeScan(mLeScanCallback);

invalidateOptionsMenu();

}

}, SCAN_PERIOD);
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mScanning = true;

mBluetoothAdapter.startLeScan(mLeScanCallback);

} else {

mScanning = false;

mBluetoothAdapter.stopLeScan(mLeScanCallback);

}

invalidateOptionsMenu();

}

@Override

protected void onPause() {

super.onPause();

scanLeDevice(false);

scannedDeviceAdapter.clear();

}

}

B.2 EISactivity.java

package com.yang.eis;

import android.Manifest;

import android.app.ActionBar;

import android.app.Activity;

import android.app.Dialog;

import android.app.NotificationManager;

import android.app.PendingIntent;
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import android.bluetooth.BluetoothDevice;

import android.bluetooth.BluetoothGatt;

import android.bluetooth.BluetoothGattCharacteristic;

import android.bluetooth.BluetoothGattDescriptor;

import android.bluetooth.BluetoothGattService;

import android.bluetooth.BluetoothManager;

import android.bluetooth.BluetoothProfile;

import android.content.Context;

import android.content.Intent;

import android.content.pm.ActivityInfo;

import android.content.pm.PackageManager;

import android.graphics.Color;

import android.graphics.Paint;

import android.net.Uri;

import android.os.Build;

import android.os.Bundle;

import android.os.Environment;

import android.os.Handler;

import android.provider.ContactsContract;

import android.support.annotation.NonNull;

import android.support.v4.app.NotificationCompat;

import android.util.Log;

import android.view.Menu;

import android.view.MenuItem;

import android.view.View;

import android.view.Window;

import android.view.WindowManager;
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import android.widget.Button;

import android.widget.LinearLayout;

import android.widget.TextView;

import android.widget.Toast;

import android.widget.ToggleButton;

import com.beele.BluetoothLe;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.lang.Math.*;

import com.jjoe64.graphview.DefaultLabelFormatter;

import com.jjoe64.graphview.GraphView;

import com.jjoe64.graphview.GraphView;

import com.jjoe64.graphview.LegendRenderer;

import com.jjoe64.graphview.helper.StaticLabelsFormatter;

import com.jjoe64.graphview.series.BaseSeries;

import com.jjoe64.graphview.series.DataPoint;

import com.jjoe64.graphview.series.LineGraphSeries;

import com.jjoe64.graphview.GridLabelRenderer;

import com.jjoe64.graphview.series.OnDataPointTapListener;

import com.jjoe64.graphview.series.PointsGraphSeries;

import com.jjoe64.graphview.series.Series;

import com.jjoe64.graphview.series.DataPointInterface;

import java.math.BigDecimal;

import java.math.MathContext;

import java.math.RoundingMode;

import com.beele.BluetoothLe;

import com.opencsv.CSVWriter;
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import java.io.File;

import java.io.FileWriter;

import java.io.IOException;

import java.text.DecimalFormat;

import java.text.SimpleDateFormat;

import java.util.Arrays;

import java.util.List;

import java.util.*;

import java.util.UUID;

import android.support.v4.app.NotificationCompat;

public class EISactivity extends Activity implements BluetoothLe.

BluetoothLeListener{

private final static String TAG = EISactivity.class.

getSimpleName();

//LocalVars

private String mDeviceName;

private String mDeviceAddress;

private boolean mConnected;

//Class instance variable

private BluetoothLe mBluetoothLe;

private BluetoothGattCharacteristic mCharacteristic;

private BluetoothGattCharacteristic characteristicTX;

private BluetoothGattCharacteristic characteristicRX;

private BluetoothManager mBluetoothManager = null;

private BluetoothGatt mBluetoothGatt = null;
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private BluetoothDevice mBluetoothDevice;

private TextView mRssi;

private TextView mRead;

private TextView mCon;

private TextView mStatus;

private TextView mReadX;

private TextView mReadY;

private TextView mReadFreq;

private TextView mID1;

private TextView mID2;

private TextView mID3;

private String strBLE = " ";

private Menu menu;

private static final int RSSI_UPDATE_TIME_INTERVAL = 2000;

private Handler mTimerHandler = new Handler();

private boolean mTimerEnabled = false;

//Data Variables:

private float dataY;

//setup buttons

private ToggleButton Disconnected,NyquistPlot,PlotScale;

private static Button mExportButton,Capacitance,Impedance,

Phase,Export,RefreshCV,CVHigh;

//Inherit legacy parameters

public static float[] DataY= new float[96];

public static float[] DataX= new float[96];

public static float[] DataXCV= new float[1024];

public static float[] DataYCV= new float[1024];
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//public static char characteristic;

public static float[][] matrixData = new float[2][];

float[] frequency2={0.162f,0.19f,0.223f,0.262f,0.307f,0.362f

,0.424f,0.498f,0.583f,

0.685f,0.803f,0.942f,1.1f,1.3f,1.52f,1.78f,2.09f,2.45f,2.9f

,3.36f,3.9f,4.6f,5.4f,

6.3f,7.35f,8.58f,10f,11.7f,13.6f,15.8f,18.4f,21.3f,24.6f

,28.4f,32.7f,37.8f,43.2f,

49.2f,55.5f,62.6f,70.5f,79.1f,88f,96.7f,107.4f,113.7f,117f

,120.5f,124.5f,128.7f,

133f,137.75f,142.79f,148.2f,154.1f,160.2f,167.3f,174.8f,183

f,192f,201.94f,212.98f,

225.25f,239.6f,471.92f*422/472,707.88f*422/472,943.84f

*422/472,1179.8f*422/472,

1415.8f*422/472,1651.7f*422/472,1887.7f*422/472,2123.6f

*422/472,2359.6f*422/472,

2595.6f*422/472,2831.5f*422/472,3067.5f*422/472,3303.4f

*422/472,3539.4f*422/472,

3775.4f*422/472,4011.3f*422/472,4247.3f*422/472,4483.2f

*422/472,4719.2f*422/472,

4955.2f*422/472,5191.1f*422/472,5427.1f*422/472,5663f

*422/472,6135f*422/472,

6842.8f*422/472,7786.7f*422/472,8730.5f*422/472,9674.4f

*422/472,10854f*422/472,

12034f*422/472,13450*422/472,15101*422/472};

static float[] frequency

={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,
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21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,

39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,

57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,

75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,

93,94,95,96};

static String[] FrequencyString={};

//Set flags

private boolean BeginRecord=false;

private boolean BeginPlot=false;

private boolean CVmode=false;

private boolean EISmode=false;

private boolean FSCV=false;

private boolean SSCV=false;

private boolean BusyDevice=false;

private String MeasureStatus="Impedance";

private int Xindex = 0;

private int Yindex = 0;

private int index = 0;

private String Cmd;

private int BeginCV=1;

private int EndCV=4095;

private int StepCV=8;

private int CountCV=0;

// Notifications

NotificationCompat.Builder notification;

private static final int uniqueID = 45612;

private LinearLayout GraphView;
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private GraphView graphView;

//Data Variables:

private float dataVoltage;

//private int batteryWarning = 20;//%

Dialog myDialog;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

//Set background color

LinearLayout background = (LinearLayout)findViewById(R.id.

activity_main);

background.setBackgroundColor(Color.BLACK);

//NormailizeFreq();

myDialog = new Dialog(this);

myDialog.getWindow().requestFeature(Window.FEATURE_NO_TITLE

);

if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.M &&

checkSelfPermission(Manifest.permission.

WRITE_EXTERNAL_STORAGE) != PackageManager.

PERMISSION_GRANTED) {

requestPermissions(new String[]{Manifest.permission.

WRITE_EXTERNAL_STORAGE},1000);

}

//Set orientation of device based on screen type/size:

setRequestedOrientation(ActivityInfo.

SCREEN_ORIENTATION_LANDSCAPE);
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//Recieve Intents:

Intent intent = getIntent();

mDeviceName = intent.getStringExtra(AppConstant.

EXTRAS_DEVICE_NAME);

mDeviceAddress = intent.getStringExtra(AppConstant.

EXTRAS_DEVICE_ADDRESS);

//Flag to keep screen on (stay-awake):

getWindow().addFlags(WindowManager.LayoutParams.

FLAG_KEEP_SCREEN_ON);

//Set up TextViews

mRssi = (TextView) findViewById(R.id.textViewRssi);

mRead = (TextView) findViewById(R.id.textViewRead);

mStatus = (TextView) findViewById(R.id.textViewSta);

mCon = (TextView) findViewById(R.id.textViewCon);

mReadX =(TextView) findViewById(R.id.textViewReadX);

mReadY = (TextView) findViewById(R.id.textViewRead);

mReadFreq = (TextView) findViewById(R.id.textViewFreq);

mID1 =(TextView) findViewById(R.id.textViewID1);

mID2 =(TextView) findViewById(R.id.textViewID2);

mID3 =(TextView) findViewById(R.id.textViewID3);

mStatus.setText("Stand by");

mStatus.setTextColor(getResources().getColor(R.color.green)

);

initialize();

GenerateCVdataX();

//Initial plot view

graphView = (GraphView) findViewById(R.id.graph);
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graphView.removeAllSeries();

DataPoint[] points = new DataPoint[96];

for (int i = 0; i < points.length; i++) {

//points[i] = new DataPoint(frequency[i], DataY[i]);

points[i] = new DataPoint(DataX[i], DataY[i]);

}

LineGraphSeries<DataPoint> series = new LineGraphSeries<>(

points);

graphView.getGridLabelRenderer().setHorizontalLabelsColor(

Color.WHITE);

graphView.getGridLabelRenderer().setVerticalLabelsColor(

Color.WHITE);

graphView.getGridLabelRenderer().setVerticalAxisTitle("

Impedance (Îl’)");

graphView.getGridLabelRenderer().setHorizontalAxisTitle("

Frequency (Hz)");

graphView.getGridLabelRenderer().setVerticalAxisTitleColor(

Color.WHITE);

graphView.getGridLabelRenderer().

setHorizontalAxisTitleColor(Color.WHITE);

graphView.getGridLabelRenderer().setGridColor(Color.WHITE);

graphView.getViewport().setScalable(false);

graphView.getViewport().setScalableY(false);

graphView.getViewport().setScrollableY(false);

graphView.getViewport().setMaxX(96);

graphView.getViewport().setMinX(0);

graphView.getLegendRenderer().setVisible(true);
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graphView.getLegendRenderer().setFixedPosition(0,0);

graphView.getLegendRenderer().setTextColor(Color.WHITE);

graphView.getLegendRenderer().setWidth(120);

ButtonInit();

}

// Initialize buttons

void ButtonInit() {

Capacitance = (Button) findViewById(R.id.Capacitance);

Capacitance.setOnClickListener(new View.OnClickListener() {

@Override

public void onClick(View v) {

if (mConnected) {

if(BusyDevice==false) {

graphView.getGridLabelRenderer().

setVerticalAxisTitle("Current (uA)");

graphView.getGridLabelRenderer().

setHorizontalAxisTitle("Voltage (mV)");

MeasureStatus="Capacitance";

Cmd = "Capacitance";

mID1.setText("I: ");

mID2.setText("V: ");

mID3.setText("---");

mReadX.setText("---");

mReadY.setText("---");

mReadFreq.setText("---");

Toast.makeText(getApplicationContext(), "CV

startedïijĄ", Toast.LENGTH_SHORT).show();

129



mStatus.setText("busy");

mStatus.setTextColor(getResources().getColor(R.

color.red));

CVmode = true;

EISmode = false;

SSCV = true;

FSCV = false;

BusyDevice=true;

DataYCV = new float[1024];

send("V");

Log.d(TAG, "CV mode started");

}

else

Toast.makeText(getApplicationContext(), "Device

is busy", Toast.LENGTH_SHORT).show();

}

else

Toast.makeText(getApplicationContext(), "Device

not found", Toast.LENGTH_SHORT).show();

}

});

CVHigh = (Button) findViewById(R.id.CVHigh);

CVHigh.setOnClickListener(new View.OnClickListener() {

@Override

public void onClick(View v) {

if (mConnected) {
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if(BusyDevice==false) {

graphView.getGridLabelRenderer().

setVerticalAxisTitle("Current (uA)");

graphView.getGridLabelRenderer().

setHorizontalAxisTitle("Voltage (mV)");

MeasureStatus="Capacitance";

Cmd = "Capacitance";

mID1.setText("I: ");

mID2.setText("V: ");

mID3.setText("---");

mReadX.setText("---");

mReadY.setText("---");

mReadFreq.setText("---");

Toast.makeText(getApplicationContext(), "FSCV

startedïijĄ", Toast.LENGTH_SHORT).show();

mStatus.setText("busy");

mStatus.setTextColor(getResources().getColor(R.

color.red));

CVmode = true;

EISmode = false;

FSCV = true;

SSCV = false;

BusyDevice=true;

DataYCV = new float[1024];

send("F");

Log.d(TAG, "FSCV mode started");

}
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else

Toast.makeText(getApplicationContext(), "Device

is busy", Toast.LENGTH_SHORT).show();

}

else

Toast.makeText(getApplicationContext(), "Device

not found", Toast.LENGTH_SHORT).show();

}

});

Impedance = (Button) findViewById(R.id.Impedance);

Impedance.setOnClickListener(new View.OnClickListener() {

@Override

public void onClick(View v) {

if (mConnected) {

if(BusyDevice==false) {

ShowPop(v);

}

else

Toast.makeText(getApplicationContext(), "Device

is busy", Toast.LENGTH_SHORT).show();

}

else

Toast.makeText(getApplicationContext(), "Device

not found", Toast.LENGTH_SHORT).show();

}

});
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RefreshCV = (Button) findViewById(R.id.RefreshCV);

RefreshCV.setOnClickListener(new View.OnClickListener() {

@Override

public void onClick(View v) {

graphView.getGridLabelRenderer().setVerticalAxisTitle

("Current (uA)");

graphView.getGridLabelRenderer().

setHorizontalAxisTitle("Voltage (mV)");

Toast.makeText(getApplicationContext(), "Refresh

CVïijĄ", Toast.LENGTH_SHORT).show();

mID1.setText("I: ");

mID2.setText("V: ");

mID3.setText("---");

mStatus.setTextColor(getResources().getColor(R.color.

green));

mStatus.setText("Stand by");

plotCV(DataYCV, DataXCV);

}

});

Disconnected = (ToggleButton)findViewById(R.id.Disconnected

);

Disconnected.setOnClickListener(new View.OnClickListener()

{

@Override

public void onClick(View v) {

if(BusyDevice==false) {
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if (Disconnected.isChecked() && mBluetoothLe !=

null) {

initialize();

mConnected = true;

Log.i(TAG, "Connected");

updateConnectionState(getString(R.string.

connected));

startMonitoringRssiValue();

Toast.makeText(getApplicationContext(), "

Connected!", Toast.LENGTH_SHORT).show();

} else {

if (mBluetoothLe != null) {

if (mBluetoothGatt != null) {

mBluetoothGatt.close();

mRssi.setText("---");

mConnected = false;

updateConnectionState(getString(R.string.

disconnected));

stopMonitoringRssiValue();

invalidateOptionsMenu();

Toast.makeText(getApplicationContext(), "

Disconnected!", Toast.LENGTH_SHORT).

show();

mCon.setText("Disconnected");

mCon.setTextColor(getResources().getColor

(R.color.red));

}
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}

}

}else{

Toast.makeText(getApplicationContext(), "Device is

busy", Toast.LENGTH_SHORT).show();

}

}

});

NyquistPlot = (ToggleButton)findViewById(R.id.PlotData);

NyquistPlot.setOnClickListener(new View.OnClickListener() {

@Override

public void onClick(View v) {

if(NyquistPlot.isChecked()){

mID1.setText("Z: ");

mID2.setText("Îÿ: ");

mID3.setText("Freq: ");

plotEIS(DataY, DataX);

Toast.makeText(getApplicationContext(), "Show Bode

plot", Toast.LENGTH_SHORT).show();

}else{

mID1.setText("Imag: ");

mID2.setText("Real: ");

mID3.setText("Freq: ");

PlotNyquist(DataY, DataX);

Toast.makeText(getApplicationContext(), "Show

Nyquist plot", Toast.LENGTH_SHORT).show();

}
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}

});

PlotScale = (ToggleButton)findViewById(R.id.PlotDataLog);

PlotScale.setOnClickListener(new View.OnClickListener() {

@Override

public void onClick(View v) {

if(PlotScale.isChecked()){

mID1.setText("Z: ");

mID2.setText("Îÿ: ");

mID3.setText("Freq: ");

plotEIS(DataY, DataX);

Toast.makeText(getApplicationContext(), "Linear

Scale", Toast.LENGTH_SHORT).show();

}else{

mID1.setText("Z: ");

mID2.setText("Îÿ: ");

mID3.setText("Freq: ");

plotEISLog(DataY, DataX);

Toast.makeText(getApplicationContext(), "Logscale"

, Toast.LENGTH_SHORT).show();

}

}

});

}

// Set up different plot
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void plotEIS(float dataY1[],float dataY2[]){

graphView.removeAllSeries();

GraphView graph = (GraphView) findViewById(R.id.graph);

graph.getSecondScale().removeAllSeries();

graph.removeAllSeries();

DataPoint[] points1 = new DataPoint[96];

DataPoint[] points2 = new DataPoint[96];

float[] TempData2=new float[96];

float[] TempData1=new float[96];

if(MeasureStatus.equals("Impedance"))

{

for (int i = 0; i < points1.length; i++) {

points1[i] = new DataPoint(frequency2[i], dataY1[i]);

points2[i] = new DataPoint(frequency2[i], dataY2[i]);

TempData1[i] = dataY1[i];

TempData2[i] = dataY2[i];

}

Arrays.sort(TempData1);

Arrays.sort(TempData2);

LineGraphSeries<DataPoint> series1 = new LineGraphSeries

<>(points1);

LineGraphSeries<DataPoint> series2 = new LineGraphSeries

<>(points2);

graphView.getGridLabelRenderer().setVerticalAxisTitle("

Impedance (Îl’)");
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graphView.getGridLabelRenderer().setHorizontalAxisTitle(

"Frequency (Hz)");

graph.getViewport().setMaxX(frequency2[95]);

graph.getViewport().setMinX(frequency2[0]);

graph.getViewport().setMaxY(TempData1[TempData1.length

-1]);

graph.getViewport().setMinY(TempData1[0]);

graph.getSecondScale().setMinY(TempData2[0]);

graph.getSecondScale().setMaxY(TempData2[TempData1.

length-1]);

graph.getViewport().setScalable(true);

graph.getViewport().setScrollable(true);

graph.getViewport().setScalableY(true);

graph.getViewport().setScrollableY(true);

series2.setColor(Color.RED);

graph.getGridLabelRenderer().

setVerticalLabelsSecondScaleColor(Color.GREEN);

series1.setDrawDataPoints(true);

series1.setDataPointsRadius(8);

series2.setDataPointsRadius(8);

series1.setColor(Color.parseColor("red"));

series1.setTitle("Imp (Îl’)");

series2.setTitle("Pha (degree)");

graph.addSeries(series1);

graph.getSecondScale().removeAllSeries();

graph.getSecondScale().addSeries(series2);

series2.setColor(Color.GREEN);
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series1.setOnDataPointTapListener(new

OnDataPointTapListener() {

@Override

public void onTap(Series series, DataPointInterface

dataPoint) {

dataPoint.getX();

mReadFreq.setText(getSignificant(dataPoint.getX()

,5)+" Hz");

mReadY.setText(getSignificant(dataPoint.getY(),5)+

" Îl’");

if(find(frequency2,(float)dataPoint.getX()) != -1)

{

mReadX.setText(getSignificant(DataX[find(

frequency2,(float)dataPoint.getX())],5)+" Âř

");

}

else

mReadX.setText("----");

}

});

series2.setOnDataPointTapListener(new

OnDataPointTapListener() {

@Override

public void onTap(Series series, DataPointInterface

dataPoint) {

dataPoint.getX();
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mReadFreq.setText(getSignificant(dataPoint.getX()

,5)+" Hz");

mReadX.setText(getSignificant(dataPoint.getY(),5)+

" Âř");

if(find(frequency2,(float)dataPoint.getX()) != -1)

{

mReadY.setText(getSignificant(DataY[find(

frequency2,(float)dataPoint.getX())],5)+"

Îl’");

}

else

mReadY.setText("----");

}

});

Log.d(TAG, "plot started");

}

}

void plotCV(float data[],float dataX[]){

graphView.removeAllSeries();

GraphView graph = (GraphView) findViewById(R.id.graph);

graph.removeAllSeries();

graph.getSecondScale().removeAllSeries();

graph.getGridLabelRenderer().

setVerticalLabelsSecondScaleColor(Color.BLACK);

float[] TempData2=new float[1024];

float[] TempData1=new float[1024];
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DataPoint[] points = new DataPoint[data.length];

if(MeasureStatus.equals("Capacitance"))

{

for (int i = 0; i < points.length; i++) {

points[i] = new DataPoint(dataX[i], data[i]);

TempData1[i] = data[i];

TempData2[i] = dataX[i];

}

Arrays.sort(TempData1);

Arrays.sort(TempData2);

PointsGraphSeries<DataPoint> series = new

PointsGraphSeries<>(points);

graph.getViewport().setMaxX(1100);

graph.getViewport().setMinX(-1100);

graph.getViewport().setMaxY(TempData1[TempData1.length

-1]);

graph.getViewport().setMinY(TempData1[0]);

graphView.getGridLabelRenderer().setVerticalAxisTitle("

Current (uA)");

graphView.getGridLabelRenderer().setHorizontalAxisTitle(

"Voltage (mV)");

graph.getViewport().setScalable(true);

graph.getViewport().setScrollable(true);

graph.getViewport().setScalableY(true);

graph.getViewport().setScrollableY(true);

series.setColor(Color.parseColor("red"));

if(FSCV==true && SSCV == false) {
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series.setTitle("100 V/s CV");

}else if(FSCV==false && SSCV == true)

{

series.setTitle("100 mV/s CV");

}

series.setSize(2);

graph.addSeries(series);

series.setColor(Color.RED);

series.setOnDataPointTapListener(new

OnDataPointTapListener() {

@Override

public void onTap(Series series, DataPointInterface

dataPoint) {

dataPoint.getX();

mReadX.setText(getSignificant(dataPoint.getX(),5)+

" mV");

mReadY.setText(getSignificant(dataPoint.getY(),5)+

" uA");

}

});

Log.d(TAG, "plot started");

}

}

@Override

protected void onPause() {

super.onPause();

}
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@Override

public void onResume() {

super.onResume(); // Always call the superclass method

first

}

@Override

protected void onDestroy() {

stopMonitoringRssiValue();

mBluetoothLe.disconnect(mBluetoothGatt);

mConnected = false;

super.onDestroy();

}

//Initialize Bluetooth

private void initialize() {

mBluetoothManager = (BluetoothManager) getSystemService(

Context.BLUETOOTH_SERVICE);

mBluetoothDevice = mBluetoothManager.getAdapter().

getRemoteDevice(mDeviceAddress);

mBluetoothLe = new BluetoothLe(this, mBluetoothManager,

this);

mBluetoothGatt = mBluetoothLe.connect(mBluetoothDevice,

false);

}

private void updateConnectionState(final String status) {

runOnUiThread(new Runnable() {

@Override

public void run() {
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if(status.equals(getString(R.string.connected))) {

Toast.makeText(getApplicationContext(), "Connected

to: "+mDeviceName, Toast.LENGTH_SHORT).show();

mCon.setText("Connected");

mCon.setTextColor(getResources().getColor(R.color.

green));

} else if (status.equals(getString(R.string.

disconnected))) {

Toast.makeText(getApplicationContext(), "Device

Disconnected!", Toast.LENGTH_SHORT).show();

mCon.setText("DisConnected");

mCon.setTextColor(getResources().getColor(R.color.

red));

}

}

});

}

public void startMonitoringRssiValue() {

readPeriodicallyRssiValue(true);

}

public void stopMonitoringRssiValue() {

readPeriodicallyRssiValue(false);

}

public void readPeriodicallyRssiValue(final boolean repeat) {

mTimerEnabled = repeat;

// check if we should stop checking RSSI value
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if(!mConnected || mBluetoothGatt == null || !mTimerEnabled)

{

mTimerEnabled = false;

return;

}

mTimerHandler.postDelayed(new Runnable() {

@Override

public void run() {

if(mBluetoothGatt == null ||

!mConnected)

{

mTimerEnabled = false;

return;

}

// request RSSI value

mBluetoothGatt.readRemoteRssi();

// add call it once more in the future

readPeriodicallyRssiValue(mTimerEnabled);

}

}, RSSI_UPDATE_TIME_INTERVAL);

}

// Setup BluetoothListener methods

@Override

public void onServicesDiscovered(BluetoothGatt gatt, int

status) {

Log.i(TAG, "onServicesDiscovered");
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List<BluetoothGattCharacteristic> characteristics;

if(status == BluetoothGatt.GATT_SUCCESS) {

for (BluetoothGattService service : gatt.getServices())

{

if ((service == null) || (service.getUuid()==null)) {

continue;

}

if(AppConstant.SERVICE_EMG_SIGNAL.equals(service.

getUuid())) {

//Set notification for EMG signal:

mBluetoothLe.setCharacteristicNotification(gatt,

service.getCharacteristic(AppConstant.

CHAR_EMG_SIGNAL), true);

characteristics = service.getCharacteristics();

}

}

}

}

@Override

public void onReadRemoteRssi(BluetoothGatt gatt, int rssi, int

status) {

uiRssiUpdate(rssi);

}

@Override
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public void onConnectionStateChange(BluetoothGatt gatt, int

status, int newState) {

switch (newState) {

case BluetoothProfile.STATE_CONNECTED:

mConnected = true;

Log.i(TAG, "Connected");

updateConnectionState(getString(R.string.connected));

invalidateOptionsMenu();

//Start the service discovery:

gatt.discoverServices();

startMonitoringRssiValue();

break;

case BluetoothProfile.STATE_DISCONNECTED:

mConnected = false;

Log.i(TAG, "Disconnected");

updateConnectionState(getString(R.string.disconnected

));

stopMonitoringRssiValue();

invalidateOptionsMenu();

break;

default:

break;

}

}

@Override

public void onCharacteristicChanged(BluetoothGatt gatt,

BluetoothGattCharacteristic characteristic) {
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//Log.i(TAG, "onCharacteristicChanged");

if(AppConstant.CHAR_EMG_SIGNAL.equals(characteristic.

getUuid())) {

if(EISmode==true && CVmode==false) {

/*TODO: SHOULD THIS BE SIGNED INT*/

final byte[] data = characteristic.getValue();

if (data != null && data.length > 0) {

final StringBuilder stringBuilder = new

StringBuilder(data.length);

for (byte byteChar : data)

stringBuilder.append(String.format("%02X ",

byteChar));

final String ShowData = new String(data);

if (isValidFloat(ShowData)) {

final float f = Float.parseFloat(ShowData);

Log.d(TAG, String.format("IndexY: %d", Yindex))

;

Log.d(TAG, String.format("IndexX: %d", Xindex))

;

/*To record data*/

if (index <= 96 * 2 - 1) {

if (index % 2 == 0) {

DataY[Yindex] = f;

Log.d(TAG, String.format("Ydata= %f",

DataY[Yindex]));

Yindex = Yindex + 1;

} else if (index % 2 == 1) {
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DataX[Xindex] = f;

Log.d(TAG, String.format("Xdata= %f",

DataX[Xindex]));

updateEISstatus(DataY[Xindex],DataX[

Xindex],Xindex);

Xindex = Xindex + 1;

}

index = index + 1;

Log.d(TAG, String.format("Tracting plot

Index: %d", index));

if (Xindex == 96 && Yindex == 96 && index ==

96 * 2) {

Xindex = 0;

Yindex = 0;

index = 0;

saveTextAsFileEIS(DataY,DataX);

plotEIS(DataY, DataX);

updateEMGState(f);

BusyDevice=false;

Notify();

Log.d(TAG, String.format("EIS Plot

successful"));

}

}

} else {

Log.d(TAG, String.format("Received heart rate

string %s:", ShowData));
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if (ShowData.equals("start"))

Log.d(TAG, String.format("Matched %s",

ShowData));

index = 0;

}

}

}

else if(CVmode==true && EISmode==false){

final byte[] data = characteristic.getValue();

if (data != null && data.length > 0) {

final StringBuilder stringBuilder = new

StringBuilder(data.length);

for (byte byteChar : data)

stringBuilder.append(String.format("%02X ",

byteChar));

final String ShowData = new String(data);

if (isValidFloat(ShowData)) {

final float f = Float.parseFloat(ShowData);

Log.d(TAG, String.format("IndexY: %d", Yindex))

;

Log.d(TAG, String.format("IndexX: %d", Xindex))

;

/*To record data*/

if (index < 1024) {

DataYCV[index] = f;

Log.d(TAG, String.format("Ydata= %f", DataY[

Yindex]));

150



index = index + 1;

Log.d(TAG, String.format("Tracting plot

Index: %d", index));

;

}

if (index ==1024) {

index = 0;

saveTextAsFileCV(DataXCV,DataYCV);

plotCV(DataYCV, DataXCV);

updateEMGState(f);

BusyDevice=false;

Notify();

Log.d(TAG, String.format("CV Plot

successful"));

}

} else {

Log.d(TAG, String.format("Received heart rate

string %s:", ShowData));

if (ShowData.equals("start"))

Log.d(TAG, String.format("Matched %s",

ShowData));

index = 0;

}

}

}
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}

}

private void updateEMGState(final float value) {

runOnUiThread(new Runnable() {

@Override

public void run() {

mStatus.setTextColor(getResources().getColor(R.color.

green));

mStatus.setText("Stand by");

}

});

}

private void updateEISstatus(final float Imp,final float phase

,final int num) {

runOnUiThread(new Runnable() {

@Override

public void run() {

mStatus.setTextColor(getResources().getColor(R.color.

green));

mReadFreq.setText(getSignificant(frequency2[num],3)+"

Hz");

mReadY.setText(getSignificant(Imp,5)+" Îl’");

mReadX.setText(getSignificant(phase,5)+" Âř");

mStatus.setText(Integer.toString(num+1)+"/96" );

}
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});

}

@Override

public void onCharacteristicRead(BluetoothGatt gatt,

BluetoothGattCharacteristic characteristic, int status) {

Log.i(TAG, "onCharacteristicRead");

}

@Override

public void onCharacteristicWrite(BluetoothGatt gatt,

BluetoothGattCharacteristic characteristic, int status) {

Log.i(TAG, "onCharacteristicWrite :: Status:: " + status);

}

@Override

public void onDescriptorRead(BluetoothGatt gatt,

BluetoothGattDescriptor descriptor, int status) {

}

@Override

public void onDescriptorWrite(BluetoothGatt gatt,

BluetoothGattDescriptor descriptor, int status) {

Log.i(TAG, "onDescriptorRead :: Status:: " + status);

}

@Override

public void onError(String errorMessage) {

Log.e(TAG, "Error:: " + errorMessage);

}

private void uiRssiUpdate(final int rssi) {

runOnUiThread(new Runnable() {
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@Override

public void run() {

final String valueOfRSSI = String.valueOf(rssi)+" dB"

;

mRssi.setText(valueOfRSSI);

if(mConnected) {

String newStatus = "Status: " + getString(R.string

.connected);

} else {

String newStatus = "Status: " + getString(R.string

.disconnected);

}

}

});

}

private void uiReadUpdate(final String read) {

runOnUiThread(new Runnable() {

@Override

public void run() {

}

});

}

private void uiReadUpdateCV(final String read) {

runOnUiThread(new Runnable() {

@Override
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public void run() {

}

});

}

public static Boolean isValidFloat(String value) {

try {

float temp = Float.parseFloat(value);

return true;

} catch (NumberFormatException e) {

return false;

}

}

// Write data functions

public void send(String sendVar) {

strBLE=sendVar;

Log.d(TAG, "Sending result=" + strBLE);

final byte[] tx = strBLE.getBytes();

Log.d(TAG, "Sending result=" + tx);

if (mConnected) {

BluetoothGattService mCustomService = mBluetoothGatt.

getService(AppConstant.SERVICE_EMG_SIGNAL);

BluetoothGattCharacteristic TXCharacteristic =

mCustomService.getCharacteristic(AppConstant.

CHAR_EMG_SIGNAL);

mBluetoothLe.writeCharacteristic(mBluetoothGatt,

TXCharacteristic,tx);

}
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}

// Read data functions

// Write data functions

public void GenerateCVdataX(){

int i_up=BeginCV;

int i_down=EndCV;

while(i_up<EndCV+1){

DataXCV[CountCV]=(i_up-2048)*2.2f/4.096f-13.5f;

i_up+=StepCV;

CountCV+=1;

}

while(i_down>BeginCV+1){

DataXCV[CountCV]=(i_down-2048)*2.2f/4.096f-9;

i_down-=StepCV;

CountCV+=1;

}

}

private void PlotNyquist(float[] dataY1,float[] dataY2){

//GraphView graph = (GraphView) findViewById(R.id.graph);

graphView.removeAllSeries();

GraphView graph = (GraphView) findViewById(R.id.graph);

graph.removeAllSeries();

graph.getSecondScale().removeAllSeries();

graph.getGridLabelRenderer().

setVerticalLabelsSecondScaleColor(Color.BLACK);

final float[] Real=new float[96];
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final float[] Imag=new float[96];

float[] TempData2=new float[96];

float[] TempData1=new float[96];

for(int i = 0; i < 96; ++i){

Real[i]=dataY1[i]*(float)Math.cos(Math.toRadians(dataY2[

i]));

Imag[i]=(-1)*dataY1[i]*(float)Math.sin(Math.toRadians(

dataY2[i]));

TempData2[i]=Imag[i];

TempData1[i]=Real[i];

}

DataPoint[] points1 = new DataPoint[96];

if(MeasureStatus.equals("Impedance"))

{

for (int i = 0; i < points1.length; i++) {

points1[i] = new DataPoint(Real[i], Imag[i]);

}

Arrays.sort(TempData1);

Arrays.sort(TempData2);

PointsGraphSeries<DataPoint> series = new

PointsGraphSeries<>(points1);

graph.getViewport().setMaxX(TempData1[TempData1.length

-1]);

graph.getViewport().setMinX(TempData1[0]);

graph.getViewport().setMaxY(TempData2[TempData2.length

-1]);

graph.getViewport().setMinY(TempData2[0]);
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graph.getViewport().setScalable(true);

graph.getViewport().setScalableY(true);

series.setSize(4);

series.setColor(Color.parseColor("red"));

series.setTitle("Nyquist");

graph.getViewport().setScalable(false);

graph.getViewport().setScrollable(false);

graph.getViewport().setScalableY(false);

graph.getViewport().setScrollableY(false);

graph.getGridLabelRenderer().setVerticalAxisTitle("-Imag

(Îl’)");

graph.getGridLabelRenderer().setHorizontalAxisTitle("

Real (Îl’)");

graph.addSeries(series);

series.setColor(Color.YELLOW);

series.setOnDataPointTapListener(new

OnDataPointTapListener() {

@Override

public void onTap(Series series, DataPointInterface

dataPoint) {

dataPoint.getX();

mReadX.setText(getSignificant(dataPoint.getX(),5)+

" Îl’");

mReadY.setText("-"+getSignificant(dataPoint.getY()

,5)+" Îl’");

if(find(Real,(float)dataPoint.getX()) != -1){
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mReadFreq.setText(getSignificant(frequency2[

find(Real,(float)dataPoint.getX())],5)+" Hz"

);

}

else

mReadFreq.setText("----");

}

});

Log.d(TAG, "plot started");

}

}

// Set up different plot

void plotEISLog(float dataY1[],float dataY2[]){

GraphView graph = (GraphView) findViewById(R.id.graph);

graph.removeAllSeries();

graph.getSecondScale().removeAllSeries();

DataPoint[] points1 = new DataPoint[96];

DataPoint[] points2 = new DataPoint[96];

float[] TempData2=new float[96];

float[] TempData1=new float[96];

if(MeasureStatus.equals("Impedance"))

{

for (int i = 0; i < points1.length; i++) {

points1[i] = new DataPoint(Math.log10(frequency2[i]),

dataY1[i]);
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points2[i] = new DataPoint(Math.log10(frequency2[i]),

dataY2[i]);

TempData1[i] = dataY1[i];

TempData2[i] = dataY2[i];

}

Arrays.sort(TempData1);

Arrays.sort(TempData2);

LineGraphSeries<DataPoint> series1 = new LineGraphSeries

<>(points1);

LineGraphSeries<DataPoint> series2 = new LineGraphSeries

<>(points2);

graph.getViewport().setMaxX(4.2);

graph.getViewport().setMinX(-0.8);

graph.getViewport().setMaxY(TempData1[TempData1.length

-1]);

graph.getViewport().setMinY(TempData1[0]);

graph.getSecondScale().setMinY(TempData2[0]);

graph.getSecondScale().setMaxY(TempData2[TempData2.

length-1]);

graph.getGridLabelRenderer().setVerticalAxisTitle("

Impedance (Îl’)");

graph.getGridLabelRenderer().setHorizontalAxisTitle("

Frequency (lg Hz)");

graph.getViewport().setScalable(true);

graph.getViewport().setScrollable(true);

graph.getViewport().setScalableY(true);

graph.getViewport().setScrollableY(true);
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series2.setColor(Color.RED);

graph.getGridLabelRenderer().

setVerticalLabelsSecondScaleColor(Color.GREEN);

series1.setDrawDataPoints(true);

series1.setDataPointsRadius(8);

series2.setDataPointsRadius(8);

series1.setColor(Color.parseColor("red"));

series1.setTitle("Imp (Îl’)");

series2.setTitle("Pha (degree)");

graph.addSeries(series1);

graph.getSecondScale().addSeries(series2);

series2.setColor(Color.GREEN);

series1.setOnDataPointTapListener(new

OnDataPointTapListener() {

@Override

public void onTap(Series series, DataPointInterface

dataPoint) {

dataPoint.getX();

mReadFreq.setText(getSignificant(Math.pow(10,

dataPoint.getX()),4)+" Hz");

mReadY.setText(getSignificant(dataPoint.getY(),5)+

" Îl’");

if(find(frequency2,(float)Math.pow(10,dataPoint.

getX())) != -1){

mReadX.setText(getSignificant(DataX[find(

frequency2,(float)Math.pow(10,dataPoint.getX

()))],5)+" Âř");
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}

else

mReadX.setText("----");

}

});

series2.setOnDataPointTapListener(new

OnDataPointTapListener() {

@Override

public void onTap(Series series, DataPointInterface

dataPoint) {

dataPoint.getX();

mReadFreq.setText(getSignificant(Math.pow(10,

dataPoint.getX()),4)+" Hz");

mReadX.setText(getSignificant(dataPoint.getY(),5)+

" Âř");

if(find(frequency2,(float)Math.pow(10,dataPoint.

getX())) != -1){

mReadY.setText(getSignificant(DataY[find(

frequency2,(float)Math.pow(10,dataPoint.getX

()))],5)+" Îl’");

}

else

mReadY.setText("----");

}

});

Log.d(TAG, "plot started");

162



}

}

public static String getSignificant(double value, int sigFigs)

{

MathContext mc = new MathContext(sigFigs, RoundingMode.DOWN

);

BigDecimal bigDecimal = new BigDecimal(value, mc);

return bigDecimal.toPlainString();

}

public static int find(float[] a,float target){

for (int i = 0; i<a.length;i++)

if(a[i]==target)

return i;

return -1;

}

private void saveTextAsFileCV(float[] Voltage,float[] Current)

{

SimpleDateFormat sdf = new SimpleDateFormat("

yyyyMMdd_HHmmss");

String currentDateandTime = sdf.format(new Date());

SimpleDateFormat sdf2 = new SimpleDateFormat("yyyyMMdd");

String CurrentDate = sdf2.format(new Date());

String fileName;

if(FSCV== false && SSCV== true) {

fileName = "SSCV_"+currentDateandTime + ".txt";
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}else{

fileName = "FSCV_"+currentDateandTime + ".txt";

}

File Root = Environment.getExternalStorageDirectory();

File Dir = new File(Root.getAbsolutePath()+"/

ElectrochemistryData"+"/"+CurrentDate);

if(!Dir.exists())

{

Dir.mkdirs();

Log.d(TAG, "Create the DIR");

}

File file = new File(Dir,fileName);

String Message1[] = new String[Voltage.length] ;

String Message2[] = new String[Current.length] ;

String temp;

for (int i=0;i<Voltage.length;++i){

Message1[i] = Float.toString(Voltage[i]);

Message2[i] = Float.toString(Current[i]);

}

//write file

try{

FileOutputStream fos = new FileOutputStream(file);

for (int i=0;i<Voltage.length;++i) {

temp="Index:"+ i + " ," +"Voltage:"+Message1[i]+" mV

,"+"Current"+Message2[i]+" uA ;\n";

fos.write(temp.getBytes());

}

164



fos.close();

} catch(FileNotFoundException e){

e.printStackTrace();

} catch (IOException e){

e.printStackTrace();

}

}

private void saveTextAsFileEIS(float[] DataImp,float[] DataPha

){

SimpleDateFormat sdf = new SimpleDateFormat("

yyyyMMdd_HHmmss");

String currentDateandTime = sdf.format(new Date());

SimpleDateFormat sdf2 = new SimpleDateFormat("yyyyMMdd");

String CurrentDate = sdf2.format(new Date());

String fileName = "EIS_"+currentDateandTime + ".txt";

//Create file

File Root = Environment.getExternalStorageDirectory();

File Dir = new File(Root.getAbsolutePath()+"/

ElectrochemistryData"+"/"+CurrentDate);

if(!Dir.exists())

{

Dir.mkdirs();

}

final float[] Real=new float[96];

final float[] Imag=new float[96];

float[] TempData2=new float[96];
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float[] TempData1=new float[96];

for(int i = 0; i < 96; ++i){

Real[i]=DataImp[i]*(float)Math.cos(Math.toRadians(

DataPha[i]));

Imag[i]=DataImp[i]*(float)Math.sin(Math.toRadians(

DataPha[i]));

TempData2[i]=Imag[i];

TempData1[i]=Real[i];

}

File file = new File(Dir,fileName);

String Message1[] = new String[DataImp.length] ;

String Message2[] = new String[DataImp.length] ;

String Message3[] = new String[DataImp.length] ;

String Message4[] = new String[DataImp.length] ;

String Message5[] = new String[DataImp.length] ;

String temp;

for (int i=0;i<DataImp.length;++i){

Message2[i] = Float.toString(DataImp[i]);

Message3[i] = Float.toString(DataPha[i]);

Message4[i] = Float.toString(Real[i]);

Message5[i] = Float.toString(Imag[i]);

Message1[i] = Float.toString(frequency2[i]);

}

//write file

try{

FileOutputStream fos = new FileOutputStream(file);

for (int i=0;i<DataImp.length;++i) {
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temp="Index:"+ i + " ," +"Frequency:"+Message1[i]+"

Hz ,"+"Z:"+Message2[i]+" Ohms ,"+"Phase:"+Message3

[i]+" Degree ,"+"Real:"+Message4[i]+" Ohms ,"+"

Imaginary:"+Message5[i]+" Ohms ;\n";

fos.write(temp.getBytes());

}

fos.close();

} catch(FileNotFoundException e){

e.printStackTrace();

} catch (IOException e){

e.printStackTrace();

}

}

@Override

public void onRequestPermissionsResult(int requestCode,

@NonNull String[] permissions, @NonNull int[] grantResults)

{

switch(requestCode){

case 1000:

if(grantResults[0] == PackageManager.

PERMISSION_GRANTED){

Toast.makeText(this,"Permission granted!",Toast.

LENGTH_SHORT).show();

}else {

Toast.makeText(this,"Permission not granted!",

Toast.LENGTH_SHORT).show();
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}

}

}

public void Notify(){

notification = new NotificationCompat.Builder(this);

notification.setAutoCancel(true);

notification.setSmallIcon(R.drawable.raedy2);

notification.setTicker("Data collected");

notification.setWhen(System.currentTimeMillis());

notification.setContentTitle("Dxotronics Tech");

if( CVmode == false && EISmode == true){

notification.setContentText("EIS process finished");

}else if(CVmode == true && EISmode == false){

if(FSCV== false && SSCV== true) {

notification.setContentText("slow scan CV process

finished");

}else if(FSCV== true && SSCV== false){

notification.setContentText("fast scan CV process

finished");

}

}

NotificationManager nm = (NotificationManager)

getSystemService(NOTIFICATION_SERVICE);

nm.notify(uniqueID,notification.build());
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}

public void ShowPop(View v){

TextView back,EISp2,EISp1,EIS0,EISn1,EISn2;

Button Bback,BEISp2,BEISp1,BEIS0,BEISn1,BEISn2;

myDialog.setContentView(R.layout.popeis);

Bback = (Button) myDialog.findViewById(R.id.back);

BEISp2 = (Button) myDialog.findViewById(R.id.EISp2);

BEISp1 = (Button) myDialog.findViewById(R.id.EISp1);

BEIS0 = (Button) myDialog.findViewById(R.id.EIS0);

BEISn1 = (Button) myDialog.findViewById(R.id.EISn1);

BEISn2 = (Button) myDialog.findViewById(R.id.EISn2);

Bback.setOnClickListener(new View.OnClickListener() {

@Override

public void onClick(View v) {

myDialog.dismiss();

}

});

BEIS0.setOnClickListener(new View.OnClickListener() {

@Override

public void onClick(View v) {

if (mConnected) {

if(BusyDevice==false) {

graphView.getGridLabelRenderer().

setVerticalAxisTitle("Impedance (Îl’)");

graphView.getGridLabelRenderer().

setHorizontalAxisTitle("Frequency (Hz)");
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graphView.getGridLabelRenderer().

setVerticalLabelsSecondScaleColor(Color.RED)

;

MeasureStatus="Impedance";

mID1.setText("Z: ");

mID2.setText("Îÿ: ");

mID3.setText("Freq: ");

mReadX.setText("---");

mReadY.setText("---");

mReadFreq.setText("---");

CVmode=false;

EISmode=true;

FSCV = false;

SSCV = false;

BusyDevice=true;

DataY= new float[96];

DataX= new float[96];

myDialog.dismiss();

Toast.makeText(getApplicationContext(), "0V EIS

startedïijĄ", Toast.LENGTH_SHORT).show();

mStatus.setText("busy");

mStatus.setTextColor(getResources().getColor(R.

color.red));

send("E");

}

else
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Toast.makeText(getApplicationContext(), "Device

is busy", Toast.LENGTH_SHORT).show();

}

else

Toast.makeText(getApplicationContext(), "Device

not found", Toast.LENGTH_SHORT).show();

}

});

BEISp2.setOnClickListener(new View.OnClickListener() {

@Override

public void onClick(View v) {

if (mConnected) {

if(BusyDevice==false) {

graphView.getGridLabelRenderer().

setVerticalAxisTitle("Impedance (Îl’)");

graphView.getGridLabelRenderer().

setHorizontalAxisTitle("Frequency (Hz)");

graphView.getGridLabelRenderer().

setVerticalLabelsSecondScaleColor(Color.RED)

;

MeasureStatus="Impedance";

mID1.setText("Z: ");

mID2.setText("Îÿ: ");

mID3.setText("Freq: ");

mReadX.setText("---");

mReadY.setText("---");

mReadFreq.setText("---");
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CVmode=false;

EISmode=true;

FSCV = false;

SSCV = false;

BusyDevice=true;

DataY= new float[96];

DataX= new float[96];

myDialog.dismiss();

Toast.makeText(getApplicationContext(), "+0.2 V

EIS startedïijĄ", Toast.LENGTH_SHORT).show

();

mStatus.setText("busy");

mStatus.setTextColor(getResources().getColor(R.

color.red));

send("A");

}

else

Toast.makeText(getApplicationContext(), "Device

is busy", Toast.LENGTH_SHORT).show();

}

else

Toast.makeText(getApplicationContext(), "Device

not found", Toast.LENGTH_SHORT).show();

}

});

BEISp1.setOnClickListener(new View.OnClickListener() {
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@Override

public void onClick(View v) {

if (mConnected) {

if(BusyDevice==false) {

graphView.getGridLabelRenderer().

setVerticalAxisTitle("Impedance (Îl’)");

graphView.getGridLabelRenderer().

setHorizontalAxisTitle("Frequency (Hz)");

graphView.getGridLabelRenderer().

setVerticalLabelsSecondScaleColor(Color.RED)

;

MeasureStatus="Impedance";

mID1.setText("Z: ");

mID2.setText("Îÿ: ");

mID3.setText("Freq: ");

mReadX.setText("---");

mReadY.setText("---");

mReadFreq.setText("---");

CVmode=false;

EISmode=true;

FSCV = false;

SSCV = false;

BusyDevice=true;

DataY= new float[96];

DataX= new float[96];

myDialog.dismiss();
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Toast.makeText(getApplicationContext(), "+0.1 V

EIS startedïijĄ", Toast.LENGTH_SHORT).show

();

mStatus.setText("busy");

mStatus.setTextColor(getResources().getColor(R.

color.red));

send("B");

}

else

Toast.makeText(getApplicationContext(), "Device

is busy", Toast.LENGTH_SHORT).show();

}

else

Toast.makeText(getApplicationContext(), "Device

not found", Toast.LENGTH_SHORT).show();

}

});

BEISn1.setOnClickListener(new View.OnClickListener() {

@Override

public void onClick(View v) {

if (mConnected) {

if(BusyDevice==false) {

graphView.getGridLabelRenderer().

setVerticalAxisTitle("Impedance (Îl’)");
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graphView.getGridLabelRenderer().

setHorizontalAxisTitle("Frequency (Hz)");

graphView.getGridLabelRenderer().

setVerticalLabelsSecondScaleColor(Color.RED)

;

MeasureStatus="Impedance";

mID1.setText("Z: ");

mID2.setText("Îÿ: ");

mID3.setText("Freq: ");

mReadX.setText("---");

mReadY.setText("---");

mReadFreq.setText("---");

CVmode=false;

EISmode=true;

FSCV = false;

SSCV = false;

BusyDevice=true;

DataY= new float[96];

DataX= new float[96];

myDialog.dismiss();

Toast.makeText(getApplicationContext(), "-0.1 V

EIS startedïijĄ", Toast.LENGTH_SHORT).show

();

mStatus.setText("busy");

mStatus.setTextColor(getResources().getColor(R.

color.red));

send("C");

175



}

else

Toast.makeText(getApplicationContext(), "Device

is busy", Toast.LENGTH_SHORT).show();

}

else

Toast.makeText(getApplicationContext(), "Device

not found", Toast.LENGTH_SHORT).show();

}

});

BEISn2.setOnClickListener(new View.OnClickListener() {

@Override

public void onClick(View v) {

if (mConnected) {

if(BusyDevice==false) {

graphView.getGridLabelRenderer().

setVerticalAxisTitle("Impedance (Îl’)");

graphView.getGridLabelRenderer().

setHorizontalAxisTitle("Frequency (Hz)");

graphView.getGridLabelRenderer().

setVerticalLabelsSecondScaleColor(Color.RED)

;

MeasureStatus="Impedance";

mID1.setText("Z: ");

mID2.setText("Îÿ: ");

mID3.setText("Freq: ");

mReadX.setText("---");
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mReadY.setText("---");

mReadFreq.setText("---");

CVmode=false;

EISmode=true;

FSCV = false;

SSCV = false;

BusyDevice=true;

DataY= new float[96];

DataX= new float[96];

myDialog.dismiss();

Toast.makeText(getApplicationContext(), "-0.2 V

EIS startedïijĄ", Toast.LENGTH_SHORT).show

();

mStatus.setText("busy");

mStatus.setTextColor(getResources().getColor(R.

color.red));

send("D");

}

else

Toast.makeText(getApplicationContext(), "Device

is busy", Toast.LENGTH_SHORT).show();

}

else

Toast.makeText(getApplicationContext(), "Device

not found", Toast.LENGTH_SHORT).show();

}

});
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myDialog.show();

}

public void NormailizeFreq(){

for (int i=0;i<32;++i){

frequency2[i+63]=frequency2[63+i]*422/472;

}

}

}
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Appendix C

C Code for MCU on Second Generation Device

#include <fix_fft.h>

#include <DueTimer.h>

#include <DueFlashStorage.h>

#include <efc.h>

#include <flash_efc.h>

#define Bluetooth Serial3

#include <SPI.h>

#define AveSize 1024

#define AveEIS 4

#define AveEISLow 3

#define AveEISHigh 4

#include <math.h>

#if defined(ARDUINO) && ARDUINO >= 100

#include "Arduino.h"

#else

#include "WProgram.h"

#endif

#define Samplepoints 256

#define MeasurePoints 32

#define WaitforMS 25

DueFlashStorage dueFlashStorage;

int DACin[Samplepoints];

const byte DATA[]={0,1,2,3,4,5,6,7,8,9,10,11};

const float pi = 3.1415926;
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int Repeat=1;

int FirstFreq=0;

short im_in[AveEIS][Samplepoints];

short real_in[AveEIS][Samplepoints];

float real_in_Smooth[Samplepoints];

short real_in_mapto16Bit[AveEIS][Samplepoints];

short test[Samplepoints];

int val_in=0;

float mag_in[AveEIS][Samplepoints];

float phase_in[AveEIS][Samplepoints];

short im_out[AveEIS][Samplepoints];

short real_out[AveEIS][Samplepoints];

float real_out_Smooth[Samplepoints];

short real_out_mapto16Bit[AveEIS][Samplepoints];

int val_out=0;

float mag_out[AveEIS][Samplepoints];

float phase_out[AveEIS][Samplepoints];

int Vref;

float Rref

[]={50,500,5000,50000,500000,3000000,20000000,100000000};

int RrefMode[]={0,2,6,19,52,142,386,1023};

int DefaultRefMode=7;

float swing=0.10;

float Rtest;

float impedance[96];

float phase[96];

float RealPrint[96];
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float ImagPrint[96];

float DataEIS[96*2]={};

float SineTone[]={2048,2048,2049,2049,2050,2051

,2051,2052,2052,2053,2054,2054,2055,2055,2056,

2056,2057,2058,2058,2059,2059,2060,2060,2061,

2061,2062,2062,2063,2063,2064,2064,2065,2065,

2065,2066,2066,2067,2067,2067,2068,2068,2068,

2069,2069,2069,2070,2070,2070,2070,2071,2071,2071,

2071,2071,2072,2072,2072,2072,2072,2072,2072,2072,

2072,2072,2072,2072,2072,2072,2072,2072,2072,2072,

2072,2072,2072,2071,2071,2071,2071,2071,2070,2070,

2070,2070,2069,2069,2069,2068,2068,2068,2067,2067,

2067,2066,2066,2065,2065,2065,2064,2064,2063,2063,

2062,2062,2061,2061,2060,2060,2059,2059,2058,2058,

2057,2056,2056,2055,2055,2054,2054,2053,2052,2052,

2051,2051,2050,2049,2049,2048,2048,2048,2047,2047,

2046,2045,2045,2044,2044,2043,2042,2042,2041,2041,

2040,2040,2039,2038,2038,2037,2037,2036,2036,2035,

2035,2034,2034,2033,2033,2032,2032,2031,2031,2031,

2030,2030,2029,2029,2029,2028,2028,2028,2027,2027,

2027,2026,2026,2026,2026,2025,2025,2025,2025,2025,

2024,2024,2024,2024,2024,2024,2024,2024,2024,2024,

2024,2024,2024,2024,2024,2024,2024,2024,2024,2024,

2024,2025,2025,2025,2025,2025,2026,2026,2026,2026,

2027,2027,2027,2028,2028,2028,2029,2029,2029,2030,

2030,2031,2031,2031,2032,2032,2033,2033,2034,2034,

2035,2035,2036,2036,2037,2037,2038,2038,2039,2040,
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2040,2041,2041,2042,2042,2043,2044,2044,2045,2045,

2046,2047,2047,2048};

float SineToneHigh[32][256]=...; \\hiding to reduce content

double CapChoice;

double frequency[]={0.162,0.19,0.223,0.262,0.307,

0.362,0.424,0.498,0.583,0.685,0.803,0.942,1.1,1.3,

1.52,1.78,2.09,2.45,2.9,3.36,3.9,4.6,5.4,6.3,7.35,

8.58,10,11.7,13.6,15.8,18.4,21.3,24.6,28.4,32.7,

37.8,43.2,49.2,55.5,62.6,70.5,79.1,88,96.7,107.4,

113.7,117,120.5,124.5,128.7,133,137.75,142.79,148.2,

154.1,160.2,167.3,174.8,183,192,201.94,212.98,225.25,

239.6,471.92,707.88,943.84,1179.8,1415.8,1651.7,

1887.7,2123.6,2359.6,2595.6,2831.5,3067.5,3303.4,

3539.4,3775.4,4011.3,4247.3,4483.2,4719.2,4955.2,

5191.1,5427.1,5663,6135,6842.8,7786.7,8730.5,9674.4,

10854,12034,13450,15101};

float DelayTime[]={24000,20450,17424,14846,12650,

10778,9184,7825,6667,5681,4840,4124,3514,2994,2551,

2173,1852,1578,1344,1145,976,831,708,603,514,438,

373,317,270,230,196,167,142,121,103,87,74,63,54,

46,39,33,28,24,20,18,17,16,15,14,13,12,11,10,9,

8,7,6,5,4,3,2,1,0};

#define DACOUT DAC0

#define Vrefpin DAC1

#define TIAInput A0

#define TIAOutput A1

//Parameter setup for potentiometer
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const int csPinCWF = 10;

const byte enableUpdateMSB = 0x1C; //B00011100

const byte enableUpdateLSB = 0x02; //B00000010

const byte command = 0x04; //B00000100

//Parameter for muxing

const int S0C = 12;

const int S1C = 32;

const int S2C = 33;

const int S0R = 37;

const int S1R = 38;

const int S2R = 39;

const int EN_C = 41;

const int EN_R = 40;

const int EN_DIFF = 45;

const int MODE = 44;

const int ENPW = 47;

int CapModetemp;

int capMode;

int WindowSize=9;

int EISSmoothEnable=0;

const int BeginCV=1;

const int EndCV=4095;

const int StepCV=8;

const int CycleCV=1;

float CVV[1024];

float CVI[1024];

float CVI_Smoothed[1024];
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float real_in_CV[1024];

float real_out_CV[1024];

int EnhanceFactor=3;

int ReadOutWindow[AveSize];

float ReadOutSum;

float ReadOutAve;

int CommonMode=2048;

int Bias=0;

float Coefficient=10;

void setup() {

Serial.begin(115200);

Bluetooth.begin(115200);

//Setup for muxing capacitor

pinMode(S0R,OUTPUT);

pinMode(S1R,OUTPUT);

pinMode(S2R,OUTPUT);

pinMode(S0C,OUTPUT);

pinMode(S1C,OUTPUT);

pinMode(S2C,OUTPUT);

pinMode(EN_C,OUTPUT);

pinMode(EN_R,OUTPUT);

pinMode(MODE,OUTPUT);

pinMode(ENPW,OUTPUT);

pinMode(EN_DIFF,OUTPUT);

pinMode(13, OUTPUT);

pinMode(0, OUTPUT);

pinMode(1, OUTPUT);
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selectR(0);

selectC(0);

//Normalize frequency

for (int i=0;i<32;i++){

frequency[63+i]=frequency[63+i]*422/472;

}

//Enhance input Signal

for (int i=0;i<Samplepoints;++i){

SineTone[i]=(SineTone[i]-2048)*EnhanceFactor+2048;

}

for (int j=0;j<32;++j){

for (int i=0;i<Samplepoints;++i){

SineToneHigh[j][i]=(SineToneHigh[j][i]-2048)*EnhanceFactor

+2048;

}

}

digitalWrite(MODE, HIGH);

digitalWrite(ENPW, HIGH);

}

void loop() {

analogWriteResolution(12);

analogReadResolution(12);

analogWrite(Vrefpin,3072);

analogWrite(DACOUT,2048);

selectC(6);

selectR(1);

real_out[0][0]=analogRead(TIAOutput);
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real_in[0][0]=analogRead(TIAInput);

ReadOutSum=0;

for(int n =0;n<1024;++n){

ReadOutWindow[n]=analogRead(TIAOutput);

ReadOutSum+=ReadOutWindow[n];

}

ReadOutAve=ReadOutSum/1024;

if (Bluetooth.available()){

char inByte = Bluetooth.read();

if (inByte==’V’){

DefaultRefMode=7;

selectR(DefaultRefMode);

int count=0;

int count2=0;

int i_up=BeginCV;

int i_down=EndCV;

int sumtemp=0;

int avetemp=0;

for (int h=0;h<8;++h){

ReadOutSum=0;

selectR(h);

CapModetemp=ChooseCapCV(h);

delay(200);

for(int l =0;l<AveSize;++l){

ReadOutWindow[l]=analogRead(TIAOutput);

ReadOutSum+=ReadOutWindow[l];

}
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avetemp=ReadOutSum/AveSize;

if(avetemp>(4096*0.1)){

continue;

}

if(avetemp>(4096*0.1)){

DefaultRefMode=h;

selectR(DefaultRefMode);

CapModetemp=ChooseCapCV(DefaultRefMode);

adjust_com();

delay(5000);

break;

}else{

DefaultRefMode=h-1;

selectR(DefaultRefMode);

CapModetemp=ChooseCapCV(DefaultRefMode);

adjust_com();

delay(5000);

break;

}

}

selectR(DefaultRefMode);

CapModetemp=ChooseCapCV(DefaultRefMode);

while(i_up<EndCV+1){

analogWrite(DACOUT,i_up);

ReadOutSum=0;

delay(28);

real_in_CV[count]=analogRead(TIAInput);
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for(int n =0;n<AveSize;++n){

ReadOutWindow[n]=analogRead(TIAOutput);

ReadOutSum+=ReadOutWindow[n];

}

ReadOutAve=ReadOutSum/AveSize;

real_out_CV[count]=ReadOutAve;

if(i_up>4096*0.1 &&i_up <4096*0.9){

if(real_out_CV[count]>=4096*(1-2*swing)||real_out_CV[count

]<=4096*(swing) && DefaultRefMode>=1){

i_up=BeginCV;

DefaultRefMode=DefaultRefMode-1;

count=0;

analogWrite(DACOUT,2048);

selectR(DefaultRefMode);

CapModetemp=ChooseCapCV(DefaultRefMode);

delay(100);

continue;

}

}

i_up=i_up+StepCV;

CVV[count]=float(2048-real_in_CV[count])*2/4096*1000;

CVI[count]=float(real_out_CV[count]-2048)*3.3/4096/Rref[

DefaultRefMode]*1000000;

count=count+1;

}

int countUp=count;

while(i_down>BeginCV-1){
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analogWrite(DACOUT,i_down);

ReadOutSum=0;

delay(28);

real_in_CV[count]=analogRead(TIAInput);

for(int n =0;n<AveSize;++n){

ReadOutWindow[n]=analogRead(TIAOutput);

ReadOutSum+=ReadOutWindow[n];

}

ReadOutAve=ReadOutSum/AveSize;

real_out_CV[count]=ReadOutAve;

if(i_down>4096*0.1 && i_down<4096*0.9){

if(real_out_CV[count]>=4096*(1-2*swing)||real_out_CV[count

]<=4096*(swing) && DefaultRefMode>=1){

i_down=EndCV;

DefaultRefMode=DefaultRefMode-1;

count=countUp;

analogWrite(DACOUT,2048);

selectR(DefaultRefMode);

CapModetemp=ChooseCapCV(DefaultRefMode);

delay(100);

continue;

}

}

i_down=i_down-StepCV;

CVV[count]=float(2048-real_in_CV[count])*2.2/4096*1000;

CVI[count]=float(real_out_CV[count]-2048)*3.3/4096/Rref[

DefaultRefMode]*1000000;
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count=count+1;

}

analogWrite(DACOUT,2048);

//Smoothing

for (int i = 0; i < count; i++) {

CVI_Smoothed[i] = CVI[i];

}

if(WindowSize==5){

for(int i=2;i<count-2;++i){

CVI_Smoothed[i]=((-3)*CVI[i-2]+12*CVI[i-1]+17*CVI[i-0]+12*

CVI[i+1]-3*CVI[i+2])/35;

}

}

else if (WindowSize==7){

for(int i=3;i<count-3;++i){

CVI_Smoothed[i]=((-2)*CVI[i-3]+(3)*CVI[i-2]+6*CVI[i-1]+7*

CVI[i]+6*CVI[i+1]+3*CVI[i+2]-2*CVI[i+3])/21;

}

}

else if (WindowSize==9){

for(int i=4;i<count-4;++i){

CVI_Smoothed[i]=((-21)*CVI[i-4]+(14)*CVI[i-3]+39*CVI[i

-2]+54*CVI[i-1]+59*CVI[i]+54*CVI[i+1]+39*CVI[i+2]+14*CVI

[i+3]-21*CVI[i+4])/231;

}

}

else if (WindowSize==25){
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for(int i=12;i<count-12;++i){

CVI_Smoothed[i]=((-21)*CVI[i-4]+(14)*CVI[i-3]+39*CVI[i

-2]+54*CVI[i-1]+59*CVI[i]+54*CVI[i+1]+39*CVI[i+2]+14*CVI

[i+3]-21*CVI[i+4])/231;

}

}

for (int i=0;i<count;++i){

Bluetooth.print(CVI_Smoothed[i],5);

delay(WaitforMS);

}

}

else if (inByte==’F’){

DefaultRefMode=7;

selectR(DefaultRefMode);

int count=0;

int count2=0;

int i_up=BeginCV;

int i_down=EndCV;

int sumtemp=0;

int avetemp=0;

for (int h=0;h<8;++h){

analogWrite(DACOUT,i_up+4096*0.1);

ReadOutSum=0;

selectR(h);

CapModetemp=ChooseCapCV(h);

delay(200);

for(int l =0;l<AveSize;++l){
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ReadOutWindow[l]=analogRead(TIAOutput);

ReadOutSum+=ReadOutWindow[l];

}

avetemp=ReadOutSum/AveSize;

if(avetemp>(4096*0.1)){

continue;

}

if(avetemp>(4096*0.1)){

DefaultRefMode=h;

selectR(DefaultRefMode);

CapModetemp=ChooseCapCV(DefaultRefMode);

adjust_com();

delay(5000);

break;

}else{

DefaultRefMode=h-1;

selectR(DefaultRefMode);

CapModetemp=ChooseCapCV(DefaultRefMode);

adjust_com();

delay(5000);

break;

}

}

selectR(DefaultRefMode);

CapModetemp=ChooseCapCVFS(DefaultRefMode);

while(i_up<EndCV+1){

analogWrite(DACOUT,i_up);
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real_in_CV[count]=analogRead(TIAInput);

ReadOutWindow[0]=analogRead(TIAOutput);

ReadOutWindow[1]=analogRead(TIAOutput);

ReadOutWindow[2]=analogRead(TIAOutput);

ReadOutWindow[3]=analogRead(TIAOutput);

ReadOutAve=(ReadOutWindow[0]+ReadOutWindow[1]+ReadOutWindow

[2]+ReadOutWindow[3])/4;

real_out_CV[count]=ReadOutAve;

if(i_up>4096*0.1 &&i_up <4096*0.9){

if(real_out_CV[count]>=4096*(1-2*swing)||real_out_CV[count

]<=4096*(swing) && DefaultRefMode>=1){

i_up=BeginCV;

DefaultRefMode=DefaultRefMode-1;

count=0;

analogWrite(DACOUT,2048);

selectR(DefaultRefMode);

CapModetemp=ChooseCapCVFS(DefaultRefMode);

delay(100);

continue;

}

}

i_up=i_up+StepCV;

count=count+1;

}

int countUp=count;

while(i_down>BeginCV-1){

analogWrite(DACOUT,i_down);
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real_in_CV[count]=analogRead(TIAInput);

ReadOutWindow[0]=analogRead(TIAOutput);

ReadOutWindow[1]=analogRead(TIAOutput);

ReadOutWindow[2]=analogRead(TIAOutput);

ReadOutWindow[3]=analogRead(TIAOutput);

ReadOutAve=(ReadOutWindow[0]+ReadOutWindow[1]+ReadOutWindow

[2]+ReadOutWindow[3])/4;

real_out_CV[count]=ReadOutAve;

if(i_down>4096*0.1 && i_down<4096*0.9){

if(real_out_CV[count]>=4096*(1-2*swing)||real_out_CV[count

]<=4096*(swing) && DefaultRefMode>=1){

i_down=EndCV;

DefaultRefMode=DefaultRefMode-1;

count=countUp;

analogWrite(DACOUT,2048);

selectR(DefaultRefMode);

CapModetemp=ChooseCapCVFS(DefaultRefMode);

delay(100);

continue;

}

}

i_down=i_down-StepCV;

count=count+1;

}

analogWrite(DACOUT,2048);

//Smoothing

for (int i = 0; i < count; i++) {
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CVI[i]=float(real_out_CV[i]-2048)*3.3/4096/Rref[

DefaultRefMode]*1000000;

CVI_Smoothed[i] = CVI[i];

}

if(WindowSize==5){

for(int i=2;i<count-2;++i){

CVI_Smoothed[i]=((-3)*CVI[i-2]+12*CVI[i-1]+17*CVI[i-0]+12*

CVI[i+1]-3*CVI[i+2])/35;

}

}

else if (WindowSize==7){

for(int i=3;i<count-3;++i){

CVI_Smoothed[i]=((-2)*CVI[i-3]+(3)*CVI[i-2]+6*CVI[i-1]+7*

CVI[i]+6*CVI[i+1]+3*CVI[i+2]-2*CVI[i+3])/21;

}

}

else if (WindowSize==9){

for(int i=4;i<count-4;++i){

CVI_Smoothed[i]=((-21)*CVI[i-4]+(14)*CVI[i-3]+39*CVI[i

-2]+54*CVI[i-1]+59*CVI[i]+54*CVI[i+1]+39*CVI[i+2]+14*CVI

[i+3]-21*CVI[i+4])/231;

}

}

else if (WindowSize==25){

for(int i=12;i<count-12;++i){
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CVI_Smoothed[i]=((-21)*CVI[i-4]+(14)*CVI[i-3]+39*CVI[i

-2]+54*CVI[i-1]+59*CVI[i]+54*CVI[i+1]+39*CVI[i+2]+14*CVI

[i+3]-21*CVI[i+4])/231;

}

}

for (int i=0;i<count;++i){

Bluetooth.print(CVI_Smoothed[i],5);

delay(WaitforMS);

}

}

//EIS part

else if(inByte==’E’ ||inByte==’A’ ||inByte==’B’||inByte==’C’||

inByte==’D’){

if(inByte==’E’){

Bias=0;

CommonMode=2048;

}

else if(inByte==’A’){

Bias=2*186;

CommonMode=2048+2*186;

}

else if(inByte==’B’){

Bias=186;

CommonMode=2048+186;

}

else if(inByte==’C’){

Bias=-186;
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CommonMode=2048-186;

}

else if(inByte==’D’){

Bias=(-2)*186;

CommonMode=2048-186*2;

}

analogWrite(DACOUT,CommonMode-72);

delay(3000);

//******* Low band*************//

int avetemp=0;

int k=0;

DefaultRefMode=7;

for (int h=0;h<8;++h){

//Serial.print(h);

analogWrite(DACOUT,CommonMode-72);

//selectR(0);

ReadOutSum=0;

selectR(h);

CapModetemp=ChooseCapCV(h);

delay(200);

for(int l =0;l<AveSize;++l){

ReadOutWindow[l]=analogRead(TIAOutput);

ReadOutSum+=ReadOutWindow[l];

}

avetemp=ReadOutSum/AveSize;

if(avetemp>(4096*0.1) && avetemp<(4096*0.8)){

continue;
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}

if(avetemp>(4096*0.1) && avetemp<(4096*0.8)){

analogWrite(DACOUT,CommonMode);

DefaultRefMode=h;

selectR(DefaultRefMode);

CapModetemp=ChooseCapCV(DefaultRefMode);

delay(10000);

break;

}else{

analogWrite(DACOUT,CommonMode);

DefaultRefMode=h-1;

selectR(DefaultRefMode);

CapModetemp=ChooseCapCV(DefaultRefMode);

delay(10000);

break;

}

}

for (int k=FirstFreq;k<=95;++k){

if (k<=63) {

selectR(DefaultRefMode);

CapModetemp=ChooseCap(DefaultRefMode,k);

delay(10);

int capMode;

if(k==0){

}

for (int j=0;j<=7;++j){

if(k==0){
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for (int L=0;L<1;++L) {

for (int i=0;i<Samplepoints;++i) {

analogWrite(DACOUT,SineTone[i]+Bias);

delayMicroseconds(DelayTime[k]);

real_in[0][i]=analogRead(TIAInput);

real_out[0][i]=analogRead(TIAOutput);

}

}

}

else{

for (int L=0;L<1;++L) {

for (int i=0;i<Samplepoints;++i) {

analogWrite(DACOUT,SineTone[i]+Bias);

delayMicroseconds(DelayTime[k]);

real_in[0][i]=analogRead(TIAInput);

real_out[0][i]=analogRead(TIAOutput);

}

}

}

//Gain control Version two!

for (int L=0;L<1;++L) {

for (int i=0;i<Samplepoints;++i) {

im_in[L][i]=0;

im_out[L][i]=0;

real_in_mapto16Bit[L][i]=real_in[L][i]<<3;

real_in_mapto16Bit[L][i]=real_in_mapto16Bit[L][i] & 0

b0111111111111111;
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real_out_mapto16Bit[L][i]=real_out[L][i]<<3;

real_in_mapto16Bit[L][i]=real_in_mapto16Bit[L][i] & 0

b0111111111111111;

}

}

// 256 points FFT

for (int L=0;L<1;++L) {

fix_fft(real_in_mapto16Bit[L],im_in[L],8,0);

fix_fft(real_out_mapto16Bit[L],im_out[L],8,0);

}

// Calculate Magnitude and phase: Method 2, adds up aliasing

for (int L=0;L<1;++L) {

for (int i=0;i<=32;++i) {

mag_in[L][i] = sqrt((long)real_in_mapto16Bit[L][i] * (long)

real_in_mapto16Bit[L][i] + (long)im_in[L][i] * (long)im_in[

L][i])/32768.0*3.3;

phase_in[L][i] = atan((float)im_in[L][i]/(float)

real_in_mapto16Bit[L][i])*57.32484;

mag_out[L][i] = sqrt((long)real_out_mapto16Bit[L][i] * (long)

real_out_mapto16Bit[L][i] + (long)im_out[L][i] * (long)

im_out[L][i])/32768.0*3.3;

phase_out[L][i] = atan((float)im_out[L][i]/(float)

real_out_mapto16Bit[L][i])*57.32484;

}

}

// Correct phase

for (int L=0;L<1;++L) {
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for (int i=0;i<=32;++i) {

if (real_in_mapto16Bit[L][i]<0)

phase_in[L][i]=phase_in[L][i]+180;

if (real_out_mapto16Bit[L][i]<0)

phase_out[L][i]=phase_out[L][i]+180;

}

for (int i=1;i<=32;++i) {

mag_in[L][i] = mag_in[L][i]+mag_in[L][Samplepoints-i];

mag_out[L][i] = mag_out[L][i]+mag_out[L][Samplepoints-i];

}

}

if (mag_out[0][1]>0.5-(abs(Bias)/1860.0))

{

DefaultRefMode=DefaultRefMode-1;

analogWrite(DACOUT,CommonMode);

selectR(DefaultRefMode);

CapModetemp=ChooseCap(DefaultRefMode,k);

}

else if(mag_out[0][1]<0.01)

{DefaultRefMode=DefaultRefMode+1;

analogWrite(DACOUT,CommonMode);

selectR(DefaultRefMode);

CapModetemp=ChooseCap(DefaultRefMode,k);

}

else break;

}
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for (int L=0;L<AveEISLow;++L) {

for (int i=0;i<Samplepoints;++i) {

analogWrite(DACOUT,SineTone[i]+Bias);

delayMicroseconds(DelayTime[k]);

real_in[L][i]=analogRead(TIAInput);

real_out[L][i]=analogRead(TIAOutput);

}

}

for (int L=0;L<AveEISLow;++L) {

for (int i=0;i<Samplepoints;++i) {

im_in[L][i]=0;

im_out[L][i]=0;

real_in_mapto16Bit[L][i]=real_in[L][i]<<3;

real_in_mapto16Bit[L][i]=real_in_mapto16Bit[L][i] & 0

b0111111111111111;

real_out_mapto16Bit[L][i]=real_out[L][i]<<3;

real_in_mapto16Bit[L][i]=real_in_mapto16Bit[L][i] & 0

b0111111111111111;

}

}

// 256 points FFT

for (int L=0;L<AveEISLow;++L) {

fix_fft(real_in_mapto16Bit[L],im_in[L],8,0);

fix_fft(real_out_mapto16Bit[L],im_out[L],8,0);

}

// Calculate Magnitude and phase: Method 2, adds up aliasing

for (int L=0;L<AveEISLow;++L) {
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for (int i=0;i<=32;++i) {

mag_in[L][i] = sqrt((long)real_in_mapto16Bit[L][i] * (long)

real_in_mapto16Bit[L][i] + (long)im_in[L][i] * (long)im_in[

L][i])/32768.0*3.3;

phase_in[L][i] = atan((float)im_in[L][i]/(float)

real_in_mapto16Bit[L][i])*57.32484;

mag_out[L][i] = sqrt((long)real_out_mapto16Bit[L][i] * (long)

real_out_mapto16Bit[L][i] + (long)im_out[L][i] * (long)

im_out[L][i])/32768.0*3.3;

phase_out[L][i] = atan((float)im_out[L][i]/(float)

real_out_mapto16Bit[L][i])*57.32484;

}

}

// Correct phase

for (int L=0;L<AveEISLow;++L) {

for (int i=0;i<=32;++i) {

if (real_in_mapto16Bit[L][i]<0)

phase_in[L][i]=phase_in[L][i]+180;

if (real_out_mapto16Bit[L][i]<0)

phase_out[L][i]=phase_out[L][i]+180;

}

for (int i=1;i<=32;++i) {

mag_in[L][i] = mag_in[L][i]+mag_in[L][Samplepoints-i];

mag_out[L][i] = mag_out[L][i]+mag_out[L][Samplepoints-i];

}

}

impedance[k]=0;
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phase[k];

float tempPhase=0;

for (int L=0;L<AveEISLow;++L){

impedance[k]+=mag_in[L][1]*Rref[DefaultRefMode]/mag_out[L][1];

tempPhase=phase_out[L][1]-phase_in[L][1];

if (tempPhase>170) {

tempPhase=tempPhase-360;

}

if (tempPhase<-180) {

tempPhase=tempPhase+360;

}

phase[k]+=tempPhase*(-1);

}

impedance[k]=impedance[k]/AveEISLow;

phase[k]=phase[k]/AveEISLow;

RealPrint[k]=impedance[k]*cos(phase[k]*pi/180);

ImagPrint[k]=impedance[k]*sin(phase[k]*pi/180);

DataEIS[2*k]=impedance[k];

DataEIS[2*k+1]=phase[k];

Bluetooth.print(DataEIS[2*k]);

delay(WaitforMS);

Bluetooth.print(DataEIS[2*k+1]);

}

else {

selectR(DefaultRefMode);

CapModetemp=ChooseCap(DefaultRefMode,k);
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int capMode;

for (int j=0;j<=7;++j){

delay(10);

for (int L=0;L<2;++L) {

for (int i=0;i<Samplepoints;++i) {

analogWrite(DACOUT,SineToneHigh[k-64][i]+Bias);

real_in[0][i]=analogRead(TIAInput);

real_out[0][i]=analogRead(TIAOutput);

}

}

/*This is to recognize proper gain*/

int Maximum=real_out[0][0];

int Minimum=real_out[0][0];

for (int i=1;i<Samplepoints;++i){

if (real_out[0][i]>Maximum)

{

Maximum=real_out[0][i];

}

if (real_out[0][i]<Minimum)

{

Minimum=real_out[0][i];

}

}

if (Maximum>=4096*(1-2*swing)||Minimum<=4096*(swing))

{

DefaultRefMode=DefaultRefMode-1;
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analogWrite(DACOUT,CommonMode);

selectR(DefaultRefMode);

CapModetemp=ChooseCap(DefaultRefMode,k);

delay(100);

}

else break;

}

for (int L=0;L<AveEISHigh;L++){

for (int i=0;i<Samplepoints;++i) {

analogWrite(DACOUT,SineToneHigh[k-64][i]+Bias);

real_in[L][i]=analogRead(TIAInput);

real_out[L][i]=analogRead(TIAOutput);

}

}

//make 12 bit into 16 bit

for (int L=0;L<AveEISHigh;++L) {

for (int i=0;i<Samplepoints;++i) {

im_in[L][i]=0;

im_out[L][i]=0;

real_in_mapto16Bit[L][i]=real_in[L][i]<<3;

real_in_mapto16Bit[L][i]=real_in_mapto16Bit[L][i] & 0

b0111111111111111;

real_out_mapto16Bit[L][i]=real_out[L][i]<<3;

real_in_mapto16Bit[L][i]=real_in_mapto16Bit[L][i] & 0

b0111111111111111;

}
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}

// 256 points FFT

for (int L=0;L<AveEISHigh;++L) {

fix_fft(real_in_mapto16Bit[L],im_in[L],8,0);

fix_fft(real_out_mapto16Bit[L],im_out[L],8,0);

}

// Calculate Magnitude and phase: Method 2, adds up aliasing

for (int L=0;L<AveEISHigh;++L) {

for (int i=0;i<=64;++i) {

mag_in[L][i] = sqrt((long)real_in_mapto16Bit[L][i] * (long)

real_in_mapto16Bit[L][i] + (long)im_in[L][i] * (long)im_in[

L][i])/32768.0*3.3;

phase_in[L][i] = atan((float)im_in[L][i]/(float)

real_in_mapto16Bit[L][i])*57.32484;

mag_out[L][i] = sqrt((long)real_out_mapto16Bit[L][i] * (long)

real_out_mapto16Bit[L][i] + (long)im_out[L][i] * (long)

im_out[L][i])/32768.0*3.3;

phase_out[L][i] = atan((float)im_out[L][i]/(float)

real_out_mapto16Bit[L][i])*57.32484;

}

}

// Correct phase

for (int L=0;L<AveEISHigh;++L) {

for (int i=0;i<=64;++i) {

if (real_in_mapto16Bit[L][i]<0)

phase_in[L][i]=phase_in[L][i]+180;
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if (real_out_mapto16Bit[L][i]<0)

phase_out[L][i]=phase_out[L][i]+180;

}

for (int i=1;i<=64;++i) {

mag_in[L][i] = mag_in[L][i]+mag_in[L][Samplepoints-i];

mag_out[L][i] = mag_out[L][i]+mag_out[L][Samplepoints-i];

}

}

impedance[k]=0;

phase[k];

float tempPhase=0;

for (int L=0;L<AveEISHigh;++L){

impedance[k]+=mag_in[L][HighfreqIndex[k-64]]*Rref[

DefaultRefMode]/mag_out[L][HighfreqIndex[k-64]];

tempPhase=phase_out[L][HighfreqIndex[k-64]]-phase_in[L][

HighfreqIndex[k-64]];

if (tempPhase>170) {

tempPhase=tempPhase-360;

}

if (tempPhase<-180) {

tempPhase=tempPhase+360;

}

phase[k]+=tempPhase*(-1);

}

impedance[k]=impedance[k]/AveEISHigh;

phase[k]=phase[k]/AveEISHigh;

DataEIS[2*k]=impedance[k];

208



DataEIS[2*k+1]=phase[k];

Bluetooth.print(DataEIS[2*k]);

delay(WaitforMS);

Bluetooth.print(DataEIS[2*k+1]);

}

}

}

}

}

void selectR(int Res) {

digitalWrite(EN_R, LOW);

switch (Res) {

case 0:

{

digitalWrite(S0R, HIGH);

digitalWrite(S1R, HIGH);

digitalWrite(S2R, LOW);

break;

}

case 1:

{

digitalWrite(S0R, LOW);

digitalWrite(S1R, HIGH);

digitalWrite(S2R, LOW);

break;

}
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case 2:

{

digitalWrite(S0R, HIGH);

digitalWrite(S1R, LOW);

digitalWrite(S2R, LOW);

break;

}

case 3:

{

digitalWrite(S0R, LOW);

digitalWrite(S1R, LOW);

digitalWrite(S2R, LOW);

break;

}

case 4:

{

digitalWrite(S0R, LOW);

digitalWrite(S1R, LOW);

digitalWrite(S2R, HIGH);

break;

}

case 5:

{

digitalWrite(S0R, HIGH);

digitalWrite(S1R, LOW);

digitalWrite(S2R, HIGH);

break;
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}

case 6:

{

digitalWrite(S0R, LOW);

digitalWrite(S1R, HIGH);

digitalWrite(S2R, HIGH);

break;

}

case 7:

{

digitalWrite(S0R, HIGH);

digitalWrite(S1R, HIGH);

digitalWrite(S2R, HIGH);

break;

}

}

}

void selectC(int Cap) {

digitalWrite(EN_C, LOW);

switch (Cap) {

case 0:

{

digitalWrite(S0C, HIGH);

digitalWrite(S1C, HIGH);

digitalWrite(S2C, LOW);

break;
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}

case 1:

{

digitalWrite(S0C, LOW);

digitalWrite(S1C, HIGH);

digitalWrite(S2C, LOW);

break;

}

case 2:

{

digitalWrite(S0C, HIGH);

digitalWrite(S1C, LOW);

digitalWrite(S2C, LOW);

break;

}

case 3:

{

digitalWrite(S0C, LOW);

digitalWrite(S1C, LOW);

digitalWrite(S2C, LOW);

break;

}

case 4:

{

digitalWrite(S0C, LOW);

digitalWrite(S1C, LOW);

digitalWrite(S2C, HIGH);
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break;

}

case 5:

{

digitalWrite(S0C, HIGH);

digitalWrite(S1C, LOW);

digitalWrite(S2C, HIGH);

break;

}

case 6:

{

digitalWrite(S0C, LOW);

digitalWrite(S1C, HIGH);

digitalWrite(S2C, HIGH);

break;

}

case 7:

{

digitalWrite(S0C, HIGH);

digitalWrite(S1C, HIGH);

digitalWrite(S2C, HIGH);

break;

}

}

}

int ChooseCap (int modeR,int indexF){

//This is to determine what should be the filter cap size
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CapChoice=1/(2*3.14159265*Rref[modeR]*50*frequency[indexF])

*1000000000;

if (CapChoice>=10000)

{ selectC(7);

capMode=8;

}

else if (CapChoice<10000&&CapChoice>=1000)

{ selectC(6);

capMode=7;

}

else if (CapChoice<1000&&CapChoice>=100)

{ selectC(5);

capMode=6;

}

else if (CapChoice<100&&CapChoice>=10)

{ selectC(4);

capMode=5;

}

else if (CapChoice<10&&CapChoice>=1)

{ selectC(3);

capMode=4;

}

else if (CapChoice<1&&CapChoice>=0.1)

{ selectC(2);

capMode=3;

}

else if (CapChoice<0.1&&CapChoice>=0.02)
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{ selectC(1);

capMode=2;

}

else if (CapChoice<0.02)

{ selectC(0);

capMode=1;

}

return capMode ;

}

int ChooseCapCV(int modeR){

//This is to determine what should be the filter cap size

CapChoice=1/(2*3.14159265*Rref[modeR]*0.5)*1000000000;

if (CapChoice>=10000)

{ selectC(7);

capMode=8;

}

else if (CapChoice<10000&&CapChoice>=1000)

{ selectC(6);

capMode=7;

}

else if (CapChoice<1000&&CapChoice>=100)

{ selectC(5);

capMode=6;

}

else if (CapChoice<100&&CapChoice>=10)

{ selectC(4);
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capMode=5;

}

else if (CapChoice<10&&CapChoice>=1)

{ selectC(3);

capMode=4;

}

else if (CapChoice<1&&CapChoice>=0.1)

{ selectC(2);

capMode=3;

}

else if (CapChoice<0.1&&CapChoice>=0.02)

{ selectC(1);

capMode=2;

}

else if (CapChoice<0.02)

{ selectC(0);

capMode=1;

}

return capMode ;

}

int ChooseCapCVFS(int modeR){

//This is to determine what should be the filter cap size

CapChoice=1/(2*3.14159265*Rref[modeR]*800)*1000000000;

if (CapChoice>=10000)

{ selectC(7);

capMode=8;

}
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else if (CapChoice<10000&&CapChoice>=1000)

{ selectC(6);

capMode=7;

}

else if (CapChoice<1000&&CapChoice>=100)

{ selectC(5);

capMode=6;

}

else if (CapChoice<100&&CapChoice>=10)

{ selectC(4);

capMode=5;

}

else if (CapChoice<10&&CapChoice>=1)

{ selectC(3);

capMode=4;

}

else if (CapChoice<1&&CapChoice>=0.1)

{ selectC(2);

capMode=3;

}

else if (CapChoice<0.1&&CapChoice>=0.02)

{ selectC(1);

capMode=2;

}

else if (CapChoice<0.02)

{ selectC(0);

capMode=1;
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}

return capMode ;

}

void adjust_com(){

analogWrite(DACOUT,2048);

selectR(1);

delay(1000);

}
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Appendix D

Python Code for PC GUI

# A window with a button

import sys

from PyQt5 import QtGui,QtCore

from PyQt5 import QtWidgets

from PyQt5.QtWidgets import QApplication, QMainWindow, QDialog,

QGridLayout, QGroupBox, QVBoxLayout,QMessageBox, QPushButton

import pyqtgraph as pg

import numpy as np

import serial.tools.list_ports

import serial

import xlsxwriter

import time

import datetime

import xlwt

from xlwt import Workbook

## Serial parameters

ser = serial.Serial(timeout=1000)

ser.baudrate=500000

## Device parameter for calibration

Clock_frequency=50000000

Serial_delay =4262 ## In clock cycle

Amp_latancy=200 ##in micro seconds

R_para=41
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Gain_1 = [10+R_para,100+R_para,1000+R_para,10000+R_para

,100000,1000000,10000000,100000000]

Gain_2 = [2+R_para/500,4+R_para/500,8+R_para/500,16+R_para

/500,32+R_para/500,64+R_para/500,100,200]

Vout_offset=0.024078

Base_out_Full_scale=5.0 ## full scale voltage +- range

## Some flags

Device_flag=0

Mode=’AMP’

x=0

VID_PID=’29DD:8001’ ##2341:003D for arduino// 29DD:8001 for this

device

data1 = []

data2 = []

datatime = []

time_now=0

workbook=0

##Settings for different module

DAC_bit=12

DAC_fs=3.0 ## full scale voltage +- range

ADC_bit=14

ADC_fs=5.0 ## full scale voltage +- range

DAC_MSB=2**DAC_bit
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ADC_MSB=2**ADC_bit

class Window(QMainWindow):

def __init__(self):

super().__init__()

self.title = "PyQt5 GridLayout"

self.setWindowTitle(’Main Window’)

self.top = 100

self.left = 100

self.width = 1500

self.height = 500

self.init_ui()

def init_ui(self):

self.setGeometry(self.top, self.left, self.width, self.

height)

self.set_plot_amp()

def style_choice(self,text):

if text=="Amperametry":

print(text)

self.set_plot_amp()

elif text=="EIS":

print(text)

self.set_plot_eis()

elif text=="CV":

print(text)

self.set_plot_cv()

def set_plot_amp(self):

global Mode,curve1, curve2,Device_flag
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Mode=’AMP’

self.v_box1 = QtWidgets.QGridLayout()

##Clear layout

for i in reversed(range(self.v_box1.count())):

self.v_box1.itemAt(i).widget().setParent(None)

##Initial Labels

self.t0 = QtWidgets.QLabel(’Method’)

self.t0.setAlignment(QtCore.Qt.AlignCenter)

self.t1 = QtWidgets.QLabel(’Potential (V)’)

self.t2 = QtWidgets.QLabel(’SampleRate (Sample/s)’)

self.t3 = QtWidgets.QLabel(’Current Range (uA)’)

##Initial LineEditor

self.l1 = QtWidgets.QLineEdit(’-3V~+3V range’)

self.l2 = QtWidgets.QLineEdit(’0.02 to 11000’)

self.l3 = QtWidgets.QLineEdit(’0.00025 to 10000’)

##Initial comboBox

self.comboBox= QtWidgets.QComboBox()

self.comboBox.addItem("Amperametry")

self.comboBox.addItem("EIS")

self.comboBox.addItem("CV")

self.comboBox.addItem("DPV")

self.comboBox.activated[str].connect(self.style_choice)

##Initial push button

self.b1 = QtWidgets.QPushButton(’Connect’)

self.b1.clicked.connect(self.connect_serial)

self.b2 = QtWidgets.QPushButton(’Disconnect’)

self.b2.clicked.connect(self.disconnect_serial)
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self.b3 = QtWidgets.QPushButton(’Run’)

self.b3.setIcon(QtGui.QIcon(’Run.jpg’))

if Device_flag:

self.b3.setStyleSheet("background-color:#00ff00")

self.b3.setCheckable(True)

self.b3.clicked.connect(self.run_amp)

self.b4 = QtWidgets.QPushButton(’Reset’)

self.b4.clicked.connect(self.reset)

##Initial plot widget

pg.setConfigOption(’background’,pg.mkColor(0.9))

self.p1 = pg.PlotWidget()

self.p2 = pg.PlotWidget()

self.p1.addLegend()

self.p2.addLegend()

self.p1.showGrid(x=True, y=True, alpha=0.8)

self.p2.showGrid(x=True, y=True, alpha=0.8)

self.p1.setLabel(’left’, ’Re voltage’,’V’)

self.p2.setLabel(’left’, ’We Current’,’A’)

self.p1.setLabel(’bottom’, ’Time’,’s’)

self.p2.setLabel(’bottom’, ’Time’,’s’)

curve1 = self.p1.plot(pen=pg.mkPen(’y’, width=5), name="

Voltage")

curve2 = self.p2.plot(pen=’r’, name="Current")

##Add widgets to layout

self.v_box1.addWidget(self.b1, 0, 0)

self.v_box1.addWidget(self.b2, 0, 1)

self.v_box1.addWidget(self.t0, 1, 0)
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self.v_box1.addWidget(self.comboBox, 1, 1)

self.v_box1.addWidget(self.b3, 2, 0)

self.v_box1.addWidget(self.b4, 2, 1)

self.v_box1.addWidget(self.t1, 4, 0)

self.v_box1.addWidget(self.l1, 4, 1)

self.v_box1.addWidget(self.t2, 5, 0)

self.v_box1.addWidget(self.l2, 5, 1)

self.v_box1.addWidget(self.t3, 6, 0)

self.v_box1.addWidget(self.l3, 6, 1)

self.v_box1.addWidget(self.p1, 0,2,4,10)

self.v_box1.addWidget(self.p2, 4,2,4,10)

##Other layout settings

self.setWindowTitle(’Lang’)

self.v_box1.setColumnStretch(0,1)

self.v_box1.setColumnStretch(1,1)

self.v_box1.setColumnStretch(2,8)

##Update widget and layout

self.amp_widget=QtWidgets.QWidget()

self.amp_widget.setLayout(self.v_box1)

self.setCentralWidget(self.amp_widget)

def set_plot_eis(self):

global Mode,curve1, curve2,Device_flag

Mode=’EIS’

self.v_box2 = QtWidgets.QGridLayout()

print(self.v_box2.count())

for i in reversed(range(self.v_box2.count())):

self.v_box2.itemAt(i).widget().setParent(None)
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self.t1 = QtWidgets.QLabel(’P-P Amplitude (mV)’)

self.l1 = QtWidgets.QLineEdit(’1.5mV~6V range’)

self.t2 = QtWidgets.QLabel(’DC Bias (mV)’)

self.l2 = QtWidgets.QLineEdit(’-500mV~+500mV range’)

self.t3 = QtWidgets.QLabel(’Start frequency’)

self.l3 = QtWidgets.QLineEdit()

self.t4 = QtWidgets.QLabel(’End frequency’)

self.l4 = QtWidgets.QLineEdit(’’)

self.t5 = QtWidgets.QLabel(’Number of points’)

self.l5 = QtWidgets.QLineEdit(’up to 256’)

self.v_box2.addWidget(self.t1, 4, 0)

self.v_box2.addWidget(self.l1, 4, 1)

self.v_box2.addWidget(self.t2, 5, 0)

self.v_box2.addWidget(self.l2, 5, 1)

self.v_box2.addWidget(self.t3, 6, 0)

self.v_box2.addWidget(self.l3, 6, 1)

self.v_box2.addWidget(self.t4, 7, 0)

self.v_box2.addWidget(self.l4, 7, 1)

self.v_box2.addWidget(self.t5,8, 0)

self.v_box2.addWidget(self.l5, 8, 1)

self.t0 = QtWidgets.QLabel(’Method’)

self.t0.setAlignment(QtCore.Qt.AlignCenter)

self.comboBox= QtWidgets.QComboBox()

self.comboBox.addItem("EIS")

self.comboBox.addItem("Amperametry")

self.comboBox.addItem("CV")

self.comboBox.addItem("DPV")
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self.comboBox.activated[str].connect(self.style_choice)

self.b1 = QtWidgets.QPushButton(’Connect’)

self.b2 = QtWidgets.QPushButton(’Disconnect’)

self.b1.clicked.connect(self.connect_serial)

self.b2.clicked.connect(self.disconnect_serial)

self.b3 = QtWidgets.QPushButton(’Run’)

self.b3.setIcon(QtGui.QIcon(’Run.jpg’))

if Device_flag:

self.b3.setStyleSheet("background-color:#00ff00")

self.b4 = QtWidgets.QPushButton(’Reset’)

self.b3.setCheckable(True)

self.b4.clicked.connect(self.reset)

self.v_box2.addWidget(self.b1, 0, 0)

self.v_box2.addWidget(self.b2, 0, 1)

self.v_box2.addWidget(self.t0, 1, 0)

self.v_box2.addWidget(self.comboBox, 1, 1)

self.v_box2.addWidget(self.b3, 2, 0)

self.v_box2.addWidget(self.b4, 2, 1)

pg.setConfigOption(’background’,pg.mkColor(0.9))

self.p1 = pg.PlotWidget()

self.p2 = pg.PlotWidget()

self.p1.setRange(yRange=[0,100000000])

self.p2.setRange(yRange=[-180, 180])

self.p1.addLegend()

self.p2.addLegend()

self.p1.showGrid(x=True, y=True, alpha=0.8)

self.p2.showGrid(x=True, y=True, alpha=0.8)
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self.p1.setLabel(’left’, ’Impedance’,’Ohms’)

self.p2.setLabel(’left’, ’Phase’,’Degree’)

self.p1.setLabel(’bottom’, ’Frequency’,’Hz’)

self.p2.setLabel(’bottom’, ’Frequency’,’Hz’)

self.v_box2.addWidget(self.p1, 0, 2,4,3)

self.v_box2.addWidget(self.p2, 4, 2,6,3)

self.v_box2.setColumnStretch(0,1)

self.v_box2.setColumnStretch(1,1)

self.v_box2.setColumnStretch(2,8)

self.eis_widget=QtWidgets.QWidget()

self.eis_widget.setLayout(self.v_box2)

self.setCentralWidget(self.eis_widget)

curve1 = self.p1.plot(pen=’y’, name="Impedance")

curve2 = self.p2.plot(pen=’r’, name="Phase")

def set_plot_cv(self):

global Mode,curve1, curve2,Device_flag

Mode=’CV’

self.v_box3 = QtWidgets.QGridLayout()

for i in reversed(range(self.v_box3.count())):

self.v_box3.itemAt(i).widget().setParent(None)

##Initial Labels

self.t0 = QtWidgets.QLabel(’Method’)

self.t0.setAlignment(QtCore.Qt.AlignCenter)

self.t1 = QtWidgets.QLabel(’V_min (mV)’)

self.t2 = QtWidgets.QLabel(’V_max (mV)’)

self.t3 = QtWidgets.QLabel(’Step (mV)’)

self.t4 = QtWidgets.QLabel(’Rate (V/s)’)
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self.t5 = QtWidgets.QLabel(’Cycles’)

self.t6 = QtWidgets.QLabel(’Range (uA)’)

##Initial LineEditor

self.l1 = QtWidgets.QLineEdit()

self.l2 = QtWidgets.QLineEdit()

self.l3 = QtWidgets.QLineEdit()

self.l4 = QtWidgets.QLineEdit(’’)

self.l5 = QtWidgets.QLineEdit(’up to 256’)

self.l6 = QtWidgets.QLineEdit(’up to 256’)

##Initial comboBox

self.comboBox= QtWidgets.QComboBox()

self.comboBox.addItem("CV")

self.comboBox.addItem("Amperametry")

self.comboBox.addItem("EIS")

self.comboBox.addItem("DPV")

self.comboBox.activated[str].connect(self.style_choice)

##Initial push button

self.b1 = QtWidgets.QPushButton(’Connect’)

self.b1.clicked.connect(self.connect_serial)

self.b2 = QtWidgets.QPushButton(’Disconnect’)

self.b2.clicked.connect(self.disconnect_serial)

self.b3 = QtWidgets.QPushButton(’Run’)

self.b3.setIcon(QtGui.QIcon(’Run.jpg’))

if Device_flag:

self.b3.setStyleSheet("background-color:#00ff00")

self.b3.setCheckable(True)

self.b3.clicked.connect(self.run_amp)
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self.b4 = QtWidgets.QPushButton(’Reset’)

self.b4.clicked.connect(self.reset)

##Initial plot widget

pg.setConfigOption(’background’,pg.mkColor(0.9))

self.p1 = pg.PlotWidget()

self.p1.enableAutoRange(True)

self.p1.setRange(yRange=[-0.00001, 0.00001])

self.p1.addLegend()

self.p1.showGrid(x=True, y=True, alpha=0.8)

self.p1.setLabel(’left’, ’Current’,’A’)

self.p1.setLabel(’bottom’, ’Voltage’,’V’)

curve1 = self.p1.plot(pen=’y’, name="CV")

##Add widgets to layout

self.v_box3.addWidget(self.b1, 0, 0)

self.v_box3.addWidget(self.b2, 0, 1)

self.v_box3.addWidget(self.t0, 1, 0)

self.v_box3.addWidget(self.comboBox, 1, 1)

self.v_box3.addWidget(self.b3, 2, 0)

self.v_box3.addWidget(self.b4, 2, 1)

self.v_box3.addWidget(self.t1, 4, 0)

self.v_box3.addWidget(self.l1, 4, 1)

self.v_box3.addWidget(self.t2, 5, 0)

self.v_box3.addWidget(self.l2, 5, 1)

self.v_box3.addWidget(self.t3, 6, 0)

self.v_box3.addWidget(self.l3, 6, 1)

self.v_box3.addWidget(self.t4, 7, 0)

self.v_box3.addWidget(self.l4, 7, 1)
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self.v_box3.addWidget(self.t5, 8, 0)

self.v_box3.addWidget(self.l5, 8, 1)

self.v_box3.addWidget(self.t6, 9, 0)

self.v_box3.addWidget(self.l6, 9, 1)

self.v_box3.addWidget(self.p1, 0, 2,10,3)

##Other layout settings

self.setWindowTitle(’Lang’)

self.v_box3.setColumnStretch(0,1)

self.v_box3.setColumnStretch(1,1)

self.v_box3.setColumnStretch(2,8)

##Update widget and layout

self.cv_widget=QtWidgets.QWidget()

self.cv_widget.setLayout(self.v_box3)

self.setCentralWidget(self.cv_widget)

def set_plot_dpv(self):

global Mode,curve1, curve2

Mode=’DPV’

self.v_box4 = QtWidgets.QGridLayout()

self.t1 = QtWidgets.QLabel(’V_min (mV)’)

self.l1 = QtWidgets.QLineEdit()

self.t2 = QtWidgets.QLabel(’V_max (mV)’)

self.l2 = QtWidgets.QLineEdit()

self.t3 = QtWidgets.QLabel(’Step (mV)’)

self.l3 = QtWidgets.QLineEdit()

self.t4 = QtWidgets.QLabel(’Rate (V/s)’)

self.l4 = QtWidgets.QLineEdit(’’)

self.t5 = QtWidgets.QLabel(’Amplitude (mV)’)
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self.l5 = QtWidgets.QLineEdit(’’)

self.v_box4.addWidget(self.t1, 4, 0)

self.v_box4.addWidget(self.l1, 4, 1)

self.v_box4.addWidget(self.t2, 5, 0)

self.v_box4.addWidget(self.l2, 5, 1)

self.v_box4.addWidget(self.t3, 6, 0)

self.v_box4.addWidget(self.l3, 6, 1)

self.v_box4.addWidget(self.t4, 7, 0)

self.v_box4.addWidget(self.l4, 7, 1)

self.v_box4.addWidget(self.t5, 8, 0)

self.v_box4.addWidget(self.l5, 8, 1)

self.t0 = QtWidgets.QLabel(’Method’)

self.t0.setAlignment(QtCore.Qt.AlignCenter)

self.comboBox= QtWidgets.QComboBox()

self.comboBox.addItem("DPV")

self.comboBox.addItem("Amperametry")

self.comboBox.addItem("EIS")

self.comboBox.addItem("CV")

self.comboBox.activated[str].connect(self.style_choice)

self.b1 = QtWidgets.QPushButton(’Connect’)

self.b2 = QtWidgets.QPushButton(’Disconnect’)

self.b1.clicked.connect(self.connect_serial)

self.b2.clicked.connect(self.disconnect_serial)

self.v_box4.addWidget(self.b1, 0, 0)

self.v_box4.addWidget(self.b2, 0, 1)

self.v_box4.addWidget(self.t0, 1, 0)

self.v_box4.addWidget(self.comboBox, 1, 1)
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pg.setConfigOption(’background’, ’w’)

self.p1 = pg.PlotWidget()

self.p1.setRange(yRange=[-0.00001, 0.00001])

self.p1.addLegend()

self.p1.showGrid(x=True, y=True, alpha=0.8)

self.p1.setLabel(’left’, ’Current’,’V’)

self.v_box4.addWidget(self.p1, 0, 0,1,3)

self.dpv_widget=QtWidgets.QWidget()

self.dpv_widget.setLayout(self.v_box4)

curve1 = self.p1.plot(pen=’y’, name="Voltage")

def connect_serial(self):

global ser,Device_flag,curve1,curve2

if (Device_flag==0):

for p in serial.tools.list_ports.comports():

if VID_PID in p[2] :

ser.port = p[0]

##ser.open()

Device_flag=1

self.b3.setStyleSheet("background-color:#00ff00")

print("Device Found")

break

else:

Device_flag=0

if Device_flag==0:

print("Device not found");

else:

QMessageBox.about(self, "Msg", "Device is connected")
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def disconnect_serial(self):

global ser,Device_flag

Device_flag=0;

self.b3.setStyleSheet("background-color:None")

ser.close()

print("Disconnected")

def print_test(self):

print("Testing")

def run_amp(self):

global workbook,Amp_latancy,Serial_delay,ser,time_now,x,

data1,data2,datatime

Amp_bias=self.l1.text()

Amp_Sample=self.l2.text()

Amp_Range=self.l3.text()

AMP_paraCheck=0

todays_date =’Amp_’+ str(datetime.datetime.now().strftime("

%Y_%m_%d_%H_%M") )+ ’.xlsx’

try :

a=float(Amp_bias)

print(Amp_bias)

AMP_offset=int(round((float(Amp_bias)+DAC_fs*1000)/(

DAC_fs*2000.0)*((2**DAC_bit)-0.6)))

print(AMP_offset)

except:

QMessageBox.about(self, "Error!!", "Bias must be a

number \n (from -3000 to 3000)")
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try :

a=float(Amp_Sample)

print(Amp_Sample)

if float(Amp_Sample)>11000:

Amp_Sample=11000.0

self.l2.setText(’11000’)

if float(Amp_Sample)<0.02:

Amp_Sample=0.02

self.l2.setText(’0.02’)

Amp_delay=int(round((Clock_frequency*1.0/float(

Amp_Sample)-Serial_delay-255)))

print(Amp_delay)

except:

QMessageBox.about(self, "Error!!", "Sample rate must a

positive number \n (<11000 sample/s)")

print(Amp_Sample)

try :

a=float(Amp_Range)

print(float(Amp_Range))

AMP_gain_1,AMP_gain_2=self.amp_find_gain(float(Amp_Range

))

print(AMP_gain_1)

print(AMP_gain_2)

AMP_paraCheck=1

except:

QMessageBox.about(self, "Error!!", "Range be a positive

number (0.0001 uA to 10000 uA)")
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print("Must be a number (from 0.001 to 10000)")

print(int(self.b3.isChecked()))

if AMP_paraCheck==1:

AMP_gain_C=4;

print(’AMP_offset=’,AMP_offset)

print(’AMP_gain_1=’,AMP_gain_1)

print(’AMP_gain_2=’,AMP_gain_2)

print(’AMP_gain_C=’,AMP_gain_C)

print(’Amp_delay=’,Amp_delay)

if self.b3.isChecked():

if Device_flag==1:

x=0;

self.b3.setText(’Stop’)

self.b3.setStyleSheet("background-color:#ed2939")

##setup for wrting files

now = datetime.datetime.now()

workbook = Workbook()

worksheet = workbook.add_sheet(’Data’)

worksheet.write(0, 0, "Index")

worksheet.write(0, 1, "Time")

worksheet.write(0, 2, "Voltage")

worksheet.write(0, 3, "Current")

ser.open()

ser.write(b’modeApara’)

ser.write(AMP_offset.to_bytes(2,byteorder=’big’))

ser.write(AMP_gain_1.to_bytes(1,byteorder=’big’))

ser.write(AMP_gain_2.to_bytes(1,byteorder=’big’))
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ser.write(AMP_gain_C.to_bytes(1,byteorder=’big’))

ser.write(Amp_delay.to_bytes(4,byteorder=’big’))

time_now=time.time()

time_last_update=time.time()

data1 = []

data2 = []

datatime = []

while self.b3.isChecked():

self.update(Mode,worksheet,AMP_gain_1,

AMP_gain_2)

time_update=time.time()

print(time_update)

print(time_last_update)

if(time_update-time_last_update>=20):

workbook.save(todays_date)

print(todays_date)

time_last_update=time_update

else:

QMessageBox.about(self, "Error!!", "Connect the

device first!")

else :

if Device_flag==1:

self.b3.setText(’Run’)

self.b3.setIcon(QtGui.QIcon(’run.jpg’))

self.b3.setStyleSheet("background-color:#00ff00")

ser.write(b’RESET’)

ser.reset_input_buffer()
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ser.reset_output_buffer()

ser.close()

workbook.save(todays_date)

else:

QMessageBox.about(self, "Error!!", "Connect the

device first!")

else:

self.b3.setText(’Run’)

self.b3.setIcon(QtGui.QIcon(’run.jpg’))

self.b3.toggle()

def amp_find_gain(self,rangeI):

global ADC_fs,Gain_1,Gain_2

current_rangeI=np.zeros((8, 8))

for i in range (0,8):

for j in range (0,8):

current_rangeI[i,j]=ADC_fs*1000000/(Gain_1[i]*Gain_2[

j])

X = np.abs(current_rangeI-rangeI)

idx = np.where( X == X.min() )

print(current_rangeI.max())

print(current_rangeI.min())

self.l3.setText(str(format(float(current_rangeI[idx[0],idx

[1]]),’.5f’)))

return int(idx[0]),int(idx[1])

def reset(self):

global Device_flag

if Device_flag==1:
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ser.open()

ser.write(b’RESET’)

ser.close()

else:

QMessageBox.about(self, "Error!!", "Connect the device

first!")

##Update read data and update plot

def update(self,mode,worksheet,gain1,gain2):

global ADC_fs,Gain_1,Gain_2,ADC_MSB,curve1,curve2,x, ser,

size, buffersize,data1,data2,datatime,time_now

if mode==’AMP’ and (ser != None and ser.is_open):

reading = ser.readline(4)

C1=int.from_bytes(reading[:2], byteorder=’big’)

C2=int.from_bytes(reading[2:4], byteorder=’big’)

voltage=(2*C1-ADC_MSB)/float(ADC_MSB)*ADC_fs

current=((2*C2-ADC_MSB)/float(ADC_MSB)*ADC_fs-

Vout_offset)*1000000.0/(Gain_1[gain1]*Gain_2[gain2])

time_data=time.time()

x += 1

data1.append(float(voltage))

data2.append(float(current))

delta_time=time_data-time_now

worksheet.write(x, 0, x)

worksheet.write(x, 1, delta_time)

worksheet.write(x, 2, voltage)

worksheet.write(x, 3, current)

datatime.append(delta_time)
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curve1.setData(datatime,data1)

curve2.setData(datatime,data2)

app.processEvents()

app = QtWidgets.QApplication(sys.argv)

a_window = Window()

a_window.show()

a_window.raise_()

sys.exit(app.exec_())
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Appendix E

Partial Verilog Code for FPGA

E.1 Verilog Top Module for Base Unit

‘timescale 1ns / 1ps

module Base_top(

// 50MHz clock input

input clk,

// Input from reset button (active low)

input rst_n,

// cclk input from AVR, high when AVR is ready

input cclk,

input ADC_chan_A,

input ADC_chan_B,

input adc_busy,

output [2:0] BASE_PREMUX_A,

output [2:0] BASE_AMPMUX_A,

output [2:0] BASE_AMPMUXC_A,

output dac_LDAC_bar,

output dac_mosi,

output dac_cs,

output dac_sclk,

output dac_clr,

output dac_rst,

output adc_CNVST_bar,

output adc_slck,
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output adc_cs,

// Outputs to the 8 onboard LEDs

output reg [3:0] led,

//output toprst,

// AVR SPI connections

output spi_miso,

input spi_ss,

input spi_mosi,

input spi_sck,

// AVR ADC channel select

output [3:0] spi_channel,

// Serial connections

input avr_tx, // AVR Tx => FPGA Rx

output avr_rx, // AVR Rx => FPGA Tx

input avr_rx_busy, // AVR Rx buffer full

// Base Module control

output ModuleLED, //Base Module LED

output BaseRelay_on, // Base module relay

output BASE_MUX_EN,

output EN_PW

);

localparam STATE_SIZE = 4;

localparam IDLE = 4’d0,

WAIT = 4’d1,

RUN = 4’d2,

Reset1=4’d3,

Reset2=4’d4,
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Reset3=4’d5,

Reset4=4’d6,

Reset5=4’d7;

wire rst = ~rst_n; // make reset active high

wire [7:0] tx_data;

wire new_tx_data;

wire tx_busy;

wire [7:0] rx_data;

wire new_rx_data;

//wire toprst;

reg toprst_d,toprst_q,toprst;

reg [STATE_SIZE-1:0] state_q,state_d,bufferstage;

reg [24:0] ctr_d,ctr_q;

reg blink;

reg EIS_start;

// these signals should be high-z when not used

assign spi_miso = 1’bz;

assign BASE_MUX_EN=1’b0;

assign spi_channel = 4’bzzzz;

assign ModuleLED = 1;

assign dac_LDAC_bar=0;

assign EN_PW=1;

assign dac_clr=1;

assign dac_rst=1;

initial begin

// Initialize Inputs

state_d=IDLE;
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ctr_d=0;

toprst=1;

// Wait 100 ns for global reset to finish

// Add stimulus here

end

BaseModule_CV_EIS_simple BaseModule_CV_EIS(

.clk(clk), // input clock--------------------port

.rst(toprst), //input reset

.adc_miso_A(ADC_chan_A), // input SPI ADC_A

---------------------port

.adc_miso_B(ADC_chan_B), // input SPI ADC_B

----------------------------port

.DAC_ctrlEn(0), //input DAC_ctrlReg setting enable,leave as

0 for default setting

.adc_busy (adc_busy), //input ADC busy signal from circuit

------------------------port

.dac_mosi(dac_mosi), //output for DAC mosi

---------------------port

.dac_cs(dac_cs), //output for DAC SPI cs

---------------------port

.dac_slck(dac_sclk), //output for DAC SPI clock

---------------------port

.adc_CNVST_bar(adc_CNVST_bar), //output for ADC conversion

signal---------------------port

.adc_slck(adc_slck), //output for ADC SPI clock

---------------------port
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.adc_cs(adc_cs), //output for ADC SPI cs

---------------------port

.done(EIS_single_done), //output done for single EIS

.Measure_done(), //output done for single EIS measurement

part

//AVR part

.avr_tx(avr_tx),

.cclk(cclk),

.avr_rx(avr_rx),

.avr_rx_busy(avr_rx_busy),

.spi_miso(spi_miso),

.spi_ss(spi_ss),

.spi_mosi(spi_mosi),

.spi_sck(spi_sck),

.spi_channel(spi_channel),

.rx_data(rx_data),

.new_rx_data(new_rx_data),

//Brd ctrl

.BaseRelay_on(BaseRelay_on),

.BASE_PREMUX_A(BASE_PREMUX_A),

.BASE_AMPMUX_A(BASE_AMPMUX_A),

.BASE_AMPMUXC_A(BASE_AMPMUXC_A)

);

always @ (*) begin

blink = ctr_q[24];

ctr_d = ctr_q ;

state_d=state_q;
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toprst_d=toprst_q;

toprst=1;

toprst_d=toprst_q;

led=4’b0000;

EIS_start=0;

case (state_q)

IDLE: begin

led=4’b0001;

toprst=1;

ctr_d=ctr_q+1;

if(blink) begin

state_d=WAIT;

ctr_d=0;

toprst=1;

end

end

WAIT: begin

led=4’b0011;

ctr_d=ctr_q+1;

toprst=1;

if(blink) begin

state_d=RUN;

ctr_d=0;

toprst=0;

end

end

RUN: begin
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led=4’b1011;

toprst=0;

state_d=Reset1;

EIS_start=1;

end

Reset1:begin

led=4’b1011;

toprst=0;

if (new_rx_data && rx_data == "R")

state_d = Reset2;

else if(new_rx_data && rx_data != "R")

state_d = Reset1;

end

Reset2:begin

led=4’b1011;

toprst=0;

if (new_rx_data && rx_data == "E")

state_d = Reset3;

else if(new_rx_data && rx_data != "E")

state_d = Reset1;

end

Reset3:begin

led=4’b1011;

toprst=0;

if (new_rx_data && rx_data == "S")

state_d = Reset4;

else if(new_rx_data && rx_data != "S")
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state_d = Reset1;

end

Reset4:begin

led=4’b1011;

toprst=0;

if (new_rx_data && rx_data == "E")

state_d = Reset5;

else if(new_rx_data && rx_data != "E")

state_d = Reset1;

end

Reset5:begin

led=4’b1011;

toprst=0;

if (new_rx_data && rx_data == "T")

state_d = IDLE;

else if(new_rx_data && rx_data != "T")

state_d = Reset1;

end

default: state_d=IDLE;

endcase

end

always @(posedge clk) begin

if (rst==1) begin

state_q <= IDLE;

ctr_q<=0;

toprst_q<=1;

end
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else begin

state_q <= state_d;

ctr_q<=ctr_d;

toprst_q<=toprst_d;

end

end

endmodule

E.2 Main Control Module for Base Unit

module BaseModule_CV_EIS_simple (

input clk,

input adc_miso_A,

input adc_miso_B,

input DAC_ctrlEn,

input rst,

input adc_busy,

output dac_mosi,

output dac_cs,

output dac_slck,

output adc_CNVST_bar,

output adc_slck,

output adc_cs,

output done,

output Measure_done,

input avr_tx,
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input cclk,

output avr_rx,

input avr_rx_busy,

output spi_miso,

input spi_ss,

input spi_mosi,

input spi_sck,

output [3:0] spi_channel,

output [7:0] rx_data,

output new_rx_data,

output reg BaseRelay_on,

output [2:0] BASE_PREMUX_A,

output [2:0] BASE_AMPMUX_A,

output [2:0] BASE_AMPMUXC_A

);

localparam Debuger_mode=1’b0;

localparam OSR_reduce=8’d16;

localparam ACG_th_l2=14’d1800;

localparam ACG_th_h2=14’d7500;

localparam ACG_delay_begin=32’d1000; // 100ms delay for each 32’

d5000000 =32’d1000

localparam ACG_th_l=14’d300;

localparam ACG_th_h=14’d6500;

localparam Common_mode = 14’d2048;

localparam Common_mode_EIS = 14’d8192;

localparam CV_delay_ACG = 32’d1000; // 100ms delay for each 32’

d500000 = 32’d25000
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localparam STATE_SIZE = 3’d6;

localparam Major_tone=8’d0;

localparam Buffersize =6’d32;

localparam number_of_characters=6’d4;

localparam IDLE = 6’d0,

ModeSelect = 6’b1,

//CV states beginl

IDLE_CV=6’d2,

DAC_CV=6’d3,

ADC_CV=6’d4,

ADC_CV_delay=6’d5,

Send_out_CV=6’d6,

Send_out_CV_final=6’d7,

Send_CV_end=6’d8,

//CV states end

//EIS states begin

IDLE_EIS=6’d9,

DAC_EIS=6’d10,

ADC_EIS=6’d11,

ADC_EIS_delay=6’d12,

wait_ave_EIS=6’d13,

wait_ADC_ram=6’d14,

EIS_signle_done=6’d15,

EIS_FFT_collect=6’d16,

EIS_FFT_Finish=6’d17,

EIS_FFT_Calculate_1=6’d18,

EIS_FFT_Calculate_finish_1=6’d19,
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EIS_FFT_Calculate_2=6’d20,

EIS_FFT_Calculate_finish_2 =6’d21,

EIS_Imp_cal=6’d22,

Send_out_EIS_imp=6’d23,

Send_out_EIS_imp_done=6’d24,

Send_out_EIS_pha=6’d25,

Send_out_EIS_Gain=6’d26,

Send_EIS_end=6’d27,

Wait_delay_cal_EIS=6’d36,

Send_out_EIS_A=6’d37,

Send_out_EIS_B=6’d38,

IDLE_CV_ACG=6’d28,

IDLE_CV_ACG2=6’d47,

DAC_CV_ACG=6’d29,

ADC_CV_ACG=6’d30,

ADC_CV_delay_ACG=6’d31,

Decide_ACG_1=6’d32,

Decide_ACG_2=6’d33,

CV_ACG_Rdy=6’d34,

//CV ACG end

Print=6’d35,

//EIS ACG begin

EIS_ACG_init=6’d39,

EIS_ACG_assign=6’d40,

EIS_ACG_assign_wait=6’d41,

EIS_ACG_compare=6’d42,

EIS_ACG_decide1=6’d43,

251



EIS_ACG_decide2=6’d44,

EIS_Decide_ACG_1=6’d45,

EIS_Decide_ACG_2=6’d46,

//EIS ACG end

Reset_CM=6’d48,

//AMP states;

IDLE_AMP=6’d49,

DAC_AMP=6’d50,

ADC_AMP=6’d51,

END_AMP=6’d52,

ADC_AMP_delay=6’d53,

Send_out_AMP=6’d54;

reg [STATE_SIZE-1:0] state_d, state_q,buffer_state_d,

buffer_state_q;

reg adc_rst;

//wire DAC_ctrlEn;

reg DAC_START_d,DAC_START_q,DAC_START,ADC_MeasuEN_d,ADC_MeasuEN_q

,ADC_MeasuEN;

reg [7:0] DACindex_d,DACindex_q=0;

reg en_adcmem_w,en_adcmem;

reg done_d,done_q;

reg Measure_done_d,Measure_done_q;

reg [Buffersize-1:0] ctr_q,ctr_d;

reg [9:0] Read_mem_d,Read_mem_q;

reg start_FFT;

reg [7:0] xn_index_Mem;

reg en_fft_mem_w;
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reg tan_nd, tan_ce,tan_sclr,sqrt_nd,sqrt_ce,sqrt_sclr;

//reg [7:0] addr_rd_fft_q,addr_rd_fft_d;

reg [7:0] addr_rd_fft;

reg [31:0] rd_fft_A_Mag_squared_d,rd_fft_A_Mag_squared_q,

rd_fft_B_Mag_squared;

reg [7:0] DataReady;

reg en_Cal_mem_A,en_Cal_mem_B;

reg [15:0] rd_fft_A_re_buff_q,rd_fft_A_im_buff_q,

rd_fft_B_re_buff_q,rd_fft_B_im_buff_q;

reg [15:0] rd_fft_A_re_buff_d,rd_fft_A_im_buff_d,

rd_fft_B_re_buff_d,rd_fft_B_im_buff_d;

reg [15:0] phase_out_A_buff_d,phase_out_B_buff_d;

reg [15:0] phase_out_A_buff_q,phase_out_B_buff_q;

reg arctan_inv_flag_A,arctan_inv_flag_B;

reg Divider_ce,Divider_nd;

reg [16:0] rd_fft_Mag_Dividend_d,rd_fft_Mag_Divisor_d;

reg [16:0] rd_fft_Mag_Dividend_q,rd_fft_Mag_Divisor_q;

reg [11:0] data_reg_d,data_reg_q;

// Average buff init

reg [8:0] ave_index_q,ave_index_d;

reg ave_en;

reg [13:0] data_in_A_ave_q,data_in_B_ave_q;

reg [13:0] data_in_A_ave_d,data_in_B_ave_d;

wire [13:0] data_out_ave_A,data_out_ave_B;

reg ave_final;

reg print_rst;

reg startPrint;
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reg dac_rst;

// CV reg

reg direc_d,direc_q;

reg [7:0] CV_cycle_count_d,CV_cycle_count_q;

// Mode_parameter

wire [3:0] Mode;

wire [7:0] CV_step,CV_cycle;

wire [31:0] CV_delay;

wire [11:0] CV_up,CV_down;

wire [15:0] xn0_im,xn1_im;

wire [13:0] ADC_B,ADC_A;

reg [13:0] ADC_B_true,ADC_A_true;

reg [7:0] EIS_DACcount_d,EIS_DACcount_q;

wire [15:0] Pha;

wire [31:0] Imp;

wire [15:0] mem_A,mem_B;

wire [15:0] ADC_A_FFT_re,ADC_B_FFT_re,ADC_A_FFT_im,ADC_B_FFT_im;

wire [7:0] xn_index,xk_index;

wire [15:0] rd_fft_A_re,rd_fft_B_re,rd_fft_A_im,rd_fft_B_im,

phase_out_A,phase_out_B;

wire [16:0] rd_fft_A_Mag,rd_fft_B_Mag,rd_fft_Imp_int;

wire [15:0] rd_fft_Imp_frac;

//Avr serial

reg [number_of_characters*8:1] debug_msg_d,debug_msg_q;

wire [7:0] tx_data;

wire new_tx_data;

wire tx_busy;
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wire [7:0] rx_data;

wire new_rx_data;

// EIS init

wire [11:0] EIS_offset,EIS_amp;

wire [15:0] EIS_freq_delay;

wire [23:0] EIS_freq_delay_end;

wire [15:0] EIS_freq_delay_start, EIS_freq_delay_multiplier;

wire [7:0] EIS_num_points;

wire [23:0] EIS_delay_q;

reg [7:0] EIS_index_q,EIS_index_d;

reg [15:0] multi_a,multi_b;

reg [31:0] multi_out;

wire [11:0] EIS_reg_sine;

wire [23:0] EIS_freq;

wire [7:0] EIS_freq_index;

reg [31:0] ctr_EIS_q,ctr_EIS_d;

wire [7:0] AMP_Gain_2,AMP_Gain_1,AMP_Gain_C;

wire [31:0] AMP_delay;

//ACG inti

assign BASE_PREMUX_A=BASE_PREMUX_A_q;

assign BASE_AMPMUX_A=BASE_AMPMUX_A_q;

assign BASE_AMPMUXC_A=BASE_AMPMUXC_A_q;

reg [2:0] BASE_PREMUX_A_q,BASE_AMPMUX_A_q,BASE_AMPMUXC_A_q;

reg [2:0] BASE_PREMUX_A_d,BASE_AMPMUX_A_d,BASE_AMPMUXC_A_d;

reg [13:0] ACG_down_temp_q,ACG_up_temp_q,ACG_down_temp_d,

ACG_up_temp_d;
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reg [13:0] mag_max_d,mag_max_q,mag_min_d,mag_min_q,mag_eis_acg_q,

mag_eis_acg_d,EIS_up_temp,EIS_down_temp;

assign done=done_q;

assign Measure_done=Measure_done_q;

message_printer #(.number_of_characters(

number_of_characters)) send_CV(

.clk(clk),

.rst(print_rst),

.tx_data(tx_data),

.msg(debug_msg_q),

.new_tx_data(new_tx_data),

.tx_busy(tx_busy),

.rx_data(rx_data),

.new_rx_data(new_rx_data),

.done(done_print),

.startPrint(startPrint)

);

avr_interface #(.CLK_RATE(50000000), .SERIAL_BAUD_RATE(500000))

avr_interface (

.clk(clk),

.rst(rst),

.cclk(cclk),

.spi_miso(spi_miso),

.spi_mosi(spi_mosi),

.spi_sck(spi_sck),

.spi_ss(spi_ss),

.spi_channel(spi_channel),
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.tx(avr_rx), // FPGA tx goes to AVR rx

.rx(avr_tx),

.channel(4’d15), // invalid channel disables the ADC

.new_sample(),

.sample(),

.sample_channel(),

.tx_data(tx_data),

.new_tx_data(new_tx_data),

.tx_busy(tx_busy),

.tx_block(avr_rx_busy),

.rx_data(rx_data),

.new_rx_data(new_rx_data)

);

freq_mem freq_mem (

.clka(clk), // input clka

.wea(EIS_mem_w), // input [0 : 0] wea

.addra(EIS_freq_index), // input [7 : 0] addra

.dina(EIS_freq), // input [23 : 0] dina

.clkb(~clk), // input clkb

.addrb(EIS_index_q), // input [7 : 0] addrb

.doutb(EIS_delay_q) // output [23 : 0] doutb

);

xfft fft_base (

.clk(clk), // input clk

.start(start_FFT), // input start

//.start(0), // input start

.xn0_re(mem_A), // input [15 : 0] xn0_re
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.xn0_im(16’b0), // input [15 : 0] xn0_im

.xn1_re(mem_B), // input [15 : 0] xn1_re

.xn1_im(16’b0), // input [15 : 0] xn1_im

.fwd_inv0(1’b1), // input fwd_inv0

.fwd_inv0_we(1’b1), // input fwd_inv0_we

.fwd_inv1(1’b1), // input fwd_inv1

.fwd_inv1_we(1’b1), // input fwd_inv1_we

.scale_sch0(16’b0101010101010101), // input [15 : 0] scale_sch0

16’b0101010101010101

.scale_sch0_we(1’b1), // input scale_sch0_we

.scale_sch1(16’b0101010101010101), // input [15 : 0] scale_sch1

16’b0101010101010101

.scale_sch1_we(1’b1), // input scale_sch1_we

.rfd(FFT_rfd), // output rfd

.xn_index(xn_index), // output [7 : 0] xn_index (Index of input

data.)

.busy(FFT_busy), // output busy

.edone(edone_FFT), // output edone

.done(done_FFT), // output done

.dv(dv_FFT), // output dv

.xk_index(xk_index), // output [7 : 0] xk_index (Index of

output data.)

.xk0_re(ADC_A_FFT_re), // output [15 : 0] xk0_re

.xk0_im(ADC_A_FFT_im), // output [15 : 0] xk0_im

.xk1_re(ADC_B_FFT_re), // output [15 : 0] xk1_re

.xk1_im(ADC_B_FFT_im) // output [15 : 0] xk1_im

);
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adc_memory adc_mem_A (

.clka(clk), // input clka

.wea(en_adcmem_w), // input [0 : 0] wea

.addra({EIS_DACcount_q}), // input [9 : 0] addra

.dina({2’b00,data_out_ave_A}), // input [15 : 0] dina

.clkb(~clk), // input clkb

.addrb({xn_index_Mem}), // input [9 : 0] addrb

.doutb(mem_A) // output [15 : 0] doutb

);

adc_memory adc_mem_B (

.clka(clk), // input clka

.wea(en_adcmem_w), // input [0 : 0] wea

.addra({EIS_DACcount_q}), // input [9 : 0] addra

.dina({2’b00,data_out_ave_B}), // input [15 : 0] dina

.clkb(~clk), // input clkb

.addrb({xn_index_Mem}), // input [9 : 0] addrb

.doutb(mem_B) // output [15 : 0] doutb

);

adc_memory fft_mem_a_re (

.clka(clk), // input clka

.wea(en_fft_mem_w), // input [0 : 0] wea

.addra({xk_index}), // input [9 : 0] addra

.dina(ADC_A_FFT_re), // input [15 : 0] dina

.clkb(clk), // input clkb

.addrb(addr_rd_fft), // input [9 : 0] addrb

.doutb(rd_fft_A_re) // output [15 : 0] doutb

);
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adc_memory fft_mem_a_im (

.clka(clk), // input clka

.wea(en_fft_mem_w), // input [0 : 0] wea

.addra({xk_index}), // input [9 : 0] addra

.dina(ADC_A_FFT_im), // input [15 : 0] dina

.clkb(clk), // input clkb

.addrb(addr_rd_fft), // input [9 : 0] addrb

.doutb(rd_fft_A_im) // output [15 : 0] doutb

);

adc_memory fft_mem_b_re (

.clka(clk), // input clka

.wea(en_fft_mem_w), // input [0 : 0] wea

.addra({xk_index}), // input [9 : 0] addra

.dina(ADC_B_FFT_re), // input [15 : 0] dina

.clkb(clk), // input clkb

.addrb(addr_rd_fft), // input [9 : 0] addrb

.doutb(rd_fft_B_re) // output [15 : 0] doutb

);

adc_memory fft_mem_b_im (

.clka(clk), // input clka

.wea(en_fft_mem_w), // input [0 : 0] wea

.addra({xk_index}), // input [9 : 0] addra

.dina(ADC_B_FFT_im), // input [15 : 0] dina

.clkb(clk), // input clkb

.addrb(addr_rd_fft), // input [9 : 0] addrb

.doutb(rd_fft_B_im) // output [15 : 0] doutb

);
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DACctrl base_dac (

.ctrlReg(DAC_ctrlReg), //11-bit Control register input

.ctrlRegEN(0), //Change control register input

.DACstart(DAC_START), //Start DAC input

.clk(clk), //clock input

.rst(rst), //reset input

.dac_miso(), // DAC SPI-miso input

.dac_sclk(dac_slck), //DAC SPI-clock output

.dac_cs(dac_cs), //DAC SPI-CS_bar output

.dac_mosi(dac_mosi), //DAC SPI-mosi output

.done(dac_done),

.DAC_begin(DAC_begin),

.signle_done (signle_done),

.data_reg(data_reg_q)

);

sine_wave_gen Base_DAC (

.dacCount(EIS_DACcount_q),

.offset(EIS_offset),

.amplitude(EIS_amp),

.data_out(EIS_reg_sine),

.ReduceOSR(OSR_reduce)

);

Base_adc_ctrl base_adc (

.MeasuEN(ADC_MeasuEN), //Start measurement input

.adc_busy(adc_busy), //ADC busy input

.clk(clk), //clock input

.rst(adc_rst), //reset input
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.adc_miso_A(adc_miso_A), //ADC SPI-miso input for Channel

A

.adc_miso_B(adc_miso_B), //ADC SPI-miso input for Channel

B

.adc_sclk(adc_slck), //ADC SPI-clk output

.adc_cs(adc_cs), //ADC SPI-CS_bar output

.adc_mosi(), //ADC SPI-mosi output (not in use!)

.CNVST_bar(adc_CNVST_bar), //ADC start convertion trigger

output

.adc_channel(), //ADC channel select (default value 2’b00)

.adc_data_out_A(ADC_A), //14 bit ADC channel A output

.adc_data_out_B(ADC_B), //14 bit ADC channel B output

.done (adc_done)

);

ave_buff_new ave_buff(

.rst(rst),

.clk(clk),

.ave_en(ave_en),

.data_in_A(data_in_A_ave_q), //input 14 bit

.data_in_B(data_in_B_ave_q), // input 14 bit

.index(ave_index_q), // input 9 bit

.finalize(ave_final), // input finalize ave

.data_out_ave_A(data_out_ave_A), //output 14 bit

.data_out_ave_B(data_out_ave_B), // output 14 bit

.done(ave_done) //output 14 bit

);

Set_Mode set_mode(
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.rx_data(rx_data),

.new_rx_data(new_rx_data),

.clk(clk),

.rst(rst),

.Mode(Mode)

);

Set_Para set_para(

.rx_data(rx_data),

.new_rx_data(new_rx_data),

.clk(clk),

.rst(rst),

.mode(Mode),

.CV_cycle(CV_cycle), //8 bit output CV number of cycle

.CV_up(CV_up), //12 bit output CV maximum

.CV_down(CV_down), //12 bit output CV minimum

.CV_step(CV_step), //12 bit output CV step

.CV_delay(CV_delay), //32 bit output CV delay

.EIS_amp(EIS_amp), //12 bit output EIS amplitude

.EIS_offset(EIS_offset), //12 bit output EIS/amp offset

.EIS_freq(EIS_freq),

.EIS_mem_w(EIS_mem_w),

.EIS_freq_index(EIS_freq_index),

.EIS_num_points(EIS_num_points), //8 bit output EIS

datapoints

.AMP_delay(AMP_delay), // output 32 bit

.AMP_Gain_1(AMP_Gain_1), // output 8 bit

.AMP_Gain_2(AMP_Gain_2), // output 8 bit
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.AMP_Gain_C(AMP_Gain_C),

.done(done_set)

);

always @(*) begin

state_d=state_q;

DAC_START_d=DAC_START_q;

DACindex_d= DACindex_q;

done_d=done_q;

Measure_done_d=Measure_done_q;

ctr_d=ctr_q;

Read_mem_d=Read_mem_q;

DAC_START=0;

start_FFT=0;

en_fft_mem_w=0;

xn_index_Mem=0;

//addr_rd_fft_d=addr_rd_fft_q;

addr_rd_fft=OSR_reduce;

tan_sclr=1;

tan_ce=0;

tan_nd=0;

sqrt_nd=0;

sqrt_ce=0;

sqrt_sclr=0;

en_Cal_mem_A=0;

en_Cal_mem_B=0;

DataReady=0;

arctan_inv_flag_A=0;
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arctan_inv_flag_B=0;

Divider_ce=0;

Divider_nd=0;

en_adcmem_w=0;

ADC_MeasuEN =0;

phase_out_A_buff_d=phase_out_A_buff_q;

phase_out_B_buff_d=phase_out_B_buff_q;

rd_fft_Mag_Dividend_d=rd_fft_Mag_Dividend_q;

rd_fft_Mag_Divisor_d=rd_fft_Mag_Divisor_q;

rd_fft_A_re_buff_d=rd_fft_A_re_buff_q;

rd_fft_A_im_buff_d=rd_fft_A_im_buff_q;

rd_fft_A_Mag_squared_d=rd_fft_A_Mag_squared_q;

BaseRelay_on=1;

data_reg_d=data_reg_q;

// Average buffer

ave_index_d=ave_index_q;

data_in_A_ave_d=data_in_A_ave_q;

data_in_B_ave_d=data_in_B_ave_q;

ave_en=0;

ave_final=0;

//AVR serial

debug_msg_d=debug_msg_q;

startPrint=0;

print_rst=0;

//CV reg;

direc_d=direc_q;

CV_cycle_count_d=CV_cycle_count_qïijŻ
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EIS_DACcount_d=EIS_DACcount_q;

EIS_index_d=EIS_index_q;

multi_a=0;

multi_b=0;

ctr_EIS_d=ctr_EIS_q;

//ACG REG

BASE_PREMUX_A_d=BASE_PREMUX_A_q;

BASE_AMPMUX_A_d=BASE_AMPMUX_A_q;

BASE_AMPMUXC_A_d=BASE_AMPMUXC_A_q;

ACG_down_temp_d=ACG_down_temp_q;

ACG_up_temp_d=ACG_up_temp_q;

buffer_state_d=buffer_state_q;

adc_rst=0;

dac_rst=0;

if(rst==1) dac_rst=1;

mag_max_d=mag_max_q;

mag_min_d=mag_min_q;

mag_eis_acg_d=mag_eis_acg_q;

//Convert ADC out from 2’s complementary to true form

ADC_A_true[12:0]=ADC_A[12:0];

ADC_B_true[12:0]=ADC_B[12:0];

if(ADC_A[13]==0) begin

ADC_A_true[13]=1’b1;

end

else if(ADC_A[13]==1) begin

ADC_A_true[13]=1’b0;

end
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if(ADC_B[13]==0) begin

ADC_B_true[13]=1’b1;

end

else if(ADC_B[13]==1) begin

ADC_B_true[13]=1’b0;

end

case (state_q)

IDLE:begin

BaseRelay_on=0;

ctr_d=0;

done_d=0;

ctr_EIS_d=0;

adc_rst=1;

data_reg_d=Common_mode;

EIS_DACcount_d=0; // for EIS

EIS_index_d=1’d0;

BASE_PREMUX_A_d=3’d0;

BASE_AMPMUX_A_d=3’d0;

BASE_AMPMUXC_A_d=3’d0;

if(done_set==1) begin

state_d=ModeSelect;

end

end

ModeSelect:begin

case(Mode)

4’d1: begin

state_d=IDLE_CV_ACG;
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end

4’d2: begin

state_d=IDLE_EIS;

end

4’d3: state_d=IDLE_AMP;

endcase

end

//CV ACG

IDLE_CV_ACG:begin

//Find bigger amplitude

if(CV_down<Common_mode) begin

ACG_down_temp_d=Common_mode-CV_down;

end

else if(CV_down>=Common_mode) begin

ACG_down_temp_d=CV_down-Common_mode;

end

else if(CV_up>Common_mode) begin

ACG_up_temp_d=CV_up-Common_mode;

end

else if(CV_up<=Common_mode) begin

ACG_up_temp_d=Common_mode-CV_up;

end

state_d=IDLE_CV_ACG2;

if(Debuger_mode) begin

debug_msg_d={"ST01"};

buffer_state_d=IDLE_CV_ACG2;

state_d=Print;

268



end

end

IDLE_CV_ACG2:begin

ctr_d=ctr_q+1;

//Find bigger amplitude

if(ACG_up_temp_q>=ACG_down_temp_q) begin

data_reg_d=CV_up;

end

else if(ACG_up_temp_q<ACG_down_temp_q) begin

data_reg_d=CV_down;

end

if(ctr_q>ACG_delay_begin) begin

state_d=DAC_CV_ACG;

ctr_d=0;

if(Debuger_mode) begin

debug_msg_d={2’b00,ACG_up_temp_q,2’

b00,ACG_down_temp_q};

buffer_state_d=DAC_CV_ACG;

state_d=Print;

end

end

end

DAC_CV_ACG:begin

DAC_START =1;

if (DAC_begin==1 && signle_done==1) begin

DAC_START =0;

state_d=ADC_CV_ACG;

269



ctr_d=0;

ave_index_d=0;

if(Debuger_mode) begin

debug_msg_d={"In",4’b0000,

data_reg_q};

buffer_state_d=ADC_CV_ACG;

state_d=Print;

end

end

end

ADC_CV_ACG:begin

ADC_MeasuEN =1;

ave_en=1;

if (adc_done==1) begin

adc_rst=1;

ADC_MeasuEN =0;

data_in_A_ave_d=ADC_A_true;

data_in_B_ave_d=ADC_B_true;

state_d=ADC_CV_delay_ACG;

ctr_d=0;

if(Debuger_mode) begin

debug_msg_d={2’b00,ADC_A_true,2’b00

,ADC_B_true};

buffer_state_d=ADC_CV_delay_ACG;

state_d=Print;

end

end
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end

ADC_CV_delay_ACG:begin

ctr_d=ctr_q+1;

ave_en=1;

ADC_MeasuEN =1;

if(ctr_q<CV_delay_ACG) begin //Setup CV scan

rate

if (adc_done==1) begin

adc_rst=1;

ave_index_d=ave_index_q+1;

data_in_A_ave_d=ADC_A_true;

data_in_B_ave_d=ADC_B_true;

state_d=ADC_CV_delay_ACG;

ADC_MeasuEN =0;

end

end

else if (ctr_q>CV_delay_ACG) begin //Setup CV

scan rate

adc_rst=1;

ave_final=1;

state_d=Decide_ACG_1;

ctr_d=0;

end

end

Decide_ACG_1:begin

if(ave_done==1) begin
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if(data_out_ave_B<(8192+ACG_th_l) &&

data_out_ave_B>(8192-ACG_th_l) &&

BASE_PREMUX_A_q<3’d7) begin

BASE_PREMUX_A_d=BASE_PREMUX_A_q+1;

debug_msg_d={"G1+",1’b0,

BASE_PREMUX_A_q,1’b0,

BASE_AMPMUX_A_q};

buffer_state_d=IDLE_CV_ACG;

state_d=Print;

end

else if(data_out_ave_B<(8192+ACG_th_l) &&

data_out_ave_B>(8192-ACG_th_l) &&

BASE_PREMUX_A_q==3’d7) begin

debug_msg_d={"1OV",1’b0,

BASE_PREMUX_A_q,1’b0,

BASE_AMPMUX_A_q}; //Gain

overflow, reaching maximum gain

buffer_state_d=Decide_ACG_2;

state_d=Print;

end

else if (data_out_ave_B>=(8192+ACG_th_h)

|| data_out_ave_B<=(8192-ACG_th_h)&&

BASE_PREMUX_A_q>3’d0) begin

BASE_PREMUX_A_d=BASE_PREMUX_A_q-1;

debug_msg_d={"G1-",1’b0,

BASE_PREMUX_A_q,1’b0,

BASE_AMPMUX_A_q};
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buffer_state_d=IDLE_CV_ACG;

state_d=Print;

end

else if (data_out_ave_B>=(8192+ACG_th_h)

|| data_out_ave_B<=(8192-ACG_th_h)&&

BASE_PREMUX_A_q==3’d0) begin

debug_msg_d={"1UD",1’b0,

BASE_PREMUX_A_q,1’b0,

BASE_AMPMUX_A_q}; //Gain

underflow, reaching minimum gain

buffer_state_d=Decide_ACG_2;

state_d=Print;

end

else begin

debug_msg_d={"G1=",1’b0,

BASE_PREMUX_A_q,1’b0,

BASE_AMPMUX_A_q};

buffer_state_d=Decide_ACG_2;

state_d=Print;

end

end

end

Decide_ACG_2:begin

if(data_out_ave_B<(8192+ACG_th_l2) &&

data_out_ave_B>(8192-ACG_th_l2) &&

BASE_AMPMUX_A_q<3’d7) begin

BASE_AMPMUX_A_d=BASE_AMPMUX_A_q+1;

273



debug_msg_d={"G2+",1’b0,BASE_PREMUX_A_q

,1’b0,BASE_AMPMUX_A_q};

buffer_state_d=IDLE_CV_ACG;

state_d=Print;

end

else if(data_out_ave_B<(8192+ACG_th_l2) &&

data_out_ave_B>(8192-ACG_th_l2) &&

BASE_AMPMUX_A_q==3’d7) begin

debug_msg_d={"2OV",1’b0,BASE_PREMUX_A_q

,1’b0,BASE_AMPMUX_A_q}; //Gain

overflow, reaching maximum gain

buffer_state_d=CV_ACG_Rdy;

state_d=Print;

end

else if (data_out_ave_B>=(8192+ACG_th_h2) ||

data_out_ave_B<=(8192-ACG_th_h2)&&

BASE_AMPMUX_A_q>3’d0) begin

BASE_AMPMUX_A_d=BASE_AMPMUX_A_q-1;

debug_msg_d={"G2-",1’b0,BASE_PREMUX_A_q

,1’b0,BASE_AMPMUX_A_q};

buffer_state_d=IDLE_CV_ACG;

state_d=Print;

end

else if (data_out_ave_B>=(8192+ACG_th_h2) ||

data_out_ave_B<=(8192-ACG_th_h2)&&

BASE_AMPMUX_A_q==3’d0) begin

274



debug_msg_d={"2UD",1’b0,BASE_PREMUX_A_q

,1’b0,BASE_AMPMUX_A_q}; //Gain

underflow, reaching minimum gain

buffer_state_d=CV_ACG_Rdy;

state_d=Print;

end

else begin

debug_msg_d={"G2=",1’b0,BASE_PREMUX_A_q

,1’b0,BASE_AMPMUX_A_q};

buffer_state_d=CV_ACG_Rdy;

state_d=Print;

end

end

CV_ACG_Rdy:begin

debug_msg_d={"CVRd"};

buffer_state_d=IDLE_CV;

state_d=Print;

end

IDLE_CV:begin

BaseRelay_on=1;

ctr_d=ctr_q+1;

direc_d=0;

CV_cycle_count_d=0;

if(ctr_q>2000) begin

debug_msg_d={"G=",5’b0,BASE_PREMUX_A_q,5’

b0,BASE_AMPMUX_A_q};

buffer_state_d=DAC_CV;
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state_d=Print;

if(Debuger_mode) begin

debug_msg_d={"G=",5’b0,

BASE_PREMUX_A_q,5’b0,

BASE_AMPMUX_A_q};

buffer_state_d=DAC_CV;

state_d=Print;

end

end

data_reg_d=CV_down;//CV lower boundary

end

DAC_CV:begin

DAC_START =1;

if (DAC_begin==1 && signle_done==1) begin

if({1’b0,data_reg_q}+{1’b0,CV_step}<=

CV_up && direc_q==0) begin

data_reg_d=data_reg_q+CV_step; //

Set up CV step size

end

else if({1’b0,data_reg_q}>=CV_down+{1’b0,

CV_step} && direc_q==1) begin

data_reg_d=data_reg_q-CV_step; //

Set up CV step size

end

DAC_START =0;

state_d=ADC_CV;

ctr_d=0;
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ave_index_d=0;

if(Debuger_mode) begin

debug_msg_d={"In",4’b0000,

data_reg_q};

buffer_state_d=ADC_CV;

state_d=Print;

end

if ({1’b0,data_reg_q}+{1’b0,CV_step}>

CV_up && direc_q==0) begin

direc_d=1;

data_reg_d=CV_up;

DAC_START =0;

end

else if ({1’b0,data_reg_q}<CV_down+{1’b0,

CV_step} && direc_q==1) begin

direc_d=0;

data_reg_d=CV_down;

DAC_START =0;

CV_cycle_count_d=CV_cycle_count_q

+1;

end

end

end

ADC_CV:begin

ADC_MeasuEN =1;

ave_en=1;

if (adc_done==1) begin
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adc_rst=1;

ADC_MeasuEN =0;

data_in_A_ave_d=ADC_A_true;

data_in_B_ave_d=ADC_B_true;

state_d=ADC_CV_delay;

ctr_d=0;

if(Debuger_mode) begin

debug_msg_d={2’b00,ADC_A_true,2’b00

,ADC_B_true};

buffer_state_d=ADC_CV_delay;

state_d=Print;

end

end

end

ADC_CV_delay:begin

ctr_d=ctr_q+1;

ave_en=1;

ADC_MeasuEN =1;

if(ctr_q<CV_delay) begin //Setup CV scan rate

if (adc_done==1) begin

adc_rst=1;

ave_index_d=ave_index_q+1;

data_in_A_ave_d=ADC_A_true;

data_in_B_ave_d=ADC_B_true;

state_d=ADC_CV_delay;

ADC_MeasuEN =0;

if(Debuger_mode) begin
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debug_msg_d={2’b00,ADC_A_true

,2’b10,ADC_B_true};

buffer_state_d=ADC_CV_delay;

state_d=Print;

end

end

end

else if (ctr_q>=CV_delay) begin //Setup CV scan

rate

adc_rst=1;

ave_final=1;

state_d=Send_out_CV;

ctr_d=0;

end

end

Send_out_CV:begin

if(ave_done==1) begin

debug_msg_d={2’d0,data_out_ave_A,2’d0,

data_out_ave_B};

state_d=Send_out_CV_final;

print_rst=0;

end

end

Send_out_CV_final:begin

startPrint=1;

if(done_print==1) begin

state_d=DAC_CV;
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print_rst=1;

startPrint=0;

ctr_d=0;

if(CV_cycle_count_q==CV_cycle) begin

state_d=Send_CV_end;

debug_msg_d={"CVND"};

end

end

end

Send_CV_end:begin

startPrint=1;

if(done_print==1) begin

state_d=Reset_CM;

print_rst=1;

startPrint=0;

ctr_d=0;

done_d=1;

end

end

//CV part end

///EIS part begin

IDLE_EIS:begin

BaseRelay_on=1;

ctr_d=ctr_q+1;

CV_cycle_count_d=0;

if(ctr_q>500000) begin //5000000
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state_d=DAC_EIS;

data_reg_d=EIS_reg_sine;//CV lower

boundary

if(Debuger_mode) begin

debug_msg_d={"ST",4’b0,data_reg_q};

buffer_state_d=DAC_EIS;

state_d=Print;

end

end

end

DAC_EIS:begin

data_reg_d=EIS_reg_sine;

DAC_START =1;

Measure_done_d=0;

if (DAC_begin==1 && signle_done==1) begin

DAC_START=0;

state_d = ADC_EIS;

ctr_d=0;

if(Debuger_mode) begin

debug_msg_d={"In",4’b0,data_reg_q};

buffer_state_d=ADC_EIS;

state_d=Print;

end

end

end

ADC_EIS:begin

ADC_MeasuEN =1;
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ave_en=1;

if (adc_done==1) begin

adc_rst=1;

ADC_MeasuEN =0;

data_in_A_ave_d=ADC_A_true;

data_in_B_ave_d=ADC_B_true;

state_d=ADC_EIS_delay;

ctr_d=0;

if(Debuger_mode) begin

debug_msg_d={2’b0,ADC_A_true,2’b0,

ADC_B_true};

buffer_state_d=ADC_EIS_delay;

state_d=Print;

end

end

end

ADC_EIS_delay:begin

ctr_d=ctr_q+1;

ave_en=1;

ADC_MeasuEN =1;

if(ctr_q<EIS_delay_q) begin //Setup CV scan

rate

if (adc_done==1) begin

adc_rst=1;

ave_index_d=ave_index_q+1;

ADC_MeasuEN =0;

data_in_A_ave_d=ADC_A_true;
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data_in_B_ave_d=ADC_B_true;

state_d=ADC_EIS_delay;

end

end

else if (ctr_q>=EIS_delay_q) begin //Setup CV

scan rate

adc_rst=1;

ave_final=1;

state_d=wait_ave_EIS;

ctr_d=0;

end

end

wait_ave_EIS:begin

if(ave_done==1) begin

state_d=wait_ADC_ram;

if(Debuger_mode) begin

debug_msg_d={2’b0,data_out_ave_A,2’

b0,data_out_ave_B};

buffer_state_d=wait_ADC_ram;

state_d=Print;

end

end

end

wait_ADC_ram:begin

ctr_d=ctr_q+1;

en_adcmem_w=1;

if (ctr_q==1) begin
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en_adcmem_w=0;

end

if (ctr_q>=2) begin

en_adcmem_w=0;

EIS_DACcount_d=EIS_DACcount_q+1;

if (EIS_DACcount_q==255)begin

state_d = EIS_ACG_init;

en_adcmem_w=0;

Measure_done_d=1;

ctr_d=0;

if(Debuger_mode) begin

debug_msg_d={2’b0,

data_out_ave_A,2’b0,

data_out_ave_B};

buffer_state_d=EIS_ACG_init;

state_d=Print;

end

end

else begin

state_d = DAC_EIS;

en_adcmem_w=0;

if(Debuger_mode) begin

debug_msg_d={2’b0,

data_out_ave_A,2’b0,

data_out_ave_B};

buffer_state_d=DAC_EIS;

state_d=Print;
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end

end

end

end

EIS_ACG_init:begin

xn_index_Mem=ctr_q[7:0];

mag_max_d=mem_B;

mag_min_d=mem_B;

state_d=EIS_ACG_assign;

if(Debuger_mode) begin

debug_msg_d={"A",ctr_q[7:0],mem_B};

buffer_state_d=EIS_ACG_assign;

state_d=Print;

end

end

EIS_ACG_assign:begin

xn_index_Mem=ctr_q[7:0];

ctr_d=ctr_q+1;

state_d=EIS_ACG_assign_wait;

if(Debuger_mode) begin

debug_msg_d={mag_max_q,mag_min_q};

buffer_state_d=EIS_ACG_assign_wait;

state_d=Print;

end

end

EIS_ACG_assign_wait:begin

xn_index_Mem=ctr_q[7:0];

285



state_d=EIS_ACG_compare;

if(Debuger_mode) begin

debug_msg_d={"Ad=",ctr_q[7:0]};

buffer_state_d=EIS_ACG_compare;

state_d=Print;

end

end

EIS_ACG_compare:begin

xn_index_Mem=ctr_q[7:0];

state_d=EIS_ACG_assign;

if(mem_B>=mag_max_q) mag_max_d=mem_B;

if(mem_B<mag_min_q) mag_min_d=mem_B;

if(ctr_q==255) begin

state_d=EIS_ACG_decide1;

if(Debuger_mode) begin

debug_msg_d={"CPND"};

buffer_state_d=EIS_ACG_decide1;

state_d=Print;

end

end

else begin

state_d=EIS_ACG_assign;

if(Debuger_mode) begin

debug_msg_d={mag_max_q,mag_min_q};

buffer_state_d=EIS_ACG_assign;

state_d=Print;

end
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end

end

EIS_ACG_decide1:begin

if(mag_min_q<Common_mode_EIS) begin

ACG_down_temp_d=Common_mode_EIS-mag_min_q

;

end

else if(mag_min_q>=Common_mode_EIS) begin

ACG_down_temp_d=mag_min_q-Common_mode_EIS

;

end

else if(mag_max_q>Common_mode_EIS) begin

ACG_up_temp_d=mag_max_q-Common_mode_EIS;

end

else if(mag_max_q<=Common_mode_EIS) begin

ACG_up_temp_d=Common_mode_EIS-mag_max_q;

end

state_d=EIS_ACG_decide2;

if(Debuger_mode) begin

debug_msg_d={mag_max_q,mag_min_q};

buffer_state_d=EIS_ACG_decide2;

state_d=Print;

end

end

EIS_ACG_decide2:begin

if(ACG_up_temp_q>=ACG_down_temp_q) begin

mag_eis_acg_d=mag_max_q;
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end

else if(ACG_up_temp_q<ACG_down_temp_q) begin

mag_eis_acg_d=mag_min_q;

end

state_d=EIS_Decide_ACG_1;

if(Debuger_mode) begin

debug_msg_d={ACG_up_temp_q,

ACG_down_temp_q};

buffer_state_d=EIS_Decide_ACG_1;

state_d=Print;

end

end

EIS_Decide_ACG_1:begin

if(mag_eis_acg_q<(8192+ACG_th_l) &&

mag_eis_acg_q>(8192-ACG_th_l) &&

BASE_PREMUX_A_q<3’d7) begin

BASE_PREMUX_A_d=BASE_PREMUX_A_q+1;

if(Debuger_mode) begin

debug_msg_d={"G1+",2’b0,

BASE_PREMUX_A_q,BASE_AMPMUX_A_q

};

buffer_state_d=IDLE_EIS;

state_d=Print;

end

else state_d=IDLE_EIS;;

end

288



else if(mag_eis_acg_q<(8192+ACG_th_l) &&

mag_eis_acg_q>(8192-ACG_th_l) &&

BASE_PREMUX_A_q==3’d7) begin

if(Debuger_mode) begin

debug_msg_d={"1OV",1’b0

,BASE_PREMUX_A_q,1’

b0,BASE_AMPMUX_A_q};

buffer_state_d=

EIS_Decide_ACG_2;

state_d=Print;

end

else state_d=EIS_Decide_ACG_2;

end

else if (mag_eis_acg_q>=(8192+ACG_th_h) ||

mag_eis_acg_q<=(8192-ACG_th_h)&&

BASE_PREMUX_A_q>3’d0) begin

BASE_PREMUX_A_d=BASE_PREMUX_A_q-1;

if(Debuger_mode) begin

debug_msg_d={"G1-",1’b0

,BASE_PREMUX_A_q,1’

b0,BASE_AMPMUX_A_q};

buffer_state_d=IDLE_EIS

;

state_d=Print;

end

else state_d=IDLE_EIS;

end
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else if (mag_eis_acg_q>=(8192+ACG_th_h) ||

mag_eis_acg_q<=(8192-ACG_th_h)&&

BASE_PREMUX_A_q==3’d0) begin

if(Debuger_mode) begin

debug_msg_d={"1UD",1’b0

,BASE_PREMUX_A_q,1’

b0,BASE_AMPMUX_A_q};

buffer_state_d=

EIS_Decide_ACG_2;

state_d=Print;

end

else state_d=EIS_Decide_ACG_2;

end

else begin

if(Debuger_mode) begin

debug_msg_d={"G1=",1’b0

,BASE_PREMUX_A_q,1’

b0,BASE_AMPMUX_A_q};

buffer_state_d=

EIS_Decide_ACG_2;

state_d=Print;

end

else state_d=EIS_Decide_ACG_2;

end

end

EIS_Decide_ACG_2:begin

290



if(mag_eis_acg_q<(8192+ACG_th_l2) &&

mag_eis_acg_q>(8192-ACG_th_l2) &&

BASE_AMPMUX_A_q<3’d7) begin

BASE_AMPMUX_A_d=BASE_AMPMUX_A_q+1;

if(Debuger_mode) begin

debug_msg_d={"G2+",1’b0

,BASE_PREMUX_A_q,1’

b0,BASE_AMPMUX_A_q};

buffer_state_d=IDLE_EIS

;

state_d=Print;

end

else state_d=IDLE_EIS;

end

else if(mag_eis_acg_q<(8192+ACG_th_l2) &&

mag_eis_acg_q>(8192-ACG_th_l2) &&

BASE_AMPMUX_A_q==3’d7) begin

if(Debuger_mode) begin

debug_msg_d={"2OV",1’b0

,BASE_PREMUX_A_q,1’

b0,BASE_AMPMUX_A_q};

buffer_state_d=

EIS_signle_done;

state_d=Print;

end

else state_d=EIS_signle_done;

end
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else if (mag_eis_acg_q>=(8192+ACG_th_h2) ||

mag_eis_acg_q<=(8192-ACG_th_h2)&&

BASE_AMPMUX_A_q>3’d0) begin

BASE_AMPMUX_A_d=BASE_AMPMUX_A_q-1;

if(Debuger_mode) begin

debug_msg_d={"G2-",1’b0

,BASE_PREMUX_A_q,1’

b0,BASE_AMPMUX_A_q};

buffer_state_d=IDLE_EIS

;

state_d=Print;

end

else state_d=IDLE_EIS;

end

else if (mag_eis_acg_q>=(8192+ACG_th_h2) ||

mag_eis_acg_q<=(8192-ACG_th_h2)&&

BASE_AMPMUX_A_q==3’d0) begin

if(Debuger_mode) begin

debug_msg_d={"2UD",1’b0

,BASE_PREMUX_A_q,1’

b0,BASE_AMPMUX_A_q};

buffer_state_d=

EIS_signle_done;

state_d=Print;

end

else state_d=EIS_signle_done;

end
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else begin

if(Debuger_mode) begin

debug_msg_d={"G2=",1’b0

,BASE_PREMUX_A_q,1’

b0,BASE_AMPMUX_A_q};

buffer_state_d=

EIS_signle_done;

state_d=Print;

end

else state_d=EIS_signle_done;

end

end

EIS_signle_done:begin

start_FFT=1;

if (FFT_rfd==1 && edone_FFT!=1) begin

xn_index_Mem=xn_index+1;

end

else if (FFT_rfd==0) begin

xn_index_Mem=0;

end

if (FFT_rfd!=1 && edone_FFT==1) begin

state_d=EIS_FFT_collect;

//start_FFT=1;

xn_index_Mem=0;

if(Debuger_mode) begin

debug_msg_d={"FFT1"};

buffer_state_d=EIS_FFT_collect;
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state_d=Print;

end

end

end

EIS_FFT_collect:begin

xn_index_Mem=0;

if (dv_FFT==1) begin

state_d=EIS_FFT_Finish;

en_fft_mem_w=1;

if(Debuger_mode) begin

debug_msg_d={"FFT2"};

buffer_state_d=EIS_FFT_Finish;

state_d=Print;

end

end

end

EIS_FFT_Finish:begin

en_fft_mem_w=1;

if (dv_FFT==0) begin

state_d= Send_out_EIS_Gain;

en_fft_mem_w=0;

ctr_d=0;

if(Debuger_mode) begin

debug_msg_d={"FFT3"};

buffer_state_d=Send_out_EIS_Gain;

state_d=Print;

end
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end

end

Send_out_EIS_Gain:begin

debug_msg_d={"G=",5’b0,BASE_PREMUX_A_q,5’b0,

BASE_AMPMUX_A_q};

state_d=Print;

buffer_state_d=Send_out_EIS_A;

end

Send_out_EIS_A:begin

debug_msg_d={rd_fft_A_re,rd_fft_A_im};

state_d=Print;

buffer_state_d=Send_out_EIS_B;

end

Send_out_EIS_B:begin

debug_msg_d={rd_fft_B_re,rd_fft_B_im};

state_d=Print;

buffer_state_d=DAC_EIS;

EIS_index_d=EIS_index_q+1;

if(EIS_num_points==0) begin

ctr_EIS_d=ctr_EIS_q+1;

if(ctr_EIS_q>=0)

buffer_state_d=Send_EIS_end;

end

else if(EIS_num_points>0)begin

EIS_index_d=EIS_index_q+1;

if(EIS_index_q==EIS_num_points)

buffer_state_d=Send_EIS_end;

295



end

end

Send_EIS_end:begin

debug_msg_d="EISD";

state_d=Print;

buffer_state_d=Reset_CM;

dac_rst=1;

end

////////////////////

//Amperametry mode//

////////////////////

IDLE_AMP:begin

BaseRelay_on=1;

ctr_d=ctr_q+1;

BASE_PREMUX_A_d=AMP_Gain_1[2:0];

BASE_AMPMUX_A_d=AMP_Gain_2[2:0];

BASE_AMPMUXC_A_d=AMP_Gain_C[2:0];

if(ctr_q>200000) begin

state_d=DAC_AMP;

ctr_d=0;

end

data_reg_d=EIS_offset;//CV lower boundary

end

DAC_AMP:begin

DAC_START =1;

if (DAC_begin==1 && signle_done==1) begin

DAC_START =0;
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//ADC_MeasuEN =1;

state_d=ADC_AMP;

ctr_d=1;

end

end

ADC_AMP:begin

ADC_MeasuEN =1;

ave_en=1;

if (adc_done==1) begin

adc_rst=1;

ADC_MeasuEN =0;

state_d=ADC_AMP_delay;

data_in_A_ave_d=ADC_A_true;

data_in_B_ave_d=ADC_B_true;

ctr_d=0;

end

end

ADC_AMP_delay:begin

ctr_d=ctr_q+1;

ave_en=1;

ADC_MeasuEN =1;

if(ctr_q<AMP_delay) begin //Setup CV scan rate

if (adc_done==1) begin

adc_rst=1;

ave_index_d=ave_index_q+1;

data_in_A_ave_d=ADC_A_true;

data_in_B_ave_d=ADC_B_true;
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state_d=ADC_AMP_delay;

ADC_MeasuEN =0;

end

end

else if (ctr_q>=AMP_delay) begin //Setup CV

scan rate

adc_rst=1;

ave_final=1;

state_d=Send_out_AMP;

ctr_d=0;

end

end

Send_out_AMP:begin

if(ave_done==1) begin

debug_msg_d={2’d0,data_out_ave_A,2’d0,

data_out_ave_B};

state_d=Print;

print_rst=0;

buffer_state_d=ADC_AMP;

//startPrint=1;

end

end

////////NOt in use

END_AMP:begin

debug_msg_d={"AMPD"};

buffer_state_d=IDLE;

state_d=Print;
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end

///////NOt in use

//////////////////

//General states//

//////////////////

Print:begin

startPrint=1;

if(done_print==1) begin

state_d=buffer_state_q;

print_rst=1;

startPrint=0;

//ctr_d=0;

end

end

Reset_CM:begin

data_reg_d=Common_mode;

DAC_START =1;

if (DAC_begin==1 && signle_done==1) begin

DAC_START=0;

state_d = IDLE;

ctr_d=0;

end

end

endcase

end

always @(posedge clk) begin

if (rst) begin

299



state_q <= IDLE;

DAC_START_q <=0;

ADC_MeasuEN_q <=0;

DACindex_q <=0;

done_q <=0;

Measure_done_q<=0;

ctr_q<=0;

Read_mem_q<=0;

phase_out_A_buff_q<=0;

phase_out_B_buff_q<=0;

rd_fft_Mag_Dividend_q<=0;

rd_fft_Mag_Divisor_q<=0;

rd_fft_A_re_buff_q<=0;

rd_fft_A_im_buff_q<=0;

rd_fft_A_Mag_squared_q<=0;

ave_index_q<=0;

data_reg_q<=0;

data_in_A_ave_q<=0;

data_in_B_ave_q<=0;

debug_msg_q<=0;

direc_q<=0;

CV_cycle_count_q<=0;

EIS_DACcount_q<=0;

EIS_index_q<=0;

ctr_EIS_q<=0;

//ACG part

BASE_PREMUX_A_q<=0;
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BASE_AMPMUX_A_q<=0;

BASE_AMPMUXC_A_q<=0;

buffer_state_q<=0;

mag_max_q<=0;

mag_min_q<=0;

mag_eis_acg_q<=0;

ACG_down_temp_q<=0;

ACG_up_temp_q<=0;

end else begin

state_q <= state_d;

done_q <=done_d;

DAC_START_q <=DAC_START_d;

DACindex_q <=DACindex_d;

Measure_done_q<=Measure_done_d;

ctr_q<=ctr_d;

Read_mem_q<=Read_mem_d;

rd_fft_A_Mag_squared_q<=rd_fft_A_Mag_squared_d;

phase_out_A_buff_q<=phase_out_A_buff_d;

phase_out_B_buff_q<=phase_out_B_buff_d;

rd_fft_Mag_Dividend_q<=rd_fft_Mag_Dividend_d;

rd_fft_Mag_Divisor_q<=rd_fft_Mag_Divisor_d;

rd_fft_A_re_buff_q<=rd_fft_A_re_buff_d;

rd_fft_A_im_buff_q<=rd_fft_A_im_buff_d;

ave_index_q<=ave_index_d;

data_reg_q<=data_reg_d;

data_in_A_ave_q<=data_in_A_ave_d;

data_in_B_ave_q<=data_in_B_ave_d;
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debug_msg_q<=debug_msg_d;

direc_q<=direc_d;

CV_cycle_count_q<=CV_cycle_count_d;

//EIS part

EIS_DACcount_q<=EIS_DACcount_d;

EIS_index_q<=EIS_index_d;

ctr_EIS_q<=ctr_EIS_d;

//ACG part

BASE_PREMUX_A_q<=BASE_PREMUX_A_d;

BASE_AMPMUX_A_q<=BASE_AMPMUX_A_d;

BASE_AMPMUXC_A_q<=BASE_AMPMUXC_A_d;

buffer_state_q<=buffer_state_d;

mag_max_q<=mag_max_d;

mag_min_q<=mag_min_d;

mag_eis_acg_q<=mag_eis_acg_d;

ACG_down_temp_q<=ACG_down_temp_d;

ACG_up_temp_q<=ACG_up_temp_d;

end

end

endmodule
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