4 research outputs found

    A Formulation of the Potential for Communication Condition using C2KA

    Full text link
    An integral part of safeguarding systems of communicating agents from covert channel communication is having the ability to identify when a covert channel may exist in a given system and which agents are more prone to covert channels than others. In this paper, we propose a formulation of one of the necessary conditions for the existence of covert channels: the potential for communication condition. Then, we discuss when the potential for communication is preserved after the modification of system agents in a potential communication path. Our approach is based on the mathematical framework of Communicating Concurrent Kleene Algebra (C2KA). While existing approaches only consider the potential for communication via shared environments, the approach proposed in this paper also considers the potential for communication via external stimuli.Comment: In Proceedings GandALF 2014, arXiv:1408.556

    Identifying Implicit Component Interactions in Distributed Cyber-Physical Systems

    Get PDF
    Modern distributed systems and networks, like those found in cyber-physical system domains such as critical infrastructures, contain many complex interactions among their constituent software and/or hardware components. Despite extensive testing of individual components, security vulnerabilities resulting from unintended and unforeseen component interactions (so-called implicit interactions) often remain undetected. This paper presents a method for identifying the existence of implicit interactions in designs of distributed cyber-physical systems using the algebraic modeling framework known as Communicating Concurrent Kleene Algebra (C²KA). Experimental results verifying the applicability of C²KA for identifying dependencies in system designs that would otherwise be very hard to find are also presented. More broadly, this research aims to advance the specification, design, and implementation of distributed cyber-physical systems with improved cybersecurity assurance by providing a new way of thinking about the problem of implicit interactions through the application of formal methods
    corecore