7 research outputs found

    High-Speed Radhard Mega-Pixel CIS Camera for High-Energy Physics

    Full text link
    This dissertation describes the schematic design, physical layout implementation, system-level hardware with FPGA firmware design, and testing of a camera-on-a-chip with a novel high-speed CMOS image sensor (CIS) architecture developed for a mega-pixel array. The novel features of the design include an innovative quadruple column-parallel readout (QCPRO) scheme with rolling shutter that increases pixel rate, its ability to program the frame rate and to tolerate Total Ionizing Dose effects (TID). Two versions of the architecture, a small (128 x 1,024 pixels) and large (768 x 1,024 pixels) version were designed and fabricated with a custom layout that does not include library parts. The designs achieve a performance of 20 to 4,000 frames per second (fps) and they tolerate up to 125 krads of radiation exposure. The high-speed CIS architecture proposes and implements a creative quadruple column-parallel readout (QCPRO) scheme to achieve a maximum pixel rate, 10.485 gigapixels/s. The QCPRO scheme consists of four readout blocks per column and to complete four rows of pixels readout process at one line time. Each column-level readout block includes an analog time-interleaving (ATI) sampling circuit, a switched-capacitor programmable gain amplifier (SC-PGA), a 10-bit successive-approximation register (SAR) ADC, two 10-bit memory banks. The column-parallel SAR ADC is area-efficient to be laid out in half of one pixel pitch, 10 um. The analog ATI sampling circuit has two sample-and-hold circuits. Each sampling circuit can independently complete correlated double sampling (CDS) operation. Furthermore, to deliver over 10^10 pixel data in one second, a high-speed differential Scalable Low-Voltage Signaling (SLVS) transmitter for every 16 columns is designed to have 1 Gbps/ch at 0.4 V. Two memory banks provide a ping-pong operation: one connecting to the ADC for storing digital data and the other to the SLVS for delivering data to the off-chip FPGA. Therefore, the proposed CIS architecture can achieve 10,000 frames per second for a 1,024 x 1,024 pixel array. The floor plan of the proposed CIS architecture is symmetrical having one-half of pixel rows to read out on top, and the other half read out on the bottom of the pixel array. The rolling shutter feature with multi-lines readout in parallel and oversampling technique relaxes the image artifacts for capturing fast-moving objects. The CIS camera can provide complete digital input control and digital pixel data output. Many other components are designed and integrated into the proposed CMOS imager, including the Serial Peripheral Interface (SPI), bandgap reference, serializers, phase-locked loops (PLLs), and sequencers with configuration registers. Also, the proposed CIS can program the frame rate for wider applications by modifying three parameters: input clock frequency, the region of interest, and the counter size in the sequencer. The radiation hardening feature is achieved by using the combination of enclosed geometry technique and P-type guard-rings in the 0.18 um CMOS technology. The peripheral circuits use P-type guard-rings to cut the TID-induced leakage path between device to device. Each pixel cell is radiation tolerant by using enclosed layout transistors. The pinned photodiode is also used to get low dark current, and correlated double sampling to suppress pixel-level fixed-pattern noise and reset noise. The final pixel cell is laid out in 20 x 20 um^2. The total area of the pixel array is 2.56 x 20.28 mm^2 for low-resolution imager prototype and 15.36 x 20.28 mm^2 for high-resolution imager prototype. The entire CIS camera system is developed by the implementation of the hardware and FPGA firmware of the small-format prototype with 128 x 1,024 pixels and 754 pads in a 4.24 x 25.125 mm^2 die area. Different testing methods are also briefly described for different test purposes. Measurement results validate the functionalities of the readout path, sequencer, on-chip PLLs, and the SLVS transmitters. The programmable frame rate feature is also demonstrated by checking the digital control outputs from the sequencer at different frame rates. Furthermore, TID radiation tests proved the pixels can work under 125 krads radiation exposure

    Crexens™: an expandable general-purpose electrochemical analyzer

    Get PDF
    2019 Fall.Includes bibliographical references.Electrochemical analysis has gained a great deal of attention of late due to its low-cost, easy-to-perform, and easy-to-miniaturize, especially in personal health care where accuracy and mobility are key factors to bring diagnostics to patients. According to data from Centers for Medicare & Medicaid Services (CMS) in the US, the share of health expenditure in the US has been kept growing in the past 3 decades and reached 17.9% of its overall Gross Domestic Product till 2016, which is equivalent to 10,348foreverypersonintheUSperyear.Ontheotherhand,healthcareresourcesareoftenlimitednotonlyinruralareabutalsoappearedinwell−developedcountries.TheurgentneedandthelackofhealthresourcebringstofronttheresearchinterestofPoint−of−Care(PoC)diagnosisdevices.Electrochemicalmethodshavebeenlargelyadoptedbychemistandbiologistfortheirresearchpurposes.However,severalissuesexistwithincurrentcommercialbenchtopinstrumentsforelectrochemicalmeasurement.Firstofall,thecurrentcommercialinstrumentsareusuallybulkyanddonothavehandheldfeatureforpoint−of−careapplicationsandthecostareeasilynear10,348 for every person in the US per year. On the other hand, health care resources are often limited not only in rural area but also appeared in well-developed countries. The urgent need and the lack of health resource brings to front the research interest of Point-of-Care (PoC) diagnosis devices. Electrochemical methods have been largely adopted by chemist and biologist for their research purposes. However, several issues exist within current commercial benchtop instruments for electrochemical measurement. First of all, the current commercial instruments are usually bulky and do not have handheld feature for point-of-care applications and the cost are easily near 5,000 each or above. Secondly, most of the instruments do not have good integration level that can perform different types of electrochemical measurements for different applications. The last but not the least, the existing generic benchtops instruments for electrochemical measurements have complex operational procedures that require users to have a sufficient biochemistry and electrochemistry background to operate them correctly. The proposed Crexens™ analyzer platform is aimed to present an affordable electrochemical analyzerwhile achieving comparable performance to the existing commercial instruments, thus, making general electrochemical measurement applications accessible to general public. In this dissertation, the overall Crexens™ electrochemical analyzer architecture and its evolution are presented. The foundation of the Crexens™ architecture was derived from two separate but related research in electrochemical sensing. One of them is a microelectrode sensor array using CMOS for neurotransmitter sensing; the other one is a DNA affinity-based capacitive sensor for infectious disease, such as ZIKA. The CMOS microelectrode sensor array achieved a 320uM sensitivity for norepinephrine, whereas the capacitive sensor achieved a dynamic range of detection from 1 /uL to 105 /uL target molecules (20 to 2 million targets), which makes it be within the detection range in a typical clinical application environment. This dissertation also covers the design details of the CMOS microelectrode array sensor and the capacitive sensor design as a prelude to the development of the Crexens™ analyzer architecture. Finally, an expandable integrated electrochemical analyzer architecture (Crexens™) has been designed for mobile point-of-care (POC) applications. Electrochemical methods have been explored in detecting various bio-molecules such as glucose, lactate, protein, DNA, neurotransmitter, steroid hormone, which resulted in good sensitivity and selectivity. The proposed system is capable of running electrochemical experiments including cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), electrochemical capacitive spectroscopy (ECS), amperometry, potentiometry, and other derived electrochemical based tests. This system consist of a front-end interface to sensor electrodes, a back-end user interface on smart phone and PC, a base unit as master module, a low-noise add-on module, a high-speed add-on module, and a multi-channel add-on module. The architecture allows LEGO™-like capability to stack add-on modules on to the base-unit for performance enhancements in noise, speed or parallelism. The analyzer is capable of performing up to 1900 V/s CV with 10 mV step, up to 12 kHz EIS scan range and a limit of detection at 637 pA for amperometric applications with the base module. With high performance module, the EIS scan range can be extended upto 5 MHz. The limit of detection can be further improved to be at 333 fA using the low-noise module. The form factor of the electrochemical analyzer is designed for its mobile/point-of-care applications, integrating its entire functionality on to a 70 cm² area of surface space. A glutamine enzymatic sensor was used to valid the capability of the proposed electrochemical analyzer and turned out to give good linearity and reached a limit of detection at 50 uM

    A 10-bit SAR ADC with two redundant decisions and splitted-MSB-cap DAC array

    No full text

    Topical Workshop on Electronics for Particle Physics

    Get PDF
    The purpose of the workshop was to present results and original concepts for electronics research and development relevant to particle physics experiments as well as accelerator and beam instrumentation at future facilities; to review the status of electronics for the LHC experiments; to identify and encourage common efforts for the development of electronics; and to promote information exchange and collaboration in the relevant engineering and physics communities

    Proceedings of the Fifth International Mobile Satellite Conference 1997

    Get PDF
    Satellite-based mobile communications systems provide voice and data communications to users over a vast geographic area. The users may communicate via mobile or hand-held terminals, which may also provide access to terrestrial communications services. While previous International Mobile Satellite Conferences have concentrated on technical advances and the increasing worldwide commercial activities, this conference focuses on the next generation of mobile satellite services. The approximately 80 papers included here cover sessions in the following areas: networking and protocols; code division multiple access technologies; demand, economics and technology issues; current and planned systems; propagation; terminal technology; modulation and coding advances; spacecraft technology; advanced systems; and applications and experiments

    [<sup>18</sup>F]fluorination of biorelevant arylboronic acid pinacol ester scaffolds synthesized by convergence techniques

    Get PDF
    Aim: The development of small molecules through convergent multicomponent reactions (MCR) has been boosted during the last decade due to the ability to synthesize, virtually without any side-products, numerous small drug-like molecules with several degrees of structural diversity.(1) The association of positron emission tomography (PET) labeling techniques in line with the “one-pot” development of biologically active compounds has the potential to become relevant not only for the evaluation and characterization of those MCR products through molecular imaging, but also to increase the library of radiotracers available. Therefore, since the [18F]fluorination of arylboronic acid pinacol ester derivatives tolerates electron-poor and electro-rich arenes and various functional groups,(2) the main goal of this research work was to achieve the 18F-radiolabeling of several different molecules synthesized through MCR. Materials and Methods: [18F]Fluorination of boronic acid pinacol esters was first extensively optimized using a benzaldehyde derivative in relation to the ideal amount of Cu(II) catalyst and precursor to be used, as well as the reaction solvent. Radiochemical conversion (RCC) yields were assessed by TLC-SG. The optimized radiolabeling conditions were subsequently applied to several structurally different MCR scaffolds comprising biologically relevant pharmacophores (e.g. β-lactam, morpholine, tetrazole, oxazole) that were synthesized to specifically contain a boronic acid pinacol ester group. Results: Radiolabeling with fluorine-18 was achieved with volumes (800 μl) and activities (≤ 2 GBq) compatible with most radiochemistry techniques and modules. In summary, an increase in the quantities of precursor or Cu(II) catalyst lead to higher conversion yields. An optimal amount of precursor (0.06 mmol) and Cu(OTf)2(py)4 (0.04 mmol) was defined for further reactions, with DMA being a preferential solvent over DMF. RCC yields from 15% to 76%, depending on the scaffold, were reproducibly achieved. Interestingly, it was noticed that the structure of the scaffolds, beyond the arylboronic acid, exerts some influence in the final RCC, with electron-withdrawing groups in the para position apparently enhancing the radiolabeling yield. Conclusion: The developed method with high RCC and reproducibility has the potential to be applied in line with MCR and also has a possibility to be incorporated in a later stage of this convergent “one-pot” synthesis strategy. Further studies are currently ongoing to apply this radiolabeling concept to fluorine-containing approved drugs whose boronic acid pinacol ester precursors can be synthesized through MCR (e.g. atorvastatin)
    corecore