2,428 research outputs found

    A platoon based model for urban traffic networks: identification, modeling and distributed control

    Get PDF
    Urban traffic control poses a challenging problem in terms of coordinating the different traffic lights that can be used in order to influence the traffic flow. The goal of this approach is to identify and to develop hybrid system models of controlled and uncontrolled intersections and links in urban traffic networks based on formation of platoons. The other purpose is to develop a feedback control algorithm that optimizes the signal timing plan based on the strategy of platoons formation estimated via the vehicle re-identification technology

    Navigating Occluded Intersections with Autonomous Vehicles using Deep Reinforcement Learning

    Full text link
    Providing an efficient strategy to navigate safely through unsignaled intersections is a difficult task that requires determining the intent of other drivers. We explore the effectiveness of Deep Reinforcement Learning to handle intersection problems. Using recent advances in Deep RL, we are able to learn policies that surpass the performance of a commonly-used heuristic approach in several metrics including task completion time and goal success rate and have limited ability to generalize. We then explore a system's ability to learn active sensing behaviors to enable navigating safely in the case of occlusions. Our analysis, provides insight into the intersection handling problem, the solutions learned by the network point out several shortcomings of current rule-based methods, and the failures of our current deep reinforcement learning system point to future research directions.Comment: IEEE International Conference on Robotics and Automation (ICRA 2018

    An Optimal Coordination Framework for Connected and Automated Vehicles in two Interconnected Intersections

    Full text link
    In this paper, we provide a decentralized optimal control framework for coordinating connected and automated vehicles (CAVs) in two interconnected intersections. We formulate a control problem and provide a solution that can be implemented in real time. The solution yields the optimal acceleration/deceleration of each CAV under the safety constraint at "conflict zones," where there is a chance of potential collision. Our objective is to minimize travel time for each CAV. If no such solution exists, then each CAV solves an energy-optimal control problem. We evaluate the effectiveness of the efficiency of the proposed framework through simulation.Comment: 8 pages, 5 figures, IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS 201

    Semi-autonomous Intersection Collision Avoidance through Job-shop Scheduling

    Get PDF
    In this paper, we design a supervisor to prevent vehicle collisions at intersections. An intersection is modeled as an area containing multiple conflict points where vehicle paths cross in the future. At every time step, the supervisor determines whether there will be more than one vehicle in the vicinity of a conflict point at the same time. If there is, then an impending collision is detected, and the supervisor overrides the drivers to avoid collision. A major challenge in the design of a supervisor as opposed to an autonomous vehicle controller is to verify whether future collisions will occur based on the current drivers choices. This verification problem is particularly hard due to the large number of vehicles often involved in intersection collision, to the multitude of conflict points, and to the vehicles dynamics. In order to solve the verification problem, we translate the problem to a job-shop scheduling problem that yields equivalent answers. The job-shop scheduling problem can, in turn, be transformed into a mixed-integer linear program when the vehicle dynamics are first-order dynamics, and can thus be solved by using a commercial solver.Comment: Submitted to Hybrid Systems: Computation and Control (HSCC) 201
    • …
    corecore