4 research outputs found

    Intermittent Excitation of High-Q Resonators for Low-Power High-Speed Clock Generation

    Get PDF
    There is growing demand for circuits that can provide ever greater performance from a minimal power budget. Example applications include wireless sensor nodes, mobile devices, and biomedical implants. High speed clock circuits are an integral part of such systems, playing roles such as providing digital processor clocks, or generating wireless carrier signals; this clock generation can often take a large part of a system’s power budget. Common techniques to reduce power consumption generally involve reducing the clock speed, and/or complex designs using a large circuit area. This paper proposes an alternative method of clock generation based on driving a high-Q resonator with a periodic chain of impulses. In this way, power consumption is reduced when compared to traditional resonator based designs; this power reduction comes at the cost of increased period jitter. A circuit was designed and laid out in 0.18µm CMOS, and was simulated in order to test the technique. Simulation results suggest that the circuit can achieve a FoM of 4.89GHz/mW, with a peak period jitter of 10.2ps at 2.015GHz, using a model resonator with a Q-factor of 126

    Towards Very Large Scale Analog (VLSA): Synthesizable Frequency Generation Circuits.

    Full text link
    Driven by advancement in integrated circuit design and fabrication technologies, electronic systems have become ubiquitous. This has been enabled powerful digital design tools that continue to shrink the design cost, time-to-market, and the size of digital circuits. Similarly, the manufacturing cost has been constantly declining for the last four decades due to CMOS scaling. However, analog systems have struggled to keep up with the unprecedented scaling of digital circuits. Even today, the majority of the analog circuit blocks are custom designed, do not scale well, and require long design cycles. This thesis analyzes the factors responsible for the slow scaling of analog blocks, and presents a new design methodology that bridges the gap between traditional custom analog design and the modern digital design. The proposed methodology is utilized in implementation of the frequency generation circuits – traditionally considered analog systems. Prototypes covering two different applications were implemented. The first synthesized all-digital phase-locked loop was designed for 400-460 MHz MedRadio applications and was fabricated in a 65 nm CMOS process. The second prototype is an ultra-low power, near-threshold 187-500 kHz clock generator for energy harvesting/autonomous applications. Finally, a digitally-controlled oscillator frequency resolution enhancement technique is presented which allows reduction of quantization noise in ADPLLs without introducing spurs.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/109027/1/mufaisal_1.pd

    CMOS Integrated Circuits for RF-powered Wireless Temperature Sensor

    Get PDF
    This dissertation presents original research contributions in the form of twelve scientific publications that represent advances related to RF-to-DC converters, reference circuits (voltage, current and frequency) and temperature sensors. The primary focus of this research was to design efficient and low power CMOS-based circuit components, which are useful in various blocks of an RF-powered wireless sensor node.  The RF-to-DC converter or rectifier converts RF energy into DC energy, which is utilized by the sensor node. In the implementation of a CMOS-based RF-to-DC converter, the threshold voltage of MOS transistors mainly affects the conversion efficiency. Hence, for the first part of this research, different threshold voltage compensation schemes were developed for the rectifiers. These schemes were divided into two parts; first, the use of the MOSFET body terminal biasing technique and second, the use of an auxiliary circuit to obtain threshold voltage compensation. In addition to these schemes, the use of an alternate signaling scheme for voltage multiplier configuration of differential input RF-harvesters has also been investigated.  A known absolute value of voltage or current is the most useful for an integrated circuit. Thus, the circuit which generates the absolute value of voltage or current is cited as the voltage or current reference circuit respectively. Hence, in the second part of the research, simple, low power and moderately accurate, voltage and current reference circuits were developed for the power management unit of the sensor node. Besides voltage and current reference circuits, a frequency reference circuit was also designed. The use of the frequency reference circuit is in the digital processing and timing functions of the sensor node.  In the final part of the research, temperature sensing was selected as an application for the sensor node. Here, voltage and current based sensor cores were developed to sense the temperature. A smart temperature sensor was designed by using the voltage cores to obtain temperature information in terms of the duty-cycle. Similarly, the temperature equivalent current was converted into the frequency to obtain a temperature equivalent output signal.  All these implementations were done by using two integrated circuits which were fabricated during the year 2013-14.

    Self-powered Time-Keeping and Time-of-Occurrence Sensing

    Get PDF
    Self-powered and passive Internet-of-Things (IoT) devices (e.g. RFID tags, financial assets, wireless sensors and surface-mount devices) have been widely deployed in our everyday and industrial applications. While diverse functionalities have been implemented in passive systems, the lack of a reference clock limits the design space of such devices used for applications such as time-stamping sensing, recording and dynamic authentication. Self-powered time-keeping in passive systems has been challenging because they do not have access to continuous power sources. While energy transducers can harvest power from ambient environment, the intermittent power cannot support continuous operation for reference clocks. The thesis of this dissertation is to implement self-powered time-keeping devices on standard CMOS processes. In this dissertation, a novel device that combines the physics of quantum tunneling and floating-gate (FG) structures is proposed for self-powered time-keeping in CMOS process. The proposed device is based on thermally assisted Fowler-Nordheim (FN) tunneling process across high-quality oxide layer to discharge the floating-gate node, therefore resulting in a time-dependent FG potential. The device was fully characterized in this dissertation, and it does not require external powering during runtime, making it feasible for passive devices and systems. Dynamic signature based on the synchronization and desynchronization behavior of the FN timer is proposed for authentication of IoT devices. The self-compensating physics ensure that when distributed timers are subjected to identical environment variances that are common-mode noise, they can maintain synchronization with respect to each other. On the contrary, different environment conditions will desynchronize the timers creating unique signatures. The signatures could be used to differentiate between products that belong to different supply-chains or products that were subjected to malicious tampering. SecureID type dynamic authentication protocols based on the signature generated by the FN timers are proposed and they are proven to be robust to most attacks. The protocols are further analyzed to be lightweight enough for passive devices whose computational sources are limited. The device could also be applied for self-powered sensing of time-of-occurrence. The prototype was verified by integrating the device with a self-powered mechanical sensor to sense and record time-of-occurrence of mechanical events. The system-on-chip design uses the timer output to modulate a linear injector to stamp the time information into the sensing results. Time-of-occurrence can be reconstructed by training the mathematical model and then applying that to the test data. The design was verified to have a high reconstruction accuracy
    corecore