5,238 research outputs found

    Design and realization of a high-speed 12-bit pipelined analog-digital converter IP block

    Get PDF
    This thesis presents the design, verification, system integration and the physical realization of a monolithic high-speed analog-digital converter (ADC) with 12-bit accuracy. The architecture of the ADC has been realized as a pipelined structure consisting of four pipeline stages, each of which is capable of processing the incoming analog signal with 4-bit accuracy. A bit-overlapping technique has been employed for digital error correction between the pipeline stages so that the influence of possible errors that occur during analog signal processing can be minimized. The entire circuit architecture is built with a modular approach, consisting of identical blocks organized into an easily expandable pipeline chain. All analog as well as digital sub-blocks of the ADC architecture presented in this work operate on a single clock signal (and its inverse), which significantly simplifies the design while ensuring a more robust performance. Other important features of this ADC include small area, single power supply, low power consumption, capability to operate at very high sampling clock rates, and the ability to handle a wide range of input signal amplitudes. The analog processing modules were designed using single-ended signals and the single-ended building blocks (as opposed to differential signals and building blocks) for simplicity. The ADC architecture was realized using a conventional 0.18 micron digital CMOS technology (Foundry: UMC), which ensures a lower overall cost and better portability for the design. The ADC architecture presented in this work is capable of operating at sampling frequencies of up to 200 MHz, and still can achieve the nominal bit-resolution that was intended for 12-bit accuracy. The entire circuit is designed with single 1.8 V power supply. The maximum range of the input signal amplitude that the ADC can handle is 1.6 Vpp, with 1.8 V supply voltage. The input signal range as well as the operating points of critical components can be adjusted externally using dedicated control pins. The overall power consumption is estimated as 67.5 mW at 200 MHz sampling rate. Each 4-bit pipeline stage consists of a 4-bit flash A/D converter, a fully capacitive multiplying DAC (MDAC) and the corresponding digital encoding circuitry. The overall silicon area of the ADC is approximately 0.25 mm2. The ADC architecture presented in this thesis is intended as a state-of-the-art data converter for very high-speed applications such as digital video transmission or high bandwidth wireless communication needs. It can be used either as a stand-alone single-chip unit, or as an embedded IP block that can be integrated with other modules on chip

    Transistor-Level Synthesis of Pipeline Analog-to-Digital Converters Using a Design-Space Reduction Algorithm

    Get PDF
    A novel transistor-level synthesis procedure for pipeline ADCs is presented. This procedure is able to directly map high-level converter specifications onto transistor sizes and biasing conditions. It is based on the combination of behavioral models for performance evaluation, optimization routines to minimize the power and area consumption of the circuit solution, and an algorithm to efficiently constraint the converter design space. This algorithm precludes the cost of lengthy bottom-up verifications and speeds up the synthesis task. The approach is herein demonstrated via the design of a 0.13 μm CMOS 10 bits@60 MS/s pipeline ADC with energy consumption per conversion of only 0.54 pJ@1 MHz, making it one of the most energy-efficient 10-bit video-rate pipeline ADCs reported to date. The computational cost of this design is of only 25 min of CPU time, and includes the evaluation of 13 different pipeline architectures potentially feasible for the targeted specifications. The optimum design derived from the synthesis procedure has been fine tuned to support PVT variations, laid out together with other auxiliary blocks, and fabricated. The experimental results show a power consumption of 23 [email protected] V and an effective resolution of 9.47-bit@1 MHz. Bearing in mind that no specific power reduction strategy has been applied; the mentioned results confirm the reliability of the proposed approach.Ministerio de Ciencia e Innovación TEC2009-08447Junta de Andalucía TIC-0281

    Analogue to Digital and Digital to Analogue Converters (ADCs and DACs): A Review Update

    Full text link
    This is a review paper updated from that presented for CAS 2004. Essentially, since then, commercial components have continued to extend their performance boundaries but the basic building blocks and the techniques for choosing the best device and implementing it in a design have not changed. Analogue to digital and digital to analogue converters are crucial components in the continued drive to replace analogue circuitry with more controllable and less costly digital processing. This paper discusses the technologies available to perform in the likely measurement and control applications that arise within accelerators. It covers much of the terminology and 'specmanship' together with an application-oriented analysis of the realisable performance of the various types. Finally, some hints and warnings on system integration problems are given.Comment: 15 pages, contribution to the 2014 CAS - CERN Accelerator School: Power Converters, Baden, Switzerland, 7-14 May 201

    Baseband analog front-end and digital back-end for reconfigurable multi-standard terminals

    Get PDF
    Multimedia applications are driving wireless network operators to add high-speed data services such as Edge (E-GPRS), WCDMA (UMTS) and WLAN (IEEE 802.11a,b,g) to the existing GSM network. This creates the need for multi-mode cellular handsets that support a wide range of communication standards, each with a different RF frequency, signal bandwidth, modulation scheme etc. This in turn generates several design challenges for the analog and digital building blocks of the physical layer. In addition to the above-mentioned protocols, mobile devices often include Bluetooth, GPS, FM-radio and TV services that can work concurrently with data and voice communication. Multi-mode, multi-band, and multi-standard mobile terminals must satisfy all these different requirements. Sharing and/or switching transceiver building blocks in these handsets is mandatory in order to extend battery life and/or reduce cost. Only adaptive circuits that are able to reconfigure themselves within the handover time can meet the design requirements of a single receiver or transmitter covering all the different standards while ensuring seamless inter-interoperability. This paper presents analog and digital base-band circuits that are able to support GSM (with Edge), WCDMA (UMTS), WLAN and Bluetooth using reconfigurable building blocks. The blocks can trade off power consumption for performance on the fly, depending on the standard to be supported and the required QoS (Quality of Service) leve

    Simulation-based high-level synthesis of Nyquist-rate data converters using MATLAB/SIMULINK

    Get PDF
    This paper presents a toolbox for the simulation, optimization and high-level synthesis of Nyquist-rate Analog-to-Digital (A/D) and Digital-to-Analog (D/A) Converters in MATLAB®. The embedded simulator uses SIMULINK® C-coded S-functions to model all required subcircuits including their main error mechanisms. This approach allows to drastically speed up the simulation CPU-time up to 2 orders of magnitude as compared with previous approaches - based on the use of SIMULINK® elementary blocks. Moreover, S-functions are more suitable for implementing a more detailed description of the circuit. For all subcircuits, the accuracy of the behavioral models has been verified by electrical simulation using HSPICE. For synthesis purposes, the simulator is used for performance evaluation and combined with an hybrid optimizer for design parameter selection. The optimizer combines adaptive statistical optimization algorithm inspired in simulated annealing with a design-oriented formulation of the cost function. It has been integrated in the MATLAB/SIMULINK® platform by using the MATLAB® engine library, so that the optimization core runs in background while MATLAB® acts as a computation engine. The implementation on the MATLAB® platform brings numerous advantages in terms of signal processing, high flexibility for tool expansion and simulation with other electronic subsystems. Additionally, the presented toolbox comprises a friendly graphical user interface to allow the designer to browse through all steps of the simulation, synthesis and post-processing of results. In order to illustrate the capabilities of the toolbox, a 0.13)im CMOS 12bit@80MS/s analog front-end for broadband power line communications, made up of a pipeline ADC and a current steering DAC, is synthesized and high-level sized. Different experiments show the effectiveness of the proposed methodology.Ministerio de Ciencia y Tecnología TIC2003-02355RAICONI

    Calibration of pipeline ADC with pruned Volterra kernels

    Get PDF
    A Volterra model is used to calibrate a pipeline ADC simulated in Cadence Virtuoso using the STMicroelectronics CMOS 45 nm process. The ADC was designed to work at 50 MSps, but it is simulated at up to 125 MSps, proving that calibration using a Volterra model can significantly increase sampling frequency. Equivalent number of bits (ENOB) improves by 1-2.5 bits (6-15 dB) with 37101 model parameters. The complexity of the calibration algorithm is reduced using different lengths for each Volterra kernels and performing iterative pruning. System identification is performed by least squares techniques with a set of sinusoids at different frequencies spanning the whole Nyquist band. A comparison with simplified Volterra models proposed in the literature shows better performance for the pruned Volterra model with comparable complexity, improving linearity by as much as 1.5 bits more than the other techniques
    corecore