4 research outputs found

    Design of High-Speed Power-Efficient Transmitter with Time-Based Equalization

    Get PDF
    ๋ณธ ๋…ผ๋ฌธ์€ ๊ณ ์†, ์ €์ „๋ ฅ์œผ๋กœ ๋™์ž‘ํ•˜๋Š” ์œ ์„  ์†ก์‹ ๊ธฐ์˜ ์„ค๊ณ„์— ๋Œ€ํ•ด ์„ค๋ช…ํ•˜๊ณ  ์žˆ๋‹ค. ๋ถ„๋ฆฌ๋˜์ง€ ์•Š์€ ์ถœ๋ ฅ ๋“œ๋ผ์ด๋ฒ„๊ฐ€ ์žˆ๋Š” ์—๋„ˆ์ง€ ํšจ์œจ์ ์ธ ์ „์•• ๋ชจ๋“œ ์†ก์‹ ๊ธฐ๋Š” ์œ„์ƒ ์ง€์—ฐ ๋ถ„์„์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์‹œ๊ฐ„ ์˜์—ญ์—์„œ ์ฑ„๋„ ์†์‹ค์„ ๋ณด์ƒํ•œ๋‹ค. ์ง๋ ฌํ™”๋œ ๋ฐ์ดํ„ฐ ์ŠคํŠธ๋ฆผ์ด ์•„๋‹Œ ์†ก์‹  ํด๋Ÿญ์˜ ์œ„์ƒ์„ ๋ณ€์กฐํ•จ์œผ๋กœ์จ ์ œ์•ˆ๋œ ์†ก์‹ ๊ธฐ๋Š” ๋ฐ์ดํ„ฐ ์˜์กด์  ์ง€ํ„ฐ๋ฅผ ํฌ๊ฒŒ ์ค„์ธ๋‹ค. ์ˆ˜ํ‰ ์•„์ด ์˜คํ”„๋‹์€ ์ „์†ก๋œ ๋ฐ์ดํ„ฐ์˜ ์‹คํ–‰ ๊ธธ์ด์— ๋”ฐ๋ผ ์ œ๋กœ ํฌ๋กœ์‹ฑ ์‹œ๊ฐ„ ๋ณ€๋™์„ ๋ณด์ƒํ•จ์œผ๋กœ์จ ๊ฐœ์„ ๋œ๋‹ค. ์ œ์•ˆ๋œ ๋ฐฉ์‹์€ ํฐ ์‹ ํ˜ธ ๋ฐ ์Šค์œ„์นญ ์ „๋ ฅ์„ ์†Œ๋น„ํ•˜๋Š” ๋งŽ์€ ๋“œ๋ผ์ด๋ฒ„ ์Šฌ๋ผ์ด์Šค๋ฅผ ์ œ๊ฑฐํ•จ์œผ๋กœ์จ ๋“œ๋ผ์ด๋ฒ„ ๋ณต์žก์„ฑ์„ ํฌ๊ฒŒ ์ค„์ธ๋‹ค. ํ”„๋กœํ† ํƒ€์ž… ์นฉ์€ 28 nm CMOS ๊ณต์ •์œผ๋กœ ์ œ์ž‘๋˜์—ˆ์œผ๋ฉฐ 0.045 mm2 ์˜ ์‹ค์ œ ๋ฉด์ ์„ ์ฐจ์ง€ํ•œ๋‹ค. ์ธก์ •๋œ ๊ฒฐ๊ณผ๋Š” ์ œ์•ˆ๋œ ์†ก์‹ ๊ธฐ๊ฐ€ 1.0 V ๊ณต๊ธ‰์—์„œ 440 mVppd์˜ ์ถœ๋ ฅ ์Šค์œ™์œผ๋กœ 22 Gb/s์˜ ์†๋„์—์„œ 0.95 pJ/b์˜ ์—๋„ˆ์ง€ ํšจ์œจ์„ ๋‹ฌ์„ฑํ•จ์„ ๋ณด์—ฌ์ค€๋‹ค. ๋˜ํ•œ ํ”ผํฌ ๋Œ€ ํ”ผํฌ ์ง€ํ„ฐ๋Š” 15.0 dB ์†์‹ค์˜ ์ฑ„๋„์— ๋Œ€ํ•ด ์ œ์•ˆ๋œ ์œ„์ƒ ์ง€์—ฐ ๋ณด์ƒ์„ ํ†ตํ•ด 22 Gb/s์˜ ์†๋„์—์„œ 34 ps์—์„œ 20 ps๋กœ ๊ฐ์†Œ๋œ๋‹ค.In this thesis, a design of high-speed, power-efficient wireline transmitter is reported. An energy-efficient voltage-mode transmitter with an un-segmented output driver equalizes channel loss in the time-domain based on the phase de-lay analysis. By modulating the phase of the transmitting clock rather than the serialized data stream, the proposed transmitter significantly reduces the data-dependent jitter. The horizontal eye-opening is improved by compensating for the zero-crossing time variation dependent on the run-length of the transmitted data. The proposed scheme significantly reduces the driver complexity by elim-inating many driver slices that consume significant signaling and switching power. The prototype chip has been fabricated in a 28-nm CMOS process and occupies an active area of 0.045 mm2. The measured results show that the pro-posed transmitter achieves an energy efficiency of 0.95 pJ/b at 22 Gb/s with an output swing of 440 mVppd at 1.0 V supply. In addition, peak-to-peak jitter is reduced from 34 ps to 20 ps at 22 Gb/s with the proposed phase delay compen-sation over the channel with a 15.0 dB loss.CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 THESIS ORGANIZATION 4 CHAPTER 2 BACKGROUNDS 5 2.1 OVERVIEW 5 2.2 FEED-FORWARD EQUALIZATION 7 2.2.1 AMPLITUDE-DOMAIN EQUALIZATION 7 2.2.2 PHASE-DOMAIN EQUALIZATION 12 2.2.3 PULSE-WIDTH MODULATION 18 2.3 ADAPTIVE FEED-FORWARD EQUALIZATION 21 2.3.1 AMPLITUDE-DOMAIN EQUALIZATION 21 2.3.2 PULSE-WIDTH MODULATION 24 CHAPTER 3 DESIGN OF THE TIME-BASED FEED-FORWARD EQUALIZATION OF THE TRANSMITTER 26 3.1 OVERVIEW 26 3.2 BASIC CONCEPT OF TIME-BASED FFE 28 3.2.1 ZERO-CROSSING TIME 28 3.2.2 PHASE DELAY 32 3.2.3 FINDING THE OPTIMUM COEFFICIENT 39 3.2.4 COMPARISON WITH CONVENTIONAL FFE 43 3.3 ADAPTIVE TIME-BASED FFE 50 3.3.1 OVERVIEW 50 3.3.2 BEHAVIORAL MODELING 51 3.3.3 SIMULATION RESULTS 53 3.4 TRANSMITTER IMPLEMENTATION 60 3.4.1 OVERVIEW 60 3.4.2 PHASE MODULATION 62 3.4.3 SERIALIZER AND CLOCK PATH 67 CHAPTER 4 MEASUREMENT 71 4.1 OVERVIEW 71 4.2 EYE DIAGRAM 76 4.3 POWER CONSUMPTION 81 CHAPTER 5 CONCLUSION 84 BIBLIOGRAPHY 86 ์ดˆ ๋ก 92๋ฐ•

    ํ†ต๊ณ„์  ์ฃผํŒŒ์ˆ˜ ๊ฒ€์ถœ๊ธฐ ๊ธฐ๋ฐ˜ ๊ธฐ์ค€ ์ฃผํŒŒ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š๋Š” ํด๋ก ๋ฐ ๋ฐ์ดํ„ฐ ๋ณต์› ํšŒ๋กœ์˜ ์„ค๊ณ„ ๋ฐฉ๋ฒ•๋ก 

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2022. 8. ์ •๋•๊ท .In this thesis, a design of a high-speed, power-efficient, wide-range clock and data recovery (CDR) without a reference clock is proposed. A frequency acquisition scheme using a stochastic frequency detector (SFD) based on the Alexander phase detector (PD) is utilized for the referenceless operation. Pat-tern histogram analysis is presented to analyze the frequency acquisition behavior of the SFD and verified by simulation. Based on the information obtained by pattern histogram analysis, SFD using autocovariance is proposed. With a direct-proportional path and a digital integral path, the proposed referenceless CDR achieves frequency lock at all measurable conditions, and the measured frequency acquisition time is within 7ฮผs. The prototype chip has been fabricated in a 40-nm CMOS process and occupies an active area of 0.032 mm2. The proposed referenceless CDR achieves the BER of less than 10-12 at 32 Gb/s and exhibits an energy efficiency of 1.15 pJ/b at 32 Gb/s with a 1.0 V supply.๋ณธ ๋…ผ๋ฌธ์€ ๊ธฐ์ค€ ํด๋Ÿญ์ด ์—†๋Š” ๊ณ ์†, ์ €์ „๋ ฅ, ๊ด‘๋Œ€์—ญ์œผ๋กœ ๋™์ž‘ํ•˜๋Š” ํด๋Ÿญ ๋ฐ ๋ฐ์ดํ„ฐ ๋ณต์›ํšŒ๋กœ์˜ ์„ค๊ณ„๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ๊ธฐ์ค€ ํด๋Ÿญ์ด ์—†๋Š” ๋™์ž‘์„ ์œ„ํ•ด์„œ ์•Œ๋ ‰์‚ฐ๋” ์œ„์ƒ ๊ฒ€์ถœ๊ธฐ์— ๊ธฐ๋ฐ˜ํ•œ ํ†ต๊ณ„์  ์ฃผํŒŒ์ˆ˜ ๊ฒ€์ถœ๊ธฐ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ์ฃผํŒŒ์ˆ˜ ํš๋“ ๋ฐฉ์‹์ด ์‚ฌ์šฉ๋œ๋‹ค. ํ†ต๊ณ„์  ์ฃผํŒŒ์ˆ˜ ๊ฒ€์ถœ๊ธฐ์˜ ์ฃผํŒŒ์ˆ˜ ์ถ”์  ์–‘์ƒ์„ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•ด ํŒจํ„ด ํžˆ์Šคํ† ๊ทธ๋žจ ๋ถ„์„ ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•˜์˜€๊ณ  ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด ๊ฒ€์ฆํ•˜์˜€๋‹ค. ํŒจํ„ด ํžˆ์Šคํ† ๊ทธ๋žจ ๋ถ„์„์„ ํ†ตํ•ด ์–ป์€ ์ •๋ณด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์ž๊ธฐ๊ณต๋ถ„์‚ฐ์„ ์ด์šฉํ•œ ํ†ต๊ณ„์  ์ฃผํŒŒ์ˆ˜ ๊ฒ€์ถœ๊ธฐ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ง์ ‘ ๋น„๋ก€ ๊ฒฝ๋กœ์™€ ๋””์ง€ํ„ธ ์ ๋ถ„ ๊ฒฝ๋กœ๋ฅผ ํ†ตํ•ด ์ œ์•ˆ๋œ ๊ธฐ์ค€ ํด๋Ÿญ์ด ์—†๋Š” ํด๋Ÿญ ๋ฐ ๋ฐ์ดํ„ฐ ๋ณต์›ํšŒ๋กœ๋Š” ๋ชจ๋“  ์ธก์ • ๊ฐ€๋Šฅํ•œ ์กฐ๊ฑด์—์„œ ์ฃผํŒŒ์ˆ˜ ์ž ๊ธˆ์„ ๋‹ฌ์„ฑํ•˜๋Š” ๋ฐ ์„ฑ๊ณตํ•˜์˜€๊ณ , ๋ชจ๋“  ๊ฒฝ์šฐ์—์„œ ์ธก์ •๋œ ์ฃผํŒŒ์ˆ˜ ์ถ”์  ์‹œ๊ฐ„์€ 7ฮผs ์ด๋‚ด์ด๋‹ค. 40-nm CMOS ๊ณต์ •์„ ์ด์šฉํ•˜์—ฌ ๋งŒ๋“ค์–ด์ง„ ์นฉ์€ 0.032 mm2์˜ ๋ฉด์ ์„ ์ฐจ์ง€ํ•œ๋‹ค. ์ œ์•ˆํ•˜๋Š” ํด๋Ÿญ ๋ฐ ๋ฐ์ดํ„ฐ ๋ณต์›ํšŒ๋กœ๋Š” 32 Gb/s์˜ ์†๋„์—์„œ ๋น„ํŠธ์—๋Ÿฌ์œจ 10-12 ์ดํ•˜๋กœ ๋™์ž‘ํ•˜์˜€๊ณ , ์—๋„ˆ์ง€ ํšจ์œจ์€ 32Gb/s์˜ ์†๋„์—์„œ 1.0V ๊ณต๊ธ‰์ „์••์„ ์‚ฌ์šฉํ•˜์—ฌ 1.15 pJ/b์„ ๋‹ฌ์„ฑํ•˜์˜€๋‹ค.CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 THESIS ORGANIZATION 13 CHAPTER 2 BACKGROUNDS 14 2.1 CLOCKING ARCHITECTURES IN SERIAL LINK INTERFACE 14 2.2 GENERAL CONSIDERATIONS FOR CLOCK AND DATA RECOVERY 24 2.2.1 OVERVIEW 24 2.2.2 JITTER 26 2.2.3 CDR JITTER CHARACTERISTICS 33 2.3 CDR ARCHITECTURES 39 2.3.1 PLL-BASED CDR โ€“ WITH EXTERNAL REFERENCE CLOCK 39 2.3.2 DLL/PI-BASED CDR 44 2.3.3 PLL-BASED CDR โ€“ WITHOUT EXTERNAL REFERENCE CLOCK 47 2.4 FREQUENCY ACQUISITION SCHEME 50 2.4.1 TYPICAL FREQUENCY DETECTORS 50 2.4.1.1 DIGITAL QUADRICORRELATOR FREQUENCY DETECTOR 50 2.4.1.2 ROTATIONAL FREQUENCY DETECTOR 54 2.4.2 PRIOR WORKS 56 CHAPTER 3 DESIGN OF THE REFERENCELESS CDR USING SFD 58 3.1 OVERVIEW 58 3.2 PROPOSED FREQUENCY DETECTOR 62 3.2.1 MOTIVATION 62 3.2.2 PATTERN HISTOGRAM ANALYSIS 68 3.2.3 INTRODUCTION OF AUTOCOVARIANCE TO STOCHASTIC FREQUENCY DETECTOR 75 3.3 CIRCUIT IMPLEMENTATION 83 3.3.1 IMPLEMENTATION OF THE PROPOSED REFERENCELESS CDR 83 3.3.2 CONTINUOUS-TIME LINEAR EQUALIZER (CTLE) 85 3.3.3 DIGITALLY-CONTROLLED OSCILLATOR (DCO) 87 3.4 MEASUREMENT RESULTS 89 CHAPTER 4 CONCLUSION 99 APPENDIX A DETAILED FREQUENCY ACQUISITION WAVEFORMS OF THE PROPOSED SFD 100 BIBLIOGRAPHY 108 ์ดˆ ๋ก 122๋ฐ•

    ์ตœ์ ์— ๊ฐ€๊นŒ์šด ํƒ€์ด๋ฐ ์ ์‘์„ ์œ„ํ•ด ์น˜์šฐ์นœ ๋ฐ์ดํ„ฐ ๋ ˆ๋ฒจ๊ณผ ๋ˆˆ ๊ฒฝ์‚ฌ ๋””ํ…ํ„ฐ๋ฅผ ์‚ฌ์šฉํ•œ ์ตœ๋Œ€ ๋ˆˆํฌ๊ธฐ์ถ”์  ํด๋Ÿญ ๋ฐ ๋ฐ์ดํ„ฐ ๋ณต์›ํšŒ๋กœ ์„ค๊ณ„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2021. 2. ์ •๋•๊ท .์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์ตœ์†Œ-๋น„ํŠธ ๋น„ํŠธ ์—๋Ÿฌ์œจ (BER)์— ๋Œ€ํ•œ ์ตœ๋Œ€ ๋ˆˆํฌ๊ธฐ ์ถ”์  CDR (MET-CDR)์˜ ์„ค๊ณ„๊ฐ€ ์ œ์•ˆ๋˜์—ˆ๋‹ค. ์ œ์•ˆ ๋œ CDR ์€ ์ตœ์ ์˜ ์ƒ˜ํ”Œ๋ง ๋‹จ๊ณ„๋ฅผ ์ฐพ๊ธฐ ์œ„ํ•ด ๋ฐ˜๋ณต ์ ˆ์ฐจ๋ฅผ ๊ฐ€์ง„ BER ์นด์šดํ„ฐ ๋˜๋Š” ์•„์ด ๋ชจ๋‹ˆํ„ฐ๊ฐ€ ํ•„ ์š”ํ•˜์ง€ ์•Š๋‹ค. ์—๋Ÿฌ ์ƒ˜ํ”Œ๋Ÿฌ ์ถœ๋ ฅ์— ๊ฐ€์ค‘์น˜๋ฅผ ๋‘์–ด ๋”ํ•˜์—ฌ ์–ป์€ ์น˜์šฐ์นœ ๋ฐ ์ดํ„ฐ ๋ ˆ๋ฒจ (biased dLev) ์€ ์‚ฌ์ „ ์ปค์„œ ISI(pre-cursor ISI) ์˜ ์ •๋ณด๋„ ๊ณ ๋ คํ•œ ๋ˆˆ ๋†’์ด ์ •๋ณด๋ฅผ ์ถ”์ถœํ•œ๋‹ค. ๋ธํƒ€ T ๋งŒํผ์˜ ์‹œ๊ฐ„ ์ฐจ์ด๋ฅผ ๋‘” ์ง€์ ์—์„œ ์ž‘๋™ ํ•˜๋Š” ๋‘ ์ƒ˜ํ”Œ๋Ÿฌ๋Š” ํ˜„์žฌ ๋ˆˆ ๋†’์ด์™€ ๋ˆˆ ๊ธฐ์šธ๊ธฐ์˜ ๊ทน์„ฑ์„ ๊ฐ์ง€ํ•˜๊ณ , ์ด ์ •๋ณด ๋ฅผ ํ†ตํ•ด ์ œ์•ˆํ•˜๋Š” CDR ์€ ๋ˆˆ ๊ธฐ์šธ๊ธฐ๊ฐ€ 0 ์ด๋˜๋Š” ์ตœ๋Œ€ ๋ˆˆ ๋†’์ด๋กœ ์ˆ˜๋ ดํ•œ ๋‹ค. ์ธก์ • ๊ฒฐ๊ณผ๋Š” ์ตœ๋Œ€ ๋ˆˆ ๋†’์ด์™€ ์ตœ์†Œ BER ์˜ ์ƒ˜ํ”Œ๋ง ์œ„์น˜๊ฐ€ ์ž˜ ์ผ์น˜ ํ•จ ์„ ๋ณด์—ฌ์ค€๋‹ค. 28nm CMOS ๊ณต์ •์œผ๋กœ ๊ตฌํ˜„๋œ ์ˆ˜์‹ ๊ธฐ ์นฉ์€ 23.5dB ์˜ ์ฑ„๋„ ์†์‹ค์ด ์žˆ๋Š” ์ƒํƒœ์—์„œ 26Gb/s ์—์„œ ๋™์ž‘ ๊ฐ€๋Šฅํ•˜๋‹ค. 0.25UI ์˜ ์•„์ด ์˜คํ”„๋‹ ์„ ๊ฐ€์ง€๋ฉฐ, 87mW ์˜ ํŒŒ์›Œ๋ฅผ ์†Œ๋น„ํ•œ๋‹ค.In this thesis, design of a maximum-eye-tracking CDR (MET-CDR) for minimum bit error rate (BER) is proposed. The proposed CDR does not require a BER coun-ter or an eye-opening monitor with any iterative procedure to find the near-optimal sampling phase. The biased data-level obtained from the weighted sum of error sampler outputs, UP and DN, extracts the actual eye height information in the presence of pre-cursor ISI. Two samplers operating on two slightly different tim-ings detect the current eye height and the polarity of the eye slope so that the CDR tracks the maximum eye height where the slope becomes zero. Measured results show that the sampling phase of the maximum eye height and that of the mini-mum BER match well. A prototype receiver fabricated in 28 nm CMOS process operates at 26 Gb/s with an eye-opening of 0.25 UI and consumes 87 mW while equalizing 23.5 dB of loss at 13 GHz.ABSTRACT I CONTENTS II LIST OF FIGURES IV LIST OF TABLES VIII CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 THESIS ORGANIZATION 4 CHAPTER 2 BACKGROUNDS 5 2.1 RECEIVER FRONT-END 5 2.1.1 CHANNEL 7 2.1.2 EQUALIZER 17 2.1.3 CDR 32 2.2 PRIOR ARTS ON CLOCK RECOVERY 39 2.2.1 BB-CDR 39 2.2.2 BER-BASED CDR 41 2.2.3 EOM-BASED CDR 44 2.3 CONCEPT OF THE PROPOSED CDR 47 CHAPTER 3 MAXIMUM-EYE-TRACKING CDR WITH BIASED DATA-LEVEL AND EYE SLOPE DETECTOR 49 3.1 OVERVIEW 49 3.2 DESIGN OF MET-CDR 50 3.2.1 EYE HEIGHT INFORMATION FROM BIASED DATA-LEVEL 50 3.2.2 EYE SLOPE DETECTOR AND ADAPTATION ALGORITHM 60 3.2.3 ARCHITECTURE AND IMPLEMENTATION 67 3.2.4 VERIFICATION OF THE ALGORITHM 71 3.2.5 ANALYSIS ON THE BIASED DATA-LEVEL 76 3.3 EXPANSION OF MET-CDR TO PAM4 SIGNALING 84 3.3.1 MET-CDR WITH PAM4 84 3.3.2 CONSIDERATIONS FOR PAM4 87 CHAPTER 4 MEASUREMENT RESULTS 89 CHAPTER 5 CONCLUSION 99 APPENDIX A MATLAB CODE FOR SIMULATING RECEIVER WITH MET-CDR 100 BIBLIOGRAPHY 105 ์ดˆ ๋ก 113Docto

    ์˜คํ”„์…‹ ์ œ๊ฑฐ๊ธฐ์˜ ์ ์‘ ์ œ์–ด ๋“ฑํ™”๊ธฐ์™€ ๋ณด์šฐ-๋ ˆ์ดํŠธ ์œ„์ƒ ๊ฒ€์ถœ๊ธฐ๋ฅผ ํ™œ์šฉํ•œ ์ˆ˜์‹ ๊ธฐ ์„ค๊ณ„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2021.8. ์—ผ์ œ์™„.In this thesis, designs of high-speed, low-power wireline receivers (RX) are explained. To be specific, the circuit techniques of DC offset cancellation, merged-summer DFE, stochastic Baud-rate CDR, and the phase detector (PD) for multi-level signal are proposed. At first, an RX with adaptive offset cancellation (AOC) and merged summer decision-feedback equalizer (DFE) is proposed. The proposed AOC engine removes the random DC offset of the data path by examining the random data stream's sampled data and edge outputs. In addition, the proposed RX incorporates a shared-summer DFE in a half-rate structure to reduce power dissipation and hardware complexity of the adaptive equalizer. A prototype chip fabricated in 40 nm CMOS technology occupies an active area of 0.083 mm2. Thanks to the AOC engine, the proposed RX achieves the BER of less than 10-12 in a wide range of data rates: 1.62-10 Gb/s. The proposed RX consumes 18.6 mW at 10 Gb/s over a channel with a 27 dB loss at 5 GHz, exhibiting a figure-of-merit of 0.068 pJ/b/dB. Secondly, a 40 nm CMOS RX with Baud-rate phase-detector (BRPD) is proposed. The RX includes two PDs: the BRPD employing the stochastic technique and the BRPD suitable for multi-level signals. Thanks to the Baud-rate CDRโ€™s advantage, by not using an edge-sampling clock, the proposed CDR can reduce the power consumption by lowering the hardware complexity. Besides, the proposed stochastic phase detector (SPD) tracks an optimal phase-locking point that maximizes the vertical eye opening. Furthermore, despite residual inter-symbol interference, proposed BRPD for multi-level signal secures vertical eye margin, which is especially vulnerable in the multi-level signal. Besides, the proposed BRPD has a unique lock point with an adaptive DFE, unlike conventional Mueller-Muller PD. A prototype chip fabricated in 40 nm CMOS technology occupies an active area of 0.24 mm2. The proposed PAM-4 RX achieves the bit-error-rate less than 10-11 in 48 Gb/s and the power efficiency of 2.42 pJ/b.๋ณธ ๋…ผ๋ฌธ์€ ๊ณ ์†, ์ €์ „๋ ฅ์œผ๋กœ ๋™์ž‘ํ•˜๋Š” ์œ ์„  ์ˆ˜์‹ ๊ธฐ์˜ ์„ค๊ณ„์— ๋Œ€ํ•ด ์„ค๋ช…ํ•˜๊ณ  ์žˆ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ ๋งํ•˜๋ฉด, ์˜คํ”„์…‹ ์ƒ์‡„, ๋ณ‘ํ•ฉ๋œ ์„œ๋จธ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ฒฐ์ • ํ”ผ๋“œ๋ฐฑ ๋“ฑํ™”๊ธฐ ๊ธฐ์ˆ , ํ™•๋ฅ ์  ๋ณด์šฐ ๋ ˆ์ดํŠธ ํด๋Ÿญ๊ณผ ๋ฐ์ดํ„ฐ ๋ณต์›๊ธฐ, ๊ทธ๋ฆฌ๊ณ  ๋‹ค์ค‘ ๋ ˆ๋ฒจ ์‹ ํ˜ธ์— ์ ํ•ฉํ•œ ์œ„์ƒ ๊ฒ€์ถœ๊ธฐ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ฒซ์งธ๋กœ, ์ ์‘ ์˜คํ”„์…‹ ์ œ๊ฑฐ ๋ฐ ๋ณ‘ํ•ฉ๋œ ์„œ๋จธ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ฒฐ์ • ํ”ผ๋“œ๋ฐฑ ๋“ฑํ™”๊ธฐ๋ฅผ ๊ฐ–์ถ˜ ์ˆ˜์‹ ๊ธฐ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆ๋œ ์ ์‘ ์˜คํ”„์…‹ ์ œ๊ฑฐ ์—”์ง„์€ ์ž„์˜์˜ ๋ฐ์ดํ„ฐ ์ŠคํŠธ๋ฆผ์˜ ์ƒ˜ํ”Œ๋ง ๋ฐ์ดํ„ฐ, ์—์ง€ ์ถœ๋ ฅ์„ ๊ฒ€์‚ฌํ•˜์—ฌ ๋ฐ์ดํ„ฐ ๊ฒฝ๋กœ ์ƒ์˜ ์˜คํ”„์…‹์„ ์ œ๊ฑฐํ•œ๋‹ค. ๋˜ํ•œ ํ•˜ํ”„ ๋ ˆ์ดํŠธ ๊ตฌ์กฐ์˜ ๋ณ‘ํ•ฉ๋œ ์„œ๋จธ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ฒฐ์ • ํ”ผ๋“œ๋ฐฑ ๋“ฑํ™”๊ธฐ๋Š” ์ „๋ ฅ์˜ ์‚ฌ์šฉ๊ณผ ํ•˜๋“œ์›จ์–ด์˜ ๋ณต์žก์„ฑ์„ ์ค„์ธ๋‹ค. 40 nm CMOS ๊ธฐ์ˆ ๋กœ ์ œ์ž‘๋œ ํ”„๋กœํ† ํƒ€์ž… ์นฉ์€ 0.083 mm2 ์˜ ๋ฉด์ ์„ ๊ฐ€์ง„๋‹ค. ์ ์‘ ์˜คํ”„์…‹ ์ œ๊ฑฐ๊ธฐ ๋•๋ถ„์— ์ œ์•ˆ๋œ ์ˆ˜์‹ ๊ธฐ๋Š” 10-12 ๋ฏธ๋งŒ์˜ BER์„ ๋‹ฌ์„ฑํ•œ๋‹ค. ๋˜ํ•œ ์ œ์•ˆ๋œ ์ˆ˜์‹ ๊ธฐ๋Š” 5GHz์—์„œ 27 dB์˜ ๋กœ์Šค๋ฅผ ๊ฐ–๋Š” ์ฑ„๋„์—์„œ 10 Gb/s์˜ ์†๋„์—์„œ 18.6 mW๋ฅผ ์†Œ๋น„ํ•˜๋ฉฐ 0.068 pJ/b/dB์˜ FoM์„ ๋‹ฌ์„ฑํ•˜์˜€๋‹ค. ๋‘๋ฒˆ์งธ๋กœ, ๋ณด์šฐ ๋ ˆ์ดํŠธ ์œ„์ƒ ๊ฒ€์ถœ๊ธฐ๊ฐ€ ์žˆ๋Š” 40 nm CMOS ์ˆ˜์‹ ๊ธฐ๊ฐ€ ์ œ์•ˆ๋˜์—ˆ๋‹ค. ์ˆ˜์‹ ๊ธฐ์—๋Š” ๋‘๊ฐœ์˜ ๋ณด์šฐ ๋ ˆ์ดํŠธ ์œ„์ƒ ๊ฒ€์ถœ๊ธฐ๋ฅผ ํฌํ•จํ•œ๋‹ค. ํ•˜๋‚˜๋Š” ํ™•๋ฅ ๋ก ์  ๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•˜๋Š” ๋ณด์šฐ ๋ ˆ์ดํŠธ ์œ„์ƒ ๊ฒ€์ถœ๊ธฐ์ด๋‹ค. ๋ณด์šฐ ๋ ˆ์ดํŠธ ํด๋Ÿญ ๋ฐ์ดํ„ฐ ๋ณต์›๊ธฐ์˜ ์žฅ์  ๋•๋ถ„์— ์—์ง€ ์ƒ˜ํ”Œ๋ง ํด๋Ÿญ์„ ์‚ฌ์šฉํ•˜์ง€ ์•Š์Œ์œผ๋กœ์„œ ํŒŒ์›Œ์˜ ์†Œ๋ชจ์™€ ํ•˜๋“œ์›จ์–ด์˜ ๋ณต์žก์„ฑ์„ ์ค„์˜€๋‹ค. ๋˜ํ•œ ํ™•๋ฅ ์  ์œ„์ƒ ๊ฒ€์ถœ๊ธฐ๋Š” ์ˆ˜์ง ์•„์ด ์˜คํ”„๋‹์„ ์ตœ๋Œ€ํ™”ํ•˜๋Š” ์ตœ์ ์˜ ์œ„์ƒ ์ง€์ ์„ ์ฐพ์„ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋‹ค๋ฅธ ์œ„์ƒ ๊ฒ€์ถœ๊ธฐ๋Š” ๋‹ค์ค‘ ๋ ˆ๋ฒจ ์‹ ํ˜ธ์— ์ ํ•ฉํ•œ ๋ฐฉ์‹์ด๋‹ค. ์‹ฌ๋ณผ ๊ฐ„ ๊ฐ„์„ญ์ด ๋‹ค์ค‘ ๋ ˆ๋ฒจ ์‹ ํ˜ธ์— ๋งค์šฐ ์ทจ์•ฝํ•œ ๋ฌธ์ œ๊ฐ€ ์žˆ๋”๋ผ๋„ ์ œ์•ˆ๋œ ๋‹ค์ค‘ ๋ ˆ๋ฒจ ์‹ ํ˜ธ์šฉ ๋ณด์šฐ ๋ ˆ์ดํŠธ ์œ„์ƒ ๊ฒ€์ถœ๊ธฐ๋Š” ์ˆ˜์ง ์•„์ด ๋งˆ์ง„์„ ํ™•๋ณดํ•œ๋‹ค. ๊ฒŒ๋‹ค๊ฐ€ ์ œ์•ˆ๋œ ๋ณด์šฐ ๋ ˆ์ดํŠธ ์œ„์ƒ ๊ฒ€์ถœ๊ธฐ๋Š” ๊ธฐ์กด์˜ ๋ฎฌ๋Ÿฌ-๋ฎ๋Ÿฌ ์œ„์ƒ ๊ฒ€์ถœ๊ธฐ์™€ ๋‹ฌ๋ฆฌ ์ ์‘ํ˜• ๊ฒฐ์ • ํ”ผ๋“œ๋ฐฑ ๋“ฑํ™”๊ธฐ๊ฐ€ ์žˆ๋”๋ผ๋„ ์œ ์ผํ•œ ๋ฝ ์ง€์ ์„ ๊ฐ–๋Š”๋‹ค. ํ”„๋กœํ† ํƒ€์ž… ์นฉ์€ 0.24mm2์˜ ๋ฉด์ ์„ ๊ฐ€์ง„๋‹ค. ์ œ์•ˆ๋œ PAM-4 ์ˆ˜์‹ ๊ธฐ๋Š” 48 Gb/s์˜ ์†๋„์—์„œ 10-11 ๋ฏธ๋งŒ์˜ BER์„ ๊ฐ€์ง€๊ณ , 2.42 pJ/b์˜ FoM์„ ๊ฐ€์ง„๋‹ค.CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 THESIS ORGANIZATION 5 CHAPTER 2 BACKGROUNDS 6 2.1 BASIC ARCHITECTURE IN SERIAL LINK 6 2.1.1 SERIAL COMMUNICATION 6 2.1.2 CLOCK AND DATA RECOVERY 8 2.1.3 MULTI-LEVEL PULSE-AMPLITUDE MODULATION 10 2.2 EQUALIZER 12 2.2.1 EQUALIZER OVERVIEW 12 2.2.2 DECISION-FEEDBACK EQUALIZER 15 2.2.3 ADAPTIVE EQUALIZER 18 2.3 CLOCK RECOVERY 21 2.3.1 2X OVERSAMPLING PD ALEXANDER PD 22 2.3.2 BAUD-RATE PD MUELLER MULLER PD 25 CHAPTER 3 AN ADAPTIVE OFFSET CANCELLATION SCHEME AND SHARED SUMMER ADAPTIVE DFE 28 3.1 OVERVIEW 28 3.2 AN ADAPTIVE OFFSET CANCELLATION SCHEME AND SHARED-SUMMER ADAPTIVE DFE FOR LOW POWER RECEIVER 31 3.3 SHARED SUMMER DFE 37 3.4 RECEIVER IMPLEMENTATION 42 3.5 MEASUREMENT RESULTS 45 CHAPTER 4 PAM-4 BAUD-RATE DIGITAL CDR 51 4.1 OVERVIEW 51 4.2 OVERALL ARCHITECTURE 53 4.2.1 PROPOSED BAUD-RATE CDR ARCHITECTURE 53 4.2.2 PROPOSED ANALOG FRONT-END STRUCTURE 59 4.3 STOCHASTIC PHASE DETECTION PAM-4 CDR 64 4.3.1 PROPOSED STOCHASTIC PHASE DETECTION 64 4.3.2 COMPARISON OF THE STOCHASTIC PD WITH SS-MMPD 70 4.4 PHASE DETECTION FOR MULTI-LEVEL SIGNALING 73 4.4.1 PROPOSED BAUD-RATE PHASE DETECTOR FOR MULTI-LEVEL SIGNAL 73 4.4.2 DATA LEVEL AND DFE COEFFICIENT ADAPTATION 79 4.4.3 PROPOSED PHASE DETECTOR 84 4.5 MEASUREMENT RESULT 88 4.5.1 MEASUREMENT OF THE PROPOSED STOCHASTIC BAUD-RATE PHASE DETECTION 94 4.5.2 MEASUREMENT OF THE PROPOSED BAUD-RATE PHASE DETECTION FOR MULTI-LEVEL SIGNAL 97 CHAPTER 5 CONCLUSION 103 BIBLIOGRAPHY 105 ์ดˆ ๋ก 109๋ฐ•
    corecore