195 research outputs found

    Readout Method And Electronic Bandwidth Control For A Silicon In-plane Tuning Fork Gyroscope

    Get PDF
    Disclosed are methods and a sensor architecture that utilizes the residual quadrature error in a gyroscope to achieve and maintain perfect mode-matching, i.e., ~0 Hz split between the drive and sense mode frequencies, and to electronically control sensor bandwidth. In a reduced-to-practice embodiment, a 6 mW, 3V CMOS ASIC and control algorithm are interfaced to a mode-matched MEMS tuning fork gyroscope to implement an angular rate sensor with bias drift as low as 0.15°/hr and angle random walk of 0.003°/√hr, which is the lowest recorded to date for a silicon MEMS gyroscope. The system bandwidth can be configured between 0.1 Hz and 1 kHz.Georgia Tech Research Coporatio

    CMOS systems and circuits for sub-degree per hour MEMS gyroscopes

    Get PDF
    The objective of our research is to develop system architectures and CMOS circuits that interface with high-Q silicon microgyroscopes to implement navigation-grade angular rate sensors. The MEMS sensor used in this work is an in-plane bulk-micromachined mode-matched tuning fork gyroscope (M² – TFG ), fabricated on silicon-on-insulator substrate. The use of CMOS transimpedance amplifiers (TIA) as front-ends in high-Q MEMS resonant sensors is explored. A T-network TIA is proposed as the front-end for resonant capacitive detection. The T-TIA provides on-chip transimpedance gains of 25MΩ, has a measured capacitive resolution of 0.02aF /√Hz at 15kHz, a dynamic range of 104dB in a bandwidth of 10Hz and consumes 400μW of power. A second contribution is the development of an automated scheme to adaptively bias the mechanical structure, such that the sensor is operated in the mode-matched condition. Mode-matching leverages the inherently high quality factors of the microgyroscope, resulting in significant improvement in the Brownian noise floor, electronic noise, sensitivity and bias drift of the microsensor. We developed a novel architecture that utilizes the often ignored residual quadrature error in a gyroscope to achieve and maintain perfect mode-matching (i.e.0Hz split between the drive and sense mode frequencies), as well as electronically control the sensor bandwidth. A CMOS implementation is developed that allows mode-matching of the drive and sense frequencies of a gyroscope at a fraction of the time taken by current state of-the-art techniques. Further, this mode-matching technique allows for maintaining a controlled separation between the drive and sense resonant frequencies, providing a means of increasing sensor bandwidth and dynamic range. The mode-matching CMOS IC, implemented in a 0.5μm 2P3M process, and control algorithm have been interfaced with a 60μm thick M2−TFG to implement an angular rate sensor with bias drift as low as 0.1°/hr ℃ the lowest recorded to date for a silicon MEMS gyro.Ph.D.Committee Chair: Farrokh Ayazi; Committee Member: Jennifer Michaels; Committee Member: Levent Degertekin; Committee Member: Paul Hasler; Committee Member: W. Marshall Leac

    Readout Method And Electronic Bandwidth Control For A Silicon In-plane Tuning Fork Gyroscope

    Get PDF
    Disclosed are methods and a sensor architecture that utilizes the residual quadrature error in a gyroscope to achieve and maintain perfect mode-matching, i.e., ~0 Hz split between the drive and sense mode frequencies, and to electronically control sensor bandwidth. In a reduced-to-practice embodiment, a 6 mW, 3V CMOS ASIC and control algorithm are interfaced to a mode-matched MEMS tuning fork gyroscope to implement an angular rate sensor with bias drift as low as 0.15°/hr and angle random walk of 0.003°/√hr, which is the lowest recorded to date for a silicon MEMS gyroscope. The system bandwidth can be configured between 0.1 Hz and 1 kHz.Georgia Tech Research Corporatio

    Degree-per-hour mode-matched micromachined silicon vibratory gyroscopes

    Get PDF
    The objective of this research dissertation is to design and implement two novel micromachined silicon vibratory gyroscopes, which attempt to incorporate all the necessary attributes of sub-deg/hr noise performance requirements in a single framework: large resonant mass, high drive-mode oscillation amplitudes, large device capacitance (coupled with optimized electronics), and high-Q resonant mode-matched operation. Mode-matching leverages the high-Q (mechanical gain) of the operating modes of the gyroscope and offers significant improvements in mechanical and electronic noise floor, sensitivity, and bias stability. The first micromachined silicon vibratory gyroscope presented in this work is the resonating star gyroscope (RSG): a novel Class-II shell-type structure which utilizes degenerate flexural modes. After an iterative cycle of design optimization, an RSG prototype was implemented using a multiple-shell approach on (111) SOI substrate. Experimental data indicates sub-5 deg/hr Allan deviation bias instability operating under a mode-matched operating Q of 30,000 at 23ºC (in vacuum). The second micromachined silicon vibratory gyroscope presented in this work is the mode-matched tuning fork gyroscope (M2-TFG): a novel Class-I tuning fork structure which utilizes in-plane non-degenerate resonant flexural modes. Operated under vacuum, the M2-TFG represents the first reported high-Q perfectly mode-matched operation in Class-I vibratory microgyroscope. Experimental results of device implemented on (100) SOI substrate demonstrates sub-deg/hr Allan deviation bias instability operating under a mode-matched operating Q of 50,000 at 23ºC. In an effort to increase capacitive aspect ratio, a new fabrication technology was developed that involved the selective deposition of doped-polysilicon inside the capacitive sensing gaps (SPD Process). By preserving the structural composition integrity of the flexural springs, it is possible to accurately predict the operating-mode frequencies while maintaining high-Q operation. Preliminary characterization of vacuum-packaged prototypes was performed. Initial results demonstrated high-Q mode-matched operation, excellent thermal stability, and sub-deg/hr Allan variance bias instability.Ph.D.Committee Chair: Dr. Farrokh Ayazi; Committee Member: Dr. Mark G. Allen; Committee Member: Dr. Oliver Brand; Committee Member: Dr. Paul A. Kohl; Committee Member: Dr. Thomas E. Michael

    Interface Circuit for a Multiple-Beam Tuning-Fork Gyroscope with High Quality Factors

    Get PDF
    This research work presents the design, theoretical analysis, fabrication, interface electronics, and experimental results of a Silicon-On-Insulator (SOI) based Multiple-Beam Tuning-Fork Gyroscope (MB-TFG). Based on a numerical model of Thermo-Elastic Damping (TED), a Multiple-Beam Tuning-Fork Structure (MB-TFS) is designed with high Quality factors (Qs) in its two operation modes. A comprehensive theoretical analysis of the MB-TFG design is conducted to relate the design parameters to its operation parameters and further performance parameters. In conjunction with a mask that defines the device through trenches to alleviate severe fabrication effect on anchor loss, a simple one-mask fabrication process is employed to implement this MB-TFG design on SOI wafers. The fabricated MB-TFGs are tested with PCB-level interface electronics and a thorough comparison between the experimental results and a theoretical analysis is conducted to verify the MB-TFG design and accurately interpret the measured performance. The highest measured Qs of the fabricated MB-TFGs in vacuum are 255,000 in the drive-mode and 103,000 in the sense-mode, at a frequency of 15.7kHz. Under a frequency difference of 4Hz between the two modes (operation frequency is 16.8kHz) and a drive-mode vibration amplitude of 3.0μm, the measured rate sensitivity is 80μVpp/°/s with an equivalent impedance of 6MΩ. The calculated overall rate resolution of this device is 0.37/°hr/√Hz, while the measured Angle Random Walk (ARW) and bias instability are 6.67°/\u27√hr and 95°/hr, respectively

    High performance 3-folded symmetric decoupled MEMS gyroscopes

    Get PDF
    This thesis reports, for the first time, on a novel design and architecture for realizing inertial grade gyroscope based on Micro-Electro-Mechanical Systems (MEMS) technology. The proposed device is suitable for high-precision Inertial Navigation Systems (INS). The new design has been investigated analytically and numerically by means of Finite Element Modeling (FEM) of the shapes, resonance frequencies and decoupling of the natural drive and sense modes of the various implementations. Also, famous phenomena known as spring softening and spring hardening are studied. Their effect on the gyroscope operation is modeled numerically in Matlab/Simulink platform. This latter model is used to predict the drive/sense mode matching capability of the proposed designs. Based on the comparison with the best recently reported performance towards inertial grade operation, it is expected that the novel architecture further lowers the dominant Brownian (thermo-mechanical) noise level by more than an order of magnitude (down to 0.08º/hr). Moreover, the gyroscope\u27s figure of merit, such as output sensitivity (150 mV/º/s), is expected to be improved by more than two orders of magnitude. This necessarily results in a signal to noise ratio (SNR) which is up to three orders of magnitude higher (up to 1,900mV/ º/hr). Furthermore, the novel concept introduced in this work for building MEMS gyroscopes allows reducing the sense parasitic capacitance by up to an order of magnitude. This in turn reduces the drive mode coupling or quadrature errors in the sensor\u27s output signal. The new approach employs Silicon-on-Insulator (SOI) substrates that allows the realization of large mass (\u3e1.6mg), large sense capacitance (\u3e2.2pF), high quality factors (\u3e21,000), large drive amplitude (~2-4 µm) and low resonance frequency (~3-4 KHz) as well as the consequently suppressed noise floor and reduced support losses for high-performance vacuum operation. Several challenges were encountered during fabrication that required developing high aspect ratio (up to 1:20) etching process for deep trenches (up to 500 µm). Frequency Response measurement platform was built for devices characterization. The measurements were performed at atmospheric pressures causing huge drop of the devices performance. Therefore, various MEMS gyroscope packaging technologies are studied. Wafer Level Packaging (WLP) is selected to encapsulate the fabricated devices under vacuum by utilizing wafer bonding. Through Silicon Via (TSV) technology was developed (as connections) to transfer the electrical signals (of the fabricated devices) outside the cap wafers

    Development of a Prototype Miniature Silicon Microgyroscope

    Get PDF
    A miniature vacuum-packaged silicon microgyroscope (SMG) with symmetrical and decoupled structure was designed to prevent unintended coupling between drive and sense modes. To ensure high resonant stability and strong disturbance resisting capacity, a self-oscillating closed-loop circuit including an automatic gain control (AGC) loop based on electrostatic force feedback is adopted in drive mode, while, dual-channel decomposition and reconstruction closed loops are applied in sense mode. Moreover, the temperature effect on its zero bias was characterized experimentally and a practical compensation method is given. The testing results demonstrate that the useful signal and quadrature signal will not interact with each other because their phases are decoupled. Under a scale factor condition of 9.6 mV/°/s, in full measurement range of ± 300 deg/s, the zero bias stability reaches 15°/h with worse-case nonlinearity of 400 ppm, and the temperature variation trend of the SMG bias is thus largely eliminated, so that the maximum bias value is reduced to one tenth of the original after compensation from -40 °C to 80 °C

    Self-induced parametric amplification arising from nonlinear elastic coupling in a micromechanical resonating disk gyroscope

    Get PDF
    Parametric amplification, resulting from intentionally varying a parameter in a resonator at twice its resonant frequency, has been successfully employed to increase the sensitivity of many micro- and nano-scale sensors. Here, we introduce the concept of self-induced parametric amplification, which arises naturally from nonlinear elastic coupling between the degenerate vibration modes in a micromechanical disk-resonator, and is not externally applied. The device functions as a gyroscope wherein angular rotation is detected from Coriolis coupling of elastic vibration energy from a driven vibration mode into a second degenerate sensing mode. While nonlinear elasticity in silicon resonators is extremely weak, in this high quality-factor device, ppm-level nonlinear elastic effects result in an order-of-magnitude increase in the observed sensitivity to Coriolis force relative to linear theory. Perfect degeneracy of the primary and secondary vibration modes is achieved through electrostatic frequency tuning, which also enables the phase and frequency of the parametric coupling to be varied, and we show that the resulting phase and frequency dependence of the amplification follow the theory of parametric resonance. We expect that this phenomenon will be useful for both fundamental studies of dynamic systems with low dissipation and for increasing signal-to-noise ratio in practical applications such as gyroscopes

    Advanced single-chip temperature stabilization system for silicon MEMS resonators and gyroscopes

    Get PDF
    The main objective of this research is to develop temperature and frequency stabilization techniques for silicon MEMS oven-controlled crystal oscillators (MEMS OCXO) with high-frequency stability. The device was built upon an ovenized platform that used a micro-heater to adjust the temperature of the resonator. Structural resistance-based (Rstruc) temperature sensing was used to improve the self-temperature monitoring accuracy of the silicon MEMS resonator. An analog feedback micro-oven control loop and a feedforward digital calibration scheme were developed for a 77MHz MEMS oscillator, which achieved a ±0.3ppm frequency stability from -25°C to 85°C. An AC heating scheme was also developed to enable tighter integration of the resonator, temperature sensor (Rstruc) and heaters. This temperature stabilization technique was also applied to silicon MEMS mode-matched vibratory x/y-axis and z-axis gyroscopes on a single chip. The temperature-induced frequency change, scale factor and output bias variations were all reduced significantly. The complete interface circuit for the single-chip three axes gyroscopes were also developed with an innovative trans-impedance amplifier to reduce the input-referred noise. For the first time, the simultaneous operation of mode-matched vibratory 3-axis MEMS gyroscopes on a single chip was demonstrated.Ph.D

    Advanced interface systems for readout, control, and self-calibration of MEMS resonant gyroscopes

    Get PDF
    MEMS gyroscopes have become an essential component in consumer, industrial and automotive applications, owing to their small form factor and low production cost. However, their poor stability, also known as drift, has hindered their penetration into high-end tactical and navigation applications, where highly stable bias and scale factor are required over long period of time to avoid significant positioning error. Improving the long-term stability of MEMS gyroscopes has created new challenges in both the physical sensor design and fabrication, as well as the system architecture used for interfacing with the physical sensor. The objective of this research is to develop interface circuits and systems for in-situ control and self-calibration of MEMS resonators and resonant gyroscopes to enhance the stability of bias and scale factor without the need for any mechanical rotary stage, or expensive bulky lab characterization equipment. The self-calibration techniques developed in this work provide 1-2 orders of magnitude improvement in the drift of bias and scale factor of a resonant gyroscope over temperature and time.Ph.D
    • …
    corecore