14 research outputs found

    A 32-Channel MCU-Based Feature Extraction and Classification for Scalable on-Node Spike Sorting

    No full text
    This paper describes a new hardware-efficient method and implementation for neural spike sorting based on selection of a channel-specific near-optimal subset of fea- tures given a larger predefined set. For each channel, real- time classification is achieved using a simple decision matrix that considers the features that provide the highest separability determined through off-line training. A 32-channel system for on- line feature extraction and classification has been implemented in an ARM Cortex-M0+ processor. Measured results of the hardware platform consumes 268 W per channel during spike sorting (includes detection). The proposed method provides at least x10 reduction in computational requirements compared to literature, while achieving an average classification error of less than 10% across wide range of datasets and noise levels

    Communication channel analysis and real time compressed sensing for high density neural recording devices

    Get PDF
    Next generation neural recording and Brain- Machine Interface (BMI) devices call for high density or distributed systems with more than 1000 recording sites. As the recording site density grows, the device generates data on the scale of several hundred megabits per second (Mbps). Transmitting such large amounts of data induces significant power consumption and heat dissipation for the implanted electronics. Facing these constraints, efficient on-chip compression techniques become essential to the reduction of implanted systems power consumption. This paper analyzes the communication channel constraints for high density neural recording devices. This paper then quantifies the improvement on communication channel using efficient on-chip compression methods. Finally, This paper describes a Compressed Sensing (CS) based system that can reduce the data rate by > 10x times while using power on the order of a few hundred nW per recording channel

    An Adaptive Event-based Data Converter for Always-on Biomedical Applications at the Edge

    Get PDF
    Typical bio-signal processing front-ends are designed to maximize the quality of the recorded data, to allow faithful reproduction of the signal for monitoring and off-line processing. This leads to designs that have relatively large area and power consumption figures. However, wearable devices for always-on biomedical applications do not necessarily require to reproduce highly accurate recordings of bio-signals, provided their end-to-end classification or anomaly detection performance is not compromised. Within this context, we propose an adaptive Asynchronous Delta Modulator (ADM) circuit designed to encode signals with an event-based representation optimally suited for low-power on-line spiking neural network processors. The novel aspect of this work is the adaptive thresholding feature of the ADM, which allows the circuit to modulate and minimize the rate of events produced with the amplitude and noise characteristics of the signal. We describe the circuit's basic mode of operation, we validate it with experimental results, and characterize the new circuits that endow it with its adaptive thresholding properties

    High-performance wireless power and data transfer interface for implantable medical devices

    Get PDF
    D’importants progès ont été réalisés dans le développement des systèmes biomédicaux implantables grâce aux dernières avancées de la microélectronique et des technologies sans fil. Néanmoins, ces appareils restent difficiles à commercialier. Cette situation est due particulièrement à un manque de stratégies de design capable supporter les fonctionnalités exigées, aux limites de miniaturisation, ainsi qu’au manque d’interface sans fil à haut débit fiable et faible puissance capable de connecter les implants et les périphériques externes. Le nombre de sites de stimulation et/ou d’électrodes d’enregistrement retrouvés dans les dernières interfaces cerveau-ordinateur (IMC) ne cesse de croître afin d’augmenter la précision de contrôle, et d’améliorer notre compréhension des fonctions cérébrales. Ce nombre est appelé à atteindre un millier de site à court terme, ce qui exige des débits de données atteingnant facilement les 500 Mbps. Ceci étant dit, ces travaux visent à élaborer de nouvelles stratégies innovantes de conception de dispositifs biomédicaux implantables afin de repousser les limites mentionnées ci-dessus. On présente de nouvelles techniques faible puissance beaucoup plus performantes pour le transfert d’énergie et de données sans fil à haut débit ainsi que l’analyse et la réalisation de ces dernières grâce à des prototypes microélectroniques CMOS. Dans un premier temps, ces travaux exposent notre nouvelle structure multibobine inductive à résonance présentant une puissance sans fil distribuée uniformément pour alimenter des systèmes miniatures d’étude du cerveaux avec des models animaux en ilberté ainsi que des dispositifs médicaux implantbles sans fil qui se caractérisent par une capacité de positionnement libre. La structure propose un lien de résonance multibobines inductive, dont le résonateur principal est constitué d’une multitude de résonateurs identiques disposés dans une matrice de bobines carrées. Ces dernières sont connectées en parallèle afin de réaliser des surfaces de puissance (2D) ainsi qu’une chambre d’alimentation (3D). La chambre proposée utilise deux matrices de résonateurs de base, mises face à face et connectés en parallèle afin d’obtenir une distribution d’énergie uniforme en 3D. Chaque surface comprend neuf bobines superposées, connectées en parallèle et réailsées sur une carte de circuit imprimé deux couches FR4. La chambre dispose d’un mécanisme naturel de localisation de puissance qui facilite sa mise en oeuvre et son fonctionnement. En procédant ainsi, nous évitons la nécessité d’une détection active de l’emplacement de la charge et le contrôle d’alimentation. Notre approche permet à cette surface d’alimentation unique de fournir une efficacité de transfert de puissance (PTE) de 69% et une puissance délivrée à la charge (PDL) de 120 mW, pour une distance de séparation de 4 cm, tandis que le prototype de chambre complet fournit un PTE uniforme de 59% et un PDL de 100 mW en 3D, partout à l’intérieur de la chambre avec un volume de chambre de 27 × 27 × 16 cm3. Une étape critique avant d’utiliser un dispositif implantable chez les humains consiste à vérifier ses fonctionnalités sur des sujets animaux. Par conséquent, la chambre d’énergie sans fil conçue sera utilisée afin de caractériser les performances d’ une interface sans fil de transmisison de données dans un environnement réaliste in vivo avec positionement libre. Un émetteur-récepteur full-duplex (FDT) entièrement intégré qui se caractérise par sa faible puissance est conçu pour réaliser une interfaces bi-directionnelles (stimulation et enregistrement) avec des débits asymétriques: des taux de tramnsmission plus élevés sont nécessaires pour l’enregistrement électrophysiologique multicanal (signaux de liaison montante) alors que les taux moins élevés sont utilisés pour la stimulation (les signaux de liaison descendante). L’émetteur (TX) et le récepteur (RX) se partagent une seule antenne afin de réduire la taille de l’implant. L’émetteur utilise la radio ultra-large bande par impulsions (IR-UWB) basée sur l’approche edge combining et le RX utilise la bande ISM (Industrielle, Scientifique et Médicale) de fréquence central 2.4 GHz et la modulation on-off-keying (OOK). Une bonne isolation (> 20 dB) est obtenue entre le TX et le RX grâce à 1) la mise en forme les impulsions émises dans le spectre UWB non réglementée (3.1-7 GHz), et 2) le filtrage espace-efficace (évitant l’utilisation d’un circulateur ou d’un diplexeur) du spectre du lien de communication descendant directement au niveau de l’ amplificateur à faible bruit (LNA). L’émetteur UWB 3.1-7 GHz utilise un e modultion OOK ainsi qu’une modulation par déplacement de phase (BPSK) à seulement 10.8 pJ / bits. Le FDT proposé permet d’atteindre 500 Mbps de débit de données en lien montant et 100 Mbps de débit de données de lien descendant. Il est entièrement intégré dans un procédé TSMC CMOS 0.18 um standard et possède une taille totale de 0.8 mm2. La consommation totale d’énergie mesurée est de 10.4 mW (5 mW pour RX et 5.4 mW pour TX au taux de 500 Mbps).In recent years, there has been major progress on implantable biomedical systems that support most of the functionalities of wireless implantable devices. Nevertheless, these devices remain mostly restricted to be commercialized, in part due to weakness of a straightforward design to support the required functionalities, limitation on miniaturization, and lack of a reliable low-power high data rate interface between implants and external devices. This research provides novel strategies on the design of implantable biomedical devices that addresses these limitations by presenting analysis and techniques for wireless power transfer and efficient data transfer. The first part of this research includes our proposed novel resonance-based multicoil inductive power link structure with uniform power distribution to wirelessly power up smart animal research systems and implanted medical devices with high power efficiency and free positioning capability. The proposed structure consists of a multicoil resonance inductive link, which primary resonator array is made of several identical resonators enclosed in a scalable array of overlapping square coils that are connected in parallel and arranged in power surface (2D) and power chamber (3D) configurations. The proposed chamber uses two arrays of primary resonators, facing each other, and connected in parallel to achieve uniform power distribution in 3D. Each surface includes 9 overlapped coils connected in parallel and implemented into two layers of FR4 printed circuit board. The chamber features a natural power localization mechanism, which simplifies its implementation and eases its operation by avoiding the need for active detection of the load location and power control mechanisms. A single power surface based on the proposed approach can provide a power transfer efficiency (PTE) of 69% and a power delivered to the load (PDL) of 120 mW, for a separation distance of 4 cm, whereas the complete chamber prototype provides a uniform PTE of 59% and a PDL of 100 mW in 3D, everywhere inside the chamber with a chamber size of 27×27×16 cm3. The second part of this research includes our proposed novel, fully-integrated, low-power fullduplex transceiver (FDT) to support bi-directional neural interfacing applications (stimulating and recording) with asymmetric data rates: higher rates are required for recording (uplink signals) than stimulation (downlink signals). The transmitter (TX) and receiver (RX) share a single antenna to reduce implant size. The TX uses impulse radio ultra-wide band (IR-UWB) based on an edge combining approach, and the RX uses a novel 2.4-GHz on-off keying (OOK) receiver. Proper isolation (> 20 dB) between the TX and RX path is implemented 1) by shaping the transmitted pulses to fall within the unregulated UWB spectrum (3.1-7 GHz), and 2) by space-efficient filtering (avoiding a circulator or diplexer) of the downlink OOK spectrum in the RX low-noise amplifier (LNA). The UWB 3.1-7 GHz transmitter using OOK and binary phase shift keying (BPSK) modulations at only 10.8 pJ/bit. The proposed FDT provides dual band 500 Mbps TX uplink data rate and 100 Mbps RX downlink data rate. It is fully integrated on standard TSMC 0.18 nm CMOS within a total size of 0.8 mm2. The total power consumption measured 10.4 mW (5 mW for RX and 5.4 mW for TX at the rate of 500 Mbps)

    High-performance wireless interface for implant-to-air communications

    Get PDF
    Nous élaborons une interface cerveau-machine (ICM) entièrement sans fil afin de fournir un système de liaison directe entre le cerveau et les périphériques externes, permettant l’enregistrement et la stimulation du cerveau pour une utilisation permanente. Au cours de cette thèse, nous explorons la modélisation de canal, les antennes implantées et portables en tant que propagateurs appropriés pour cette application, la conception du nouveau système d’un émetteur-récepteur UWB implantable, la conception niveau système du circuit et sa mise en oeuvre par un procédé CMOS TSMC 0.18 um. En plus, en collaboration avec Université McGill, nous avons conçu un réseau de seize antennes pour une détection du cancer du sein à l’aide d’hyperfréquences. Notre première contribution calcule la caractérisation de canal de liaison sans fil UWB d’implant à l’air, l’absorption spécifique moyennée (ASAR), et les lignes directrices de la FCC sur la densité spectrale de puissance UWB transmis. La connaissance du comportement du canal est nécessaire pour déterminer la puissance maximale permise à 1) respecter les lignes directrices ANSI pour éviter des dommages aux tissus et 2) respecter les lignes directrices de la FCC sur les transmissions non autorisées. Nous avons recours à un modèle réaliste du canal biologique afin de concevoir les antennes pour l’émetteur implanté et le récepteur externe. Le placement des antennes est examiné avec deux scénarios contrastés ayant des contraintés de puissance. La performance du système au sein des tissus biologiques est examinée par l’intermédiaire des simulations et des expériences. Notre deuxième contribution est dédiée à la conception des antennes simples et à double polarisation pour les systèmes d’enregistrement neural sans fil à bande ultra-large en utilisant un modèle multicouches inhomogène de la tête humaine. Les antennes fabriquées à partir de matériaux flexibles sont plus facilement adaptées à l’implantation ; nous étudions des matériaux à la fois flexibles et rigides et examinons des compromis de performance. Les antennes proposées sont conçues pour fonctionner dans une plage de fréquence de 2-11 GHz (ayant S11-dessous de -10 dB) couvrant à la fois la bande 2.45 GHz (ISM) et la bande UWB 3.1-10.6 GHz. Des mesures confirment les résultats de simulation et montrent que les antennes flexibles ont peu de dégradation des performances en raison des effets de flexion (en termes de correspondance d’impédance). Finalement, une comparaison est réalisée entre quatre antennes implantables, couvrant la gamme 2-11 GHz : 1) une rigide, à la polarisation simple, 2) une rigide, à double polarisation, 3) une flexible, à simple polarisation et 4) une flexible, à double polarisation. Dans tous les cas une antenne rigide est utilisée à l’extérieur du corps, avec une polarisation appropriée. Plusieurs avantages ont été confirmés pour les antennes à la polarisation double : 1) une taille plus petite, 2) la sensibilité plus faible aux désalignements angulaires, et 3) une plus grande fidélité. Notre troisième contribution fournit la conception niveau système de l’architecture de communication sans fil pour les systèmes implantés qui stimulent simultanément les neurones et enregistrent les réponses de neurones. Cette architecture prend en charge un grand nombre d’électrodes (> 500), fournissant 100 Mb/s pour des signaux de stimulation de liaison descendante, et Gb/s pour les enregistrements de neurones de liaison montante. Nous proposons une architecture d’émetteur-récepteur qui partage une antenne ultra large bande, un émetteur-récepteur simplifié, travaillant en duplex intégral sur les deux bandes, et un nouveau formeur d’impulsions pour la liaison montante du Gb/s soutenant plusieurs formats de modulation. Nous présentons une démonstration expérimentale d’ex vivo de l’architecture en utilisant des composants discrets pour la réalisation les taux Gb/s en liaison montante. Une bonne performance de taux d’erreur de bit sur un canal biologique à 0,5, 1 et 2 Gb/s des débits de données pour la télémétrie de liaison montante (UWB) et 100 Mb/s pour la télémétrie en liaison descendante (bande 2.45 GHz) est atteinte. Notre quatrième contribution présente la conception au niveau du circuit d’un dispositif d’émission en duplex total qui est présentée dans notre troisième contribution. Ce dispositif d’émission en duplex total soutient les applications d’interfaçage neural multimodal et en haute densité (les canaux de stimulant et d’enregistrement) avec des débits de données asymétriques. L’émetteur (TX) et le récepteur (RX) partagent une seule antenne pour réduire la taille de l’implant. Le TX utilise impulse radio ultra-wide band (IR-UWB) basé sur une approche alliant des bords, et le RX utilise un nouveau 2.4 GHz récepteur on-off keying (OOK).Une bonne isolation (> 20 dB) entre le trajet TX et RX est mis en oeuvre 1) par mise en forme des impulsions transmises pour tomber dans le spectre UWB non réglementé (3.1-7 GHz), et 2) par un filtrage espace-efficace du spectre de liaison descendante OOK dans un amplificateur à faible bruit RX. L’émetteur UWB 3.1-7 GHz peut utiliser soit OOK soit la modulation numérique binaire à déplacement de phase (BPSK). Le FDT proposé offre une double bande avec un taux de données de liaison montante de 500 Mbps TX et un taux de données de liaison descendante de 100 Mb/s RX, et il est entièrement en conformité avec les standards TSMC 0.18 um CMOS dans un volume total de 0,8 mm2. Ainsi, la mesure de consommation d’énergie totale en mode full duplex est de 10,4 mW (5 mW à 100 Mb/s pour RX, et de 5,4 mW à 500 Mb/s ou 10,8 PJ / bits pour TX). Notre cinquième contribution est une collaboration avec l’Université McGill dans laquelle nous concevons des antennes simples et à double polarisation pour les systèmes de détection du cancer du sein à l’aide d’hyperfréquences sans fil en utilisant un modèle multi-couche et inhomogène du sein humain. Les antennes fabriquées à partir de matériaux flexibles sont plus facilement adaptées à des applications portables. Les antennes flexibles miniaturisées monopôles et spirales sur un 50 um Kapton polyimide sont conçus, en utilisant high frequency structure simulator (HFSS), à être en contact avec des tissus biologiques du sein. Les antennes proposées sont conçues pour fonctionner dans une gamme de fréquences de 2 à 4 GHz. Les mesures montrent que les antennes flexibles ont une bonne adaptation d’impédance dans les différentes positions sur le sein. De Plus, deux antennes à bande ultralarge flexibles 4 × 4 (simple et à double polarisation), dans un format similaire à celui d’un soutien-gorge, ont été développés pour un système de détection du cancer du sein basé sur le radar.We are working on a fully wireless brain-machine-interface to provide a communication link between the brain and external devices, enabling recording and stimulating the brain for permanent usage. In this thesis we explore channel modeling, implanted and wearable antennas as suitable propagators for this application, system level design of an implantable UWB transceiver, and circuit level design and implementing it by TSMC 0.18 um CMOS process. Also, in a collaboration project with McGill University, we designed a flexible sixteen antenna array for microwave breast cancer detection. Our first contribution calculates channel characteristics of implant-to-air UWB wireless link, average specific absorption rate (ASAR), and FCC guidelines on transmitted UWB power spectral density. Knowledge of channel behavior is required to determine the maximum allowable power to 1) respect ANSI guidelines for avoiding tissue damage and 2) respect FCC guidelines on unlicensed transmissions. We utilize a realistic model of the biological channel to inform the design of antennas for the implanted transmitter and the external receiver. Antennas placement is examined under two scenarios having contrasting power constraints. Performance of the system within the biological tissues is examined via simulations and experiments. Our second contribution deals with designing single and dual-polarization antennas for wireless ultra-wideband neural recording systems using an inhomogeneous multi-layer model of the human head. Antennas made from flexible materials are more easily adapted to implantation; we investigate both flexible and rigid materials and examine performance trade-offs. The proposed antennas are designed to operate in a frequency range of 2–11 GHz (having S11 below -10 dB) covering both the 2.45 GHz (ISM) band and the 3.1–10.6 GHz UWB band. Measurements confirm simulation results showing flexible antennas have little performance degradation due to bending effects (in terms of impedance matching). Finally, a comparison is made of four implantable antennas covering the 2-11 GHz range: 1) rigid, single polarization, 2) rigid, dual polarization, 3) flexible, single polarization and 4) flexible, dual polarization. In all cases a rigid antenna is used outside the body, with an appropriate polarization. Several advantages were confirmed for dual polarization antennas: 1) smaller size, 2) lower sensitivity to angular misalignments, and 3) higher fidelity. Our third contribution provides system level design of wireless communication architecture for implanted systems that simultaneously stimulate neurons and record neural responses. This architecture supports large numbers of electrodes (> 500), providing 100 Mb/s for the downlink of stimulation signals, and Gb/s for the uplink neural recordings. We propose a transceiver architecture that shares one ultra-wideband antenna, a streamlined transceiver working at full-duplex on both bands, and a novel pulse shaper for the Gb/s uplink supporting several modulation formats. We present an ex-vivo experimental demonstration of the architecture using discrete components achieving Gb/s uplink rates. Good bit error rate performance over a biological channel at 0.5, 1, and 2 Gbps data rates for uplink telemetry (UWB) and 100 Mbps for downlink telemetry (2.45 GHz band) is achieved. Our fourth contribution presents circuit level design of the novel full-duplex transceiver (FDT) which is presented in our third contribution. This full-duplex transceiver supports high-density and multimodal neural interfacing applications (high-channel count stimulating and recording) with asymmetric data rates. The transmitter (TX) and receiver (RX) share a single antenna to reduce implant size. The TX uses impulse radio ultra-wide band (IR-UWB) based on an edge combining approach, and the RX uses a novel 2.4-GHz on-off keying (OOK) receiver. Proper isolation (> 20 dB) between the TX and RX path is implemented 1) by shaping the transmitted pulses to fall within the unregulated UWB spectrum (3.1-7 GHz), and 2) by spaceefficient filtering (avoiding a circulator or diplexer) of the downlink OOK spectrum in the RX low-noise amplifier. The UWB 3.1-7 GHz transmitter can use either OOK or binary phase shift keying (BPSK) modulation schemes. The proposed FDT provides dual band 500-Mbps TX uplink data rate and 100 Mbps RX downlink data rate, and it is fully integrated into standard TSMC 0.18 um CMOS within a total size of 0.8 mm2. The total measured power consumption is 10.4 mW in full duplex mode (5 mW at 100 Mbps for RX, and 5.4 mW at 500 Mbps or 10.8 pJ/bit for TX). Our fifth contribution is a collaboration project with McGill University which we design single and dual-polarization antennas for wireless ultra-wideband breast cancer detection systems using an inhomogeneous multi-layer model of the human breast. Antennas made from flexible materials are more easily adapted to wearable applications. Miniaturized flexible monopole and spiral antennas on a 50 um Kapton polyimide are designed, using a high frequency structure simulator (HFSS), to be in contact with biological breast tissues. The proposed antennas are designed to operate in a frequency range of 2–4 GHz (with reflection coefficient (S11) below -10 dB). Measurements show that the flexible antennas have good impedance matching while in different positions with different curvature around the breast. Furthermore, two flexible conformal 4×4 ultra-wideband antenna arrays (single and dual polarization), in a format similar to that of a bra, were developed for a radar-based breast cancer detection system

    An ultra low power implantable neural recording system for brain-machine interfaces

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 179-187).In the past few decades, direct recordings from different areas of the brain have enabled scientists to gradually understand and unlock the secrets of neural coding. This scientific advancement has shown great promise for successful development of practical brain-machine interfaces (BMIs) to restore lost body functions to patients with disorders in the central nervous system. Practical BMIs require the uses of implantable wireless neural recording systems to record and process neural signals, before transmitting neural information wirelessly to an external device, while avoiding the risk of infection due to through-skin connections. The implantability requirement poses major constraints on the size and total power consumption of the neural recording system. This thesis presents the design of an ultra-low-power implantable wireless neural recording system for use in brain-machine interfaces. The system is capable of amplifying and digitizing neural signals from 32 recording electrodes, and processing the digitized neural data before transmitting the neural information wirelessly to a receiver at a data rate of 2.5 Mbps. By combining state-of-the-art custom ASICs, a commercially-available FPGA, and discrete components, the system achieves excellent energy efficiency, while still offering design flexibility during the system development phase. The system's power consumption of 6.4 mW from a 3.6-V supply at a wireless output data rate of 2.5 Mbps makes it the most energy-efficient implantable wireless neural recording system reported to date. The system is integrated on a flexible PCB platform with dimensions of 1.8 cm x 5.6 cm and is designed to be powered by an implantable Li-ion battery. As part of this thesis, I describe the design of low-power integrated circuits (ICs) for amplification and digitization of the neural signals, including a neural amplifier and a 32-channel neural recording IC. Low-power low-noise design techniques are utilized in the design of the neural amplifier such that it achieves a noise efficiency factor (NEF) of 2.67, which is close to the theoretical limit determined by physics. The neural recording IC consists of neural amplifiers, analog multiplexers, ADCs, serial programming interfaces, and a digital processing unit. It can amplify and digitize neural signals from 32 recording electrodes, with a sampling rate of 31.25 kS/s per channel, and send the digitized data off-chip for further processing. The IC was successfully tested in an in-vivo wireless recording experiment from a behaving primate with an average power dissipation per channel of 10.1 [mu]W. Such a system is also widely useful in implantable brain-machine interfaces for the blind and paralyzed, and in cochlea implants for the deaf.by Woradorn Wattanapanitch.Ph.D

    Area- and Energy- Efficient Modular Circuit Architecture for 1,024-Channel Parallel Neural Recording Microsystem.

    Full text link
    This research focuses to develop system architectures and associated electronic circuits for a next generation neuroscience research tool, a massive-parallel neural recording system capable of recording 1,024 channels simultaneously. Three interdependent prototypes have been developed to address major challenges in realization of the massive-parallel neural recording microsystems: minimization of energy and area consumption while preserving high quality in recordings. First, a modular 128-channel Δ-ΔΣ AFE using the spectrum shaping has been designed and fabricated to propose an area-and energy efficient solution for neural recording AFEs. The AFE achieved 4.84 fJ/C−s·mm2 figure of merit that is the smallest the area-energy product among the state-of-the-art multichannel neural recording systems. It also features power and area consumption of 3.05 µW and 0.05 mm2 per channel, respectively while exhibiting 63.3 dB signal-to-noise ratio with 3.02 µVrms input referred noise. Second, an on-chip mixed signal neural signal compressor was built to reduce the energy consumption in handling and transmission of the recorded data since this occupies a large portion of the total energy consumption as the number of parallel recording increases. The compressor reduces the data rates of two distinct groups of neural signals that are essential for neuroscience research: LFP and AP without loss of informative signals. As a result, the power consumptions for the data handling and transmissions of the LFP and AP were reduced to about 1/5.35 and 1/10.54 of the uncompressed cases, respectively. In the total data handling and transmission, the measured power consumption per channel is 11.98 µW that is about 1/9 of 107.5 µW without the compression. Third, a compact on-chip dc-to-dc converter with constant 1 MHz switching frequency has been developed to provide reliable power supplies and enhance energy delivery efficiency to the massive-parallel neural recording systems. The dc-to-dc converter has only predictable tones at the output and it exhibits > 80% power conversion efficiency at ultra-light loads, < 100 µW that is relevant power most of the multi-channel neural recording systems consume. The dc-to-dc converter occupies 0.375 mm2 of area which is less than 1/20 of the area the first prototype consumes (8.64 mm2).PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133244/1/sungyun_1.pd

    Régulateurs "Waterfall" : une nouvelle topologie énergétique pour l'électronique

    Get PDF
    Ce travail décrit une nouvelle topologie d'alimentation qui apporte des bénéfices aux dispositifs portables et aux composants électroniques à faible consommation. À l'autre extrémité du spectre, il serait également applicable aux systèmes à tension de bus plus élevée, tels que les panneaux solaires et les véhicules électriques, qui doivent décomposer des tensions plus élevées en domaines utilisables. La nouvelle topologie, que nous avons nommée Waterfall regulator, est décrite dans le présent travail et nommée ainsi pour ses caractéristiques saillantes rappelant une chute en cascade. Ce dispositif ouvre de nouvelles perspectives pour les systèmes à très basse consommation, basse tension et courant faible. Le mode de fonctionnement consiste à diviser une source d'alimentation brute en plusieurs domaines de tension, qui peuvent ensuite être utilisés pour alimenter les éléments individuels d'un système ou plusieurs unités indépendantes. Nous décrivons ici le premier rapport sur la réussite de la version de recyclage de l'énergie de ce nouveau système. Le dispositif se caractérise par une série de régulateurs de tension à faible chute et de circuits de déversement de courant (pass MOSFET). Le régulateur partage le courant qui traverse sa charge respective et complète le courant du stade suivant par un déversoir de courant, selon les besoins. Le contrôle s'effectue via une architecture de contrôle en cascade et peut être étendu à des périphériques d'ordre supérieur.This work described a new power supply topology that benefits portable device and low power electronics. At the other end of the spectrum, it is also applicable to higher bus voltage systems like solar panels and electric vehicles that must split higher voltages into usable domains. The new topology, which we named waterfall regulator, is describe herein and named as such for its salient features reminiscent of a waterfall. It opens up a new realm of possibilities for supra low power, low voltage and low current systems. The mode of operation consists of splitting a raw supply source into smaller voltage domains which can then be used for powering individual element of a system or powering multiple independent units. We describe here the first report of successful energy recycling version of this novel system. The devices are composed of a series of low dropout voltage regulators and current spillways circuits (pass MOSFET). The regulators share current passing thought their respective load and supplement current through a current spillway as required. Control is achieved through a cascade architecture and can be scaled up to higher order devices

    Analog VLSI Circuits for Biosensors, Neural Signal Processing and Prosthetics

    Get PDF
    Stroke, spinal cord injury and neurodegenerative diseases such as ALS and Parkinson's debilitate their victims by suffocating, cleaving communication between, and/or poisoning entire populations of geographically correlated neurons. Although the damage associated with such injury or disease is typically irreversible, recent advances in implantable neural prosthetic devices offer hope for the restoration of lost sensory, cognitive and motor functions by remapping those functions onto healthy cortical regions. The research presented in this thesis is directed toward developing enabling technology for totally implantable neural prosthetics that could one day restore lost sensory, cognitive and motor function to the victims of debilitating neural injury or disease. There are three principal components to this work. First, novel integrated biosensors have been designed and implemented to transduce weak extra-cellular electrical potentials and optical signals from cells cultured directly on the surface of the sensor chips, as well as to manipulate cells on the surface of these chips. Second, a method of detecting and identifying stereotyped neural signals, or action potentials, has been mapped into silicon circuits which operate at very low power levels suitable for implantation. Third, as one small step towards the development of cognitive neural implants, a learning silicon synapse has been implemented and a neural network application demonstrated. The original contributions of this dissertation include: * A contact image sensor that adapts to background light intensity and can asynchronously detect statistically significant optical events in real-time; * Programmable electrode arrays for enhanced electrophysiological recording, for directing cellular growth, for site-specific in situ bio-functionalization, and for analyte and particulate collection; * Ultra-low power, programmable floating gate template matching circuits for the detection and classification of neural action potentials; * A two transistor synapse that exhibits spike timing dependent plasticity and can implement adaptive pattern classification and silicon learning
    corecore