2 research outputs found

    Adaptive Receiver Design for High Speed Optical Communication

    Get PDF
    Conventional input/output (IO) links consume power, independent of changes in the bandwidth demand by the system they are deployed in. As the system is designed to satisfy the peak bandwidth demand, most of the time the IO links are idle but still consuming power. In big data centers, the overall utilization ratio of IO links is less than 10%, corresponding to a large amount of energy wasted for idle operation. This work demonstrates a 60 Gb/s high sensitivity non-return-to-zero (NRZ) optical receiver in 14 nm FinFET technology with less than 7 ns power-on time. The power on time includes the data detection, analog bias settling, photo-diode DC current cancellation, and phase locking by the clock and data recovery circuit (CDR). The receiver autonomously detects the data demand on the link via a proposed link protocol and does not require any external enable or disable signals. The proposed link protocol is designed to minimize the off-state power consumption and power-on time of the link. In order to achieve high data-rate and high-sensitivity while maintaining the power budget, a 1-tap decision feedback equalization method is applied in digital domain. The sensitivity is measured to be -8 dBm, -11 dBm, and -13 dBm OMA (optical modulation amplitude) at 60 Gb/s, 48 Gb/s, and 32 Gb/s data rates, respectively. The energy efficiency in always-on mode is around 2.2 pJ/bit for all data-rates with the help of supply and bias scaling. The receiver incorporates a phase interpolator based clock-and-data recovery circuit with approximately 80 MHz jitter-tolerance corner frequency, thanks to the low-latency full custom CDR logic design. This work demonstrates the fastest ever reported CMOS optical receiver and runs almost at twice the data-rate of the state-of-the-art CMOS optical receiver by the time of the publication. The data-rate is comparable to BiCMOS optical receivers but at a fraction of the power consumption

    Design of energy efficient high speed I/O interfaces

    Get PDF
    Energy efficiency has become a key performance metric for wireline high speed I/O interfaces. Consequently, design of low power I/O interfaces has garnered large interest that has mostly been focused on active power reduction techniques at peak data rate. In practice, most systems exhibit a wide range of data transfer patterns. As a result, low energy per bit operation at peak data rate does not necessarily translate to overall low energy operation. Therefore, I/O interfaces that can scale their power consumption with data rate requirement are desirable. Rapid on-off I/O interfaces have a potential to scale power with data rate requirements without severely affecting either latency or the throughput of the I/O interface. In this work, we explore circuit techniques for designing rapid on-off high speed wireline I/O interfaces and digital fractional-N PLLs. A burst-mode transmitter suitable for rapid on-off I/O interfaces is presented that achieves 6 ns turn-on time by utilizing a fast frequency settling ring oscillator in digital multiplying delay-locked loop and a rapid on-off biasing scheme for current mode output driver. Fabricated in 90 nm CMOS process, the prototype achieves 2.29 mW/Gb/s energy efficiency at peak data rate of 8 Gb/s. A 125X (8 Gb/s to 64 Mb/s) change in effective data rate results in 67X (18.29 mW to 0.27 mW) change in transmitter power consumption corresponding to only 2X (2.29 mW/Gb/s to 4.24 mW/Gb/s) degradation in energy efficiency for 32-byte long data bursts. We also present an analytical bit error rate (BER) computation technique for this transmitter under rapid on-off operation, which uses MDLL settling measurement data in conjunction with always-on transmitter measurements. This technique indicates that the BER bathtub width for 10^(−12) BER is 0.65 UI and 0.72 UI during rapid on-off operation and always-on operation, respectively. Next, a pulse response estimation-based technique is proposed enabling burst-mode operation for baud-rate sampling receivers that operate over high loss channels. Such receivers typically employ discrete time equalization to combat inter-symbol interference. Implementation details are provided for a receiver chip, fabricated in 65nm CMOS technology, that demonstrates efficacy of the proposed technique. A low complexity pulse response estimation technique is also presented for low power receivers that do not employ discrete time equalizers. We also present techniques for implementation of highly digital fractional-N PLL employing a phase interpolator based fractional divider to improve the quantization noise shaping properties of a 1-bit ∆Σ frequency-to-digital converter. Fabricated in 65nm CMOS process, the prototype calibration-free fractional-N Type-II PLL employs the proposed frequency-to-digital converter in place of a high resolution time-to-digital converter and achieves 848 fs rms integrated jitter (1 kHz-30 MHz) and -101 dBc/Hz in-band phase noise while generating 5.054 GHz output from 31.25 MHz input
    corecore