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Abstract
Modern distributed systems and networks, like those

found in cyber-physical system domains such as critical
infrastructures, contain many complex interactions among
their constituent software and/or hardware components.
Despite extensive testing of individual components, security
vulnerabilities resulting from unintended and unforeseen
component interactions (so-called implicit interactions)
often remain undetected. This paper presents a method for
identifying the existence of implicit interactions in designs
of distributed cyber-physical systems using the algebraic
modeling framework known as Communicating Concurrent
Kleene Algebra (C2KA). Experimental results verifying
the applicability of C2KA for identifying dependencies
in system designs that would otherwise be very hard to
find are also presented. More broadly, this research aims
to advance the specification, design, and implementation
of distributed cyber-physical systems with improved
cybersecurity assurance by providing a new way of thinking
about the problem of implicit interactions through the
application of formal methods.

1. Introduction and motivation

Cyber-physical system domains, such as those found in
critical infrastructures and other safety-critical industries,
like the aerospace and automotive industry, are typically de-
signed as large, complex, and distributed networks consist-
ing of many interacting software and hardware components.
Although individual system components are often subject to
rigorous testing and verification, there is often no guarantee
that the overall system will always function as expected
once the components are combined due to their many com-
plex interactions. Because of the size and complexity of
today’s distributed systems, a significant number of these
interactions may not be expected or foreseen by the system
designer (i.e., they are implicit interactions).

In large and complex systems, a significant number of is-
sues can result from interactions among system components
that are satisfying their requirements [44]. As such, implicit
interactions do not necessarily represent errors in the system.
For example, the presence of an implicit interaction in a
given system does not necessarily mean that it fails to
perform the functionality that it was intended to perform.

Rather, the existence of implicit interactions can indicate
unforeseen flaws in the system design allowing for the po-
tential for additional, and often unwanted, system behaviors
to manifest during the operation of the system. Additionally,
or alternatively, such interactions can be symptoms of inten-
tionally compromised software and/or hardware specifically
designed to remain undetected in tests formulated to identify
accidental design flaws in the individual components. Such
compromised software and/or hardware can be exploited to
mount a cyber-attack at a later time. Therefore, this notion of
implicit interactions must be carefully managed, particularly
at early stages of system development, to have systems that
operate as intended, and that are resistant to cyber-attacks.

This paper presents a formal methods-based approach
for identifying the presence of implicit interactions in the
designs of distributed cyber-physical systems. The proposed
approach intends to provide a new way of thinking about
this problem by applying formal methods through the spec-
ification and analysis of the communication among system
components using the algebraic modeling framework called
Communicating Concurrent Kleene Algebra (C2KA) [34],
[35]. The techniques presented here address an increas-
ingly important need, particularly in light of the growth in
complexity of distributed systems and networks in critical
infrastructures and other sectors, and the shortcomings of
formal methods for determining whether such systems are
protected from cyber-threats [6]. Additionally, they help
to identify vulnerabilities in the designs of important ex-
isting system components, allowing for better assessment
of the risks being taken by using such components in the
development of systems. More generally, the objective of
this paper is to provide a rigorous and practical approach
for advancing cybersecurity assurance of distributed cyber-
physical systems at early stages in their development.

The rest of this paper is organized as follows. Section 2
considers the related work and differentiates our contri-
butions from the existing literature. Section 3 outlines an
illustrative example that will be used to demonstrate the
proposed approach throughout the remainder of this paper.
Section 4 outlines the proposed approach for identifying
implicit interactions and presents our experimental results.
Section 5 discusses the proposed approach and comments on
its scalability. Finally, Section 6 gives concluding remarks
and highlights our future work.

5988

Proceedings of the 50th Hawaii International Conference on System Sciences | 2017

URI: http://hdl.handle.net/10125/41886
ISBN: 978-0-9981331-0-2
CC-BY-NC-ND

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301371543?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2. Survey of the literature

In this section, we survey the literature to discuss the
large body of existing work in the area of analyzing com-
ponent interactions in complex systems. We compare and
contrast existing formalisms and approaches for modeling
and analyzing component interactions and we differentiate
our contributions from this existing work.

2.1. Formalisms for modeling complex distributed
systems

The development of formalisms for modeling complex
distributed systems has received much attention in the past.
Many of the proposed formalisms aim to capture the com-
munication, concurrency, and dynamics of the components
that comprise a given system. These existing formalisms in-
clude the Actor Model (e.g., [26], [20], [5], [10]), as well as
process algebras (e.g., CCS [48], CSP [27], ACP [7], and π-
calculus [50]), architectural formal modeling languages
(e.g., AADL [14], EAST-ADL [11], and SysML [17]),
labelled transition systems [38], Petri nets [54], synchroniza-
tion trees [48], event structures [70], action algebras [40],
[43], [55], and Concurrent Kleene Algebra (CKA) [28].

While each of the above mentioned formalisms and
languages have their merits, in this paper, we elect to use
Communicating Concurrent Kleene Algebra (C2KA) [34],
[35] for the system modeling and specification in the pro-
posed approach. C2KA provides a hybrid view of communi-
cation and concurrency encompassing the characteristics of
both state-based and event-based models which is desirable
for specifying systems at various levels of abstraction. By
contrast, other formalisms for capturing the communication,
concurrency, and dynamics of complex distributed systems
do not directly, if at all, provide such a view. Furthermore,
other formalisms do not directly deal with describing how
the behaviors of components within a system are influenced
by stimuli. When considering open systems, stimuli are re-
quired in order to initiate behaviors. Many other formalisms,
such as CKA and process algebras, deal primarily with
closed systems where there is no external influence on the
behaviors of system components and they do not directly, if
at all, consider behaviors in open systems.

2.2. Interference/Non-interference

The problem of implicit component interactions is
closely related to the notion of non-interference [19]. Often
when discussing non-interference, a system is modeled as
a machine with inputs and outputs, each classified as either
low-level or high-level. A system has the non-interference
property if and only if any sequence of low-level inputs will
produce the same low-level outputs, regardless of what the
high-level inputs are, meaning that the low-level components
are not influenced by the high-level components of the
system. The study of non-interference emerged from the
need to understand why particular undesirable interactions
among system components were possible [58].

Numerous approaches for ensuring the satisfaction of
non-interference properties have been proposed. Goguen
and Meseguer [19] defined the existence of undesirable
component interactions through non-interference properties
in security policies. Volpano and Smith [68] described non-
interference through typing where a system contains in-
terference if it cannot be correctly typed, and Ryan [57]
and Lowe [46] described non-interference within a process
algebraic framework. More recently, there has been work
in addressing issues of intransitive non-interference [66], as
well as in examining non-interference over system architec-
tures [8].

According to [24], there is a cost for characterizing
system cybersecurity in terms of non-interference assertions.
This is due to the fact that a relatively complicated induc-
tion is necessary to verify that a non-interference policy
is satisfied. Furthermore, non-interference approaches often
attempt to classify system components according to two
security levels: high and low [25]. However, it is rarely
the case that real systems only have two security levels,
which leads to a fundamental restriction of the use of non-
interference properties. We aim to develop an approach con-
cerned primarily with studying the influence of systems and
components on one another through their communication,
and that offers a level of abstraction that does not require
any rigid classification of system components.

2.3. Information flow analysis

The study of information flow has been considered
one of the primary approaches for studying the interac-
tions of components in complex distributed systems and
networks [16]. For example, Denning [12] investigated a
lattice structure derived from security classes to guarantee
secure systems and information. McDermid and Shi [47] and
Shaffer et al. [61] focussed on identifying system vulnera-
bilities at the implementation level through static analysis
techniques. A variety of other approaches captured infor-
mation flow security requirements using various formalisms
including state machines (e.g., [62]), Petri nets (e.g., [67]),
process algebras (e.g., [15]), typing systems (e.g., [23], [30],
[39], [69]), and axiom systems (e.g., [4], [59]).

Models of information flow attempt to describe all pos-
sible ways of comprising information at fine-grained views
of a system. With this view, the information is recognized as
low as the bit level. Information flow analysis also typically
occurs at later stages in software development, such as the
implementation stage. For instance, typing systems are able
to analyze information flows within program code, but not at
an earlier development stage. Instead, we aim to develop an
approach that can identify implicit component interactions at
much earlier stages in system development. A similar idea
has been carried out by Alghathbar et al. [2]. This work
proposed FlowUML which aimed at validating information
flow policies in UML sequence diagrams in an effort to
detect information flow violations at an earlier stage of
system development.
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2.4. Other related work

In addition to the above, other approaches aimed at
investigating the interactions of system components have
also been proposed using various formalisms, methods, and
techniques. For example, the problem of undesired compo-
nent interactions has been well-documented in the area of
hazard analysis and system safety with the development of
procedures for identifying potential failure modes and events
in complex systems (e.g., [44], [64]). There is also a wealth
of literature describing the kinds of vulnerabilities, threats,
and challenges that exist in distributed cyber-physical sys-
tems, including those found in critical infrastructure sectors.
Many studies are focussed on capturing the interdependen-
cies among critical infrastructure sectors and studying the
effects of (cascading) failures using modeling and simulation
approaches (e.g., [13], [53], [56]). Other existing research
looks to perform risk assessments using a variety of tech-
niques including those based on network analysis and fault
trees (e.g., [45]), anomaly detection (e.g., [31]), and through
the examination of access control mechanisms (e.g., [37]).
However, probabilistic risk assessments place an emphasis
on identifying and dealing with failure events, with design
errors only being considered indirectly through the proba-
bility of the failure event. Issues resulting from unwanted
or unexpected component interactions and systemic factors
are typically not considered.

In contrast, a large proportion of existing work has aimed
to provide formal analysis and verification of concurrent
systems (e.g., [42], [18], [3], [63]), as well as the formal
verification of dynamic and parametrized systems and net-
works (e.g., [9], [1], [51], [52]), as means of providing
assurances that systems operate as expected as they continue
to grow in size and complexity. Similarly, recent work
aiming to formally identify risks and provide solutions for
safely managing the complexity in the design and operation
of flight-critical systems using category theory and the idea
of operads has been proposed [60]. However, a significant
proportion of this work does not explicitly focus on address-
ing the issue of implicit component interactions at the design
stage of system development. By contrast, in the present
paper we provide an approach that examines the component
interactions of distributed cyber-physical systems by ana-
lyzing the potential communication paths arising from the
system design and specification using an alternative abstract
algebraic framework.

Although many formalisms and approaches already exist
which aim to address and discuss issues related to implicit
component interactions, we propose an alternative approach
meant to aid system designers in formally and systemati-
cally assessing their designs by helping to identify potential
security vulnerabilities and risks at early stages of system
development. We aim to provide a different and comple-
mentary perspective for studying the interactions of system
components than what is offered by existing formalisms and
approaches.

3. Illustrative example: Manufacturing cell
control system

Distributed control systems are an important aspect
nearly every cyber-physical system, including critical in-
frastructures, as well as the aerospace and automotive in-
dustries. To demonstrate the proposed methodology, we
consider an illustrative manufacturing cell control system,
adapted from [21], consisting of four agents1 (components):
Control Agent C, Storage Agent S, Handling Agent H, and
Processing Agent P. The expected behavior and operation
of the manufacturing cell control system can be visualized
as shown in the message passing diagram in Figure 1.

When the system is ready to begin manufacturing,
a start event is triggered. C begins the manufacturing
process by sending a load request to S which responds
by entering its loaded behavior (FULL). When the loading
is complete, S broadcasts a loaded message. C responds
by transitioning to its preparation behavior (PREP) and by
sending a prepare request. H responds by transitioning to
its moving behavior (MOVE) and by sending an unload
request to S which responds by entering its unloaded be-
havior (EMPTY). After unloading, S broadcasts an unloaded
message that causes C to transition to its initializing behavior
(INIT) and to issue a setup event. P responds by entering its
setup behavior (SET) and by sending a ready message which
causes H to transition to its waiting behavior (WAIT) and to
send a process event. Both P and C respond by moving to
their working (WORK) and processing (PROC) behaviors, re-
spectively. Once P is finished working, it issues a processed
event that causes C to return to its idle behavior (IDLE).
Similarly, when C is finished processing, it issues a done
message causing P to return to its standby behavior (STBY).
At this point, the control system awaits another start event
to begin the manufacturing process again.

This illustrative manufacturing cell control system will
be used as a running example to show to how to use the
algebraic modeling framework C2KA to specify and analyze
systems to identify implicit interactions. While this example
is presented in the context of manufacturing, the analogous
message passing and dependencies are found in nearly all
distributed cyber-physical systems.

4. The proposed approach

In this section, we articulate the proposed approach for
identifying implicit component interactions in distributed
cyber-physical systems. First, we demonstrate how to model
distributed systems using the algebraic modeling frame-
work known as Communicating Concurrent Kleene Algebra
(C2KA). Then, we provide a formulation of the existence
of implicit interactions and show how to identify implicit
interactions in a system modeled using C2KA. Finally,
we present our experimental results of the analysis of the
illustrative manufacturing cell control system described in
Section 3.

1. The term agent refers to any system, component, or process whose
behavior consists of discrete actions [49].
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Control Agent
(C)

Handling Agent
(H)

Processing Agent
(P)

Storage Agent
(S)

(1) start

(2) load

(3) loaded
(6) unloaded

(4) prepare

(5) unload

(7) setup
(10) done

(8) ready
(9) process

(9) process

(10) processed

Figure 1. Message passing diagram depicting the behavior and operation of the manufacturing cell control system

4.1. Modeling systems using C2KA

Communicating Concurrent Kleene Algebra
(C2KA) [34], [35] is an algebraic framework for capturing
the concurrent and communicating behavior of agents in a
distributed system. In essence, a C2KA is a mathematical
system that describes how a stimulus structure S and a
concurrent Kleene algebra (CKA) K mutually act upon one
another in order to characterize the response invoked by a
stimulus on an agent behavior as a next behavior mapping
(denoted by ◦) and a next stimulus mapping (denoted by λ).
Formally, a C2KA is defined as shown in Definition 1.
Definition 1 (C2KA – e.g., [35]). A Communicating Con-

current Kleene Algebra (C2KA) is a system
(
S,K

)
,

where S =
(
S,⊕,�, d, n

)
is a stimulus structure

and K =
(
K,+, ∗, ; , *©, ;©, 0, 1

)
is a CKA such

that
(
SK,+

)
is a unitary and zero-preserving left S-

semimodule with mapping ◦ : S×K → K and
(
SK,⊕

)
is a unitary and zero-preserving right K-semimodule
with mapping λ : S ×K → S, and where the following
axioms are satisfied for all a, b, c ∈ K and s, t ∈ S:

1) s ◦ (a ; b) = (s ◦ a) ;
(
λ(s, a) ◦ b

)
2) a ≤K c ∨ b = 1 ∨ (s ◦ a) ;

(
λ(s, c) ◦ b

)
= 0

3) λ(s� t, a) = λ
(
s, (t ◦ a)

)
� λ(t, a)

4) s = d ∨ s ◦ 1 = 1
5) a = 0 ∨ λ(n, a) = n

We refer the reader to [34] and [35] for the full detailed
description and presentation of C2KA.

We chose to use C2KA as the framework for spec-
ification and analysis since it provides the capability to
model open systems with the notion of external stimuli
coming from outside the boundaries of the system being
considered. C2KA offers a hybrid view of communication

and concurrency for specifying systems at multiple levels of
abstraction that is not provided by other existing formalisms.
Even with a formalism such as CKA [28], which can be
seen as a hybrid model for concurrency, the notion of
communication is not directly captured. Communication can
only be perceived when programs are given in terms of
the dependencies of shared events, thereby requiring the
instantiation of a low-level model of programs and traces
for CKA in order to define any sort of communication [29].
Instead, we wanted a way in which communication can be
specified using CKA without the need to articulate the state-
based system of each action (i.e., at a convenient abstract
level). Furthermore, by capturing the influence of stimuli
on behaviors within a system, C2KA is also able to capture
the dynamic behavior of distributed systems and networks.
Furthermore, the use of C2KA for modeling and specifying
complex distributed systems makes it straightforward to
ascertain the potential communication paths that exist in a
given system. Consequently, it is easy to develop a percep-
tion of the overall topology of a given system with respect
to its specification which allows for the abstraction of com-
ponents of the overall system behavior. Such abstractions
are not so readily achievable with other existing formalisms
such as process algebras, labelled transition systems, and
Petri nets, for example.

In order to model the example system from Section 3
using C2KA, we first need to identify the support sets of
the stimulus structure S and the CKA K that comprise
the C2KA. The support set of S is generated using the
operations of S and the set of basic stimuli {start , load ,
loaded , prepare, done, unload , unloaded , setup, ready ,
process , processed , d, n} where d and n represent the
deactivation and neutral stimuli, respectively. The support
set of K is generated using the operations of K and the
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Table 1. Stimulus-response specification of the Control Agent C

◦ start load loaded prepare done unload unloaded setup ready process processed

IDLE IDLE IDLE PREP IDLE IDLE IDLE IDLE IDLE IDLE IDLE IDLE
PREP PREP PREP PREP PREP PREP PREP INIT PREP PREP PREP PREP
INIT INIT INIT INIT INIT INIT INIT INIT INIT INIT PROC INIT
PROC PROC PROC PROC PROC PROC PROC PROC PROC PROC PROC IDLE

λ start load loaded prepare done unload unloaded setup ready process processed

IDLE load n prepare n n n n n n n n
PREP n n n n n n setup n n n n
INIT n n n n n n n n n done n
PROC n n n n n n n n n n n

Table 2. Stimulus-response specification of the Storage Agent S

◦ start load loaded prepare done unload unloaded setup ready process processed

EMPTY EMPTY FULL EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY EMPTY
FULL FULL FULL FULL FULL FULL EMPTY FULL FULL FULL FULL FULL

λ start load loaded prepare done unload unloaded setup ready process processed

EMPTY n loaded n n n n n n n n n
FULL n n n n n unloaded n n n n n

Table 3. Stimulus-response specification of the Handling Agent H

◦ start load loaded prepare done unload unloaded setup ready process processed

WAIT WAIT WAIT WAIT MOVE WAIT WAIT WAIT WAIT WAIT WAIT WAIT
MOVE MOVE MOVE MOVE MOVE MOVE MOVE MOVE MOVE WAIT MOVE MOVE

λ start load loaded prepare done unload unloaded setup ready process processed

WAIT n n n unload n n n n n n n
MOVE n n n n n n n n process n n

Table 4. Stimulus-response specification of the Processing Agent P

◦ start load loaded prepare done unload unloaded setup ready process processed

STBY STBY STBY STBY STBY STBY STBY STBY SET STBY STBY STBY
SET SET SET SET SET SET SET SET SET SET WORK SET
WORK WORK WORK WORK WORK STBY WORK WORK WORK WORK WORK WORK

λ start load loaded prepare done unload unloaded setup ready process processed

STBY n n n n n n n ready n n n
SET n n n n n n n n n processed n
WORK n n n n n n n n n n n

set of basic behaviors {IDLE, PREP, INIT, PROC, EMPTY,
FULL, WAIT, MOVE, STBY, SET, WORK, 0, 1} where 0 and 1
represent the inactive and idle behaviors, respectively.

Using the C2KA described above, the behavior of each
system agent is abstractly represented by:

C 7→
〈

IDLE + PREP + INIT + PROC
〉

S 7→
〈

EMPTY + FULL
〉

H 7→
〈

WAIT + MOVE
〉

P 7→
〈

STBY + SET + WORK
〉

For example, this shows that the Control Agent C, at any
given time, can exhibit any one of the four behaviors of
idle, preparing, initializing, or processing, as denoted by the
CKA term constructed using the non-deterministic choice
operator +. Note that for the specification of more complex
agent behaviors, the abstract behavior specification may
include more complex CKA terms involving additional CKA
operators to indicate sequential or parallel composition of
behaviors from the CKA K, for example. In this way, the
use of the C2KA framework for the modeling and specifi-

cation of distributed systems provides the expressiveness to
represent agent behaviors within a wide range of complexity.

We derive the stimulus-response specification of agents
which specifies the next behavior mapping ◦ and next stimu-
lus mapping λ for each system agent. The stimulus-response
specification of the agents are derived from the description
of the example in Section 3 and are shown in Tables 1–4.
The row headers show the possible basic behaviors of the
given agent, and the column headers show the basic stimuli
to which the agent may be subjected. The grids show the
next behavior or next stimulus that results when the stimulus
in the column header is applied to the behavior in the row
header.

4.2. Formulating implicit interactions

An interaction between two system agents can be under-
stood as a potential for communication characterized by the
existence of a communication path allowing for the transfer
of data or control from one agent to another. Communication
via stimuli from agent A to agent B (denoted by A→+

S B)
is said to have taken place only when a stimulus generated
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by A influences (i.e., causes an observable change, directly
or indirectly) the behavior of B. Note that it is possible that
more than one agent is influenced by the generation of the
same stimulus by another agent in the system. The potential
for communication via stimuli is formally defined within the
C2KA framework in [35] and [36] and is not repeated here.

An implicit interaction is an unforeseen, unexpected, or
unintended communication path (influence) in a system. A
system often has an intended sequence of communication
to perform its function. Implicit interactions are those po-
tential influences that are not explicitly stated as part of
the intended system functionality. Let Pintended be the set of
intended interactions. This set of intended interactions can
be derived from the system description and requirements
explicitly provided by the system designer. For example, it
may be represented by the system designer as a message
passing diagram, similar to that shown in Figure 1, or
alternatively, as a collaboration or sequence diagram.

Consider the manufacturing cell control system de-
scribed in Section 3. By extracting the possible sequences
of communication from the message passing diagram, the
intended system interactions that comprise Pintended can be
derived. For example, the sequences depicted in Figure 1
can be unravelled to obtain Figure 2 which shows the
control flow sequence among the system agents. Since the
Processing Agent P and the Control Agent C respond to
the process stimulus at the same time, the expansion of
the concurrent interaction of the system agents is captured
by the branching in the control flow sequence and in the
set of intended interactions. In other words, the set of
intended system interactions captures the possible execu-
tion traces representing the interleavings of the concurrent
behaviors of the system agents. With respect to Figure 2
for the manufacturing cell control system example, the set
of intended interactions can be characterized as follows:

Pintended =
{
C→ S→ C→ H→ S→ C→ P→ H→ P→ C,

C→ S→ C→ H→ S→ C→ P→ H→ C→ P
}

We acknowledge that, in some cases, a complete specifi-
cation or characterization of the intended system interactions
may not be provided or may not be easily derived. In such
cases, it may be possible to alternatively characterize the in-
tended system interactions as a collection of properties of the
modeled system. For example, we can have a property that
expresses that agent A should not be able to communicate
via stimuli with agent B (formally ¬

(
A→+

S B
)
). However,

such properties must be carefully specified in order to ensure
that they are not overly restrictive or relaxed, and to ensure
that the collection of properties does in fact completely char-
acterize the intended system interactions. For this reason,
we have elected to take a more systematic and rigorous
approach for characterizing the intended system interactions,
despite that for reasonably large systems this set may be
quite large. We also note that it is possible to automate the
process of identifying the set of intended system interactions
that comprise Pintended if we assume that we are given a
specific representation (e.g., message passing diagram) of
the expected (designed) system behavior. The articulation

C S C H S C P H

P

C P

C

Figure 2. Expected control flow sequence depicting the
intended system interactions captured by Pintended for
the manufacturing cell control system

of such a representation of the expected system behavior
is typically part of any decent system engineering process.
This kind of automation can help to alleviate the amount
of manual effort required by system analysts in determining
the set of intended system interactions.

Consider a system formed by a set A of agents
with A,B ∈ A such that A 6= B. The existence of an implicit
interaction via stimuli is formally defined in Definition 2.
Definition 2 (Existence of an Implicit Interaction via

Stimuli). An implicit interaction via stimuli from agent A
to agent B exists in a system if and only if:

∃
(
p | p =⇒ (A→+

S B) :

∀(q | q ∈ Pintended : ¬SubPath(p, q) )
)

where SubPath(p, q) is a predicate indicating that p is
a subpath of q.

This is to say that if there exists a path p that indicates
a potential for communication via stimuli from A to B and
that is not a subpath of any of the intended interactions
characterized by the set Pintended, then there exists at least
one implicit interaction via stimuli in the system that is p.

4.3. Identifying implicit interactions

Given a system modeled using C2KA and the stimulus-
response specification of agents (see Tables 1-4), we use
the C2KA prototype tool described in [35] to run an anal-
ysis of the potential for communication via stimuli for the
given system. The tool automatically provides a list of all
potential communication paths via stimuli between each
pair of agents in the system. Once we have identified the
potential communication paths that can exist in the system,
we verify whether each is an implicit interaction by applying
Definition 2 with respect to the set of intended system
interactions. For interactions p and q, this verification can be
done with complexity O(|p||q|) using dynamic programming
approaches (e.g., [22]).

As an example, with respect to Pintended given above,
the tool output for the potential for communication from H
to C yields the communication path H→ S→ C which is a
subpath of one of the interactions in Pintended, meaning this
interaction is intended and expected as part of the system
behavior. However, when examining the potential for com-
munication from P to S, there is a potential communication
path P → C → S which does not exist as a subpath of
any of the interactions in Pintended. This means that this
path represents an implicit interaction and indicates that it
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is possible for the Processing Agent P to indirectly influence
the behavior of the Storage Agent S, despite having no
interaction (direct or indirect) with respect to the given
intended system behavior. Such an implicit interaction is
possible due to the potential for out-of-sequence stimuli to
be issued as a consequence of agents experiencing failures
or being subject to malicious activity, for example.

We note that after having identified the presence of im-
plicit interactions in a given system, each implicit interaction
should be validated to ensure that it is indeed an unwanted
behavior, rather than an undocumented expected behavior.
Furthermore, due to the level of abstraction of the given
system specification using C2KA, we acknowledge that it is
possible that the proposed approach identifies interactions
which are considered to be implicit interactions, but that are
very unlikely to manifest in the real world (e.g., they exist
as model errors). Consequently, we identify the need for
methods and techniques for analyzing the identified implicit
interactions, such as measuring their severity, but also more
sophisticated approaches that delve into the semantics of the
identified implicit interactions in order to validate their exis-
tence, and to more accurately assess the threat that they pose
to the overall safety and security of the given system. Such
validation can be done by incorporating system designers
in the loop, for example, and can involve simulations of
the C2KA model of the system through the development of
scenarios where a particular agent, from which an identified
implicit interaction originates, sends a stimulus, or sequence
of stimuli, other than that which is it is expected to send,
and by examining the resulting system behaviors which can
be computed (automatically) using the axiomatic system of
C2KA.

4.4. Experimental results

After analyzing each of the potential communication
paths between each pair of agents in the manufacturing
cell control system example described in Section 3, we
found that 11 of the 30 total possible communication paths
between each pair of agents are not found as a subpath of
any of the interactions in Pintended and are therefore implicit
interactions. A summary of our experimental results which
are automatically generated with the use of a prototype
tool is given in Table 5. It is important to note that these
implicit interactions are not easily found without the use
of the formal analysis of the system based on its C2KA
specification. The illustrative example shows that, even for
a very small system, there is hidden complexity and coupling
among agents that can lead to the potential for unexpected
system behaviors.

Implicit interactions are undesirable since they offer a
means for system agents to interact in unintended ways.
Their existence indicates that there is an aspect of the
system design (whether intentional or accidental, innocu-
ous or malicious) allowing for this kind of interaction to
be present. These interactions constitute linkages within a
system of which designers are generally unaware, and that

Table 5. Summary of experimental results for
identifying implicit interactions in the manufacturing cell

control system

Interaction # Implicit Interactions # Total Possible Paths

C→+
S H 0 2

C→+
S P 1 2

C→+
S S 1 3

H→+
S C 0 3

H→+
S P 0 3

H→+
S S 2 3

P→+
S C 1 3

P→+
S H 1 2

P→+
S S 4 4

S→+
S C 0 1

S→+
S H 0 2

S→+
S P 1 2

TOTAL 11 30

therefore constitute a security vulnerability. These vulner-
abilities can be exploited if a user can gain access to the
component from which the implicit interaction originates.
For instance, a malicious agent can force stimuli to be sent
out-of-sequence in order to cause the system to behave in a
particular way that may have severe consequences in terms
of safety and security. By demonstrating the existence of
implicit interactions and the resulting unintended influence
of agents, we expect that for larger, more complex, and more
safety-critical systems exhibiting the same characteristics,
the methods presented here will be able to demonstrate the
specific manner in which these influences could be triggers
for very significant destabilizing events.

5. Discussion

There are increasing concerns related to the cyberse-
curity of modern computer systems and networks, and as-
suring the safety, security, and reliability of cyber-physical
systems remains among the top priorities for governments
and providers of communications, financial, electric, and
other services (e.g., [6], [65]). Many of the distributed cyber-
physical systems operating within critical infrastructures and
other safety-critical domains are open systems, meaning that
they participate in intensive communication and exchange
with their environment, which often includes other systems.
These kinds of systems need input in terms of energy,
resources, information, etc., and as a result, the interactions
between a system and its environment need to be carefully
taken into account when modeling such systems [41].

By contrast to existing work (see Section 2) which fo-
cusses a lot of attention on analyzing systems at later stages
in the development, the proposed approach for identifying
and analyzing implicit interactions provides a step towards
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uncovering potential cybersecurity vulnerabilities resulting
from the existence of implicit interactions in distributed
cyber-physical systems. It is a rigorous formal methods-
based approach using an algebraic modeling framework
capable of identifying the implicit interactions that may be
present in a system with respect to a given specification
early in the design stage of system development. This gives
us a way in which we can analyze system designs in order
to identify cybersecurity vulnerabilities and weaknesses so
that these design flaws may be addressed before they are
able to manifest in a system after it has been implemented
and deployed. It also aids in understanding the risks being
taken if such vulnerabilities are not dealt with. Furthermore,
the proposed approach provides a different perspective of a
system and the problem of implicit interactions by offering
a different level of abstraction that allows us to consider
a variety of systems and components/agents. This gives an
alternative way in which we can view the interactions of sys-
tems and agents than what has been traditionally provided by
formalisms such as process algebras, and approaches such
as non-interference and information flow analysis. More
broadly, the proposed approach adds to and complements
existing work that helps us to understand and assure the
safety and security of complex systems.

5.1. Scalability of the proposed approach

Another important issue which presents both challenges
and opportunities with respect to the proposed approach is
its scalability and complexity. Factors such as the number of
agents, the number of stimuli, the number of basic behav-
iors, as well as the complexity of each agent behavior, all
contribute to the overall complexity of the system. Without
a doubt, real world systems are highly complex and scale
in a very unfriendly way, and we need to be able to handle
such issues.

Certainly, direct applicability of the proposed approach
to a system consisting of millions of agents would be
impractical. However, large systems can still be modeled
successfully with the appropriate treatment of agents and
their behaviors. For example, by taking a more coarse-
grained view of the system and aggregating the behav-
iors of a group of agents into a single agent, which is
straightforward due to the abstract nature of the C2KA
framework, we can reduce the overall complexity of the
system under consideration. This idea is reflected in the
illustrative example described throughout this paper as the
Processing Agent P is itself comprised of a numerous dif-
ferent agents (e.g., within a cyber-physical manufacturing
system) responsible for performing the specific process-
ing tasks of the manufacturing process. However, for the
purpose of analyzing interactions, it was appropriate to
treat the Processing Agent as a single entity. Generally
speaking, a significant number of the systems that can be
analyzed using the proposed approach can be decomposed
and structured hierarchically in order to reduce the number
of distinct agents. Moreover, the proposed algorithms and
problem data sets for identifying implicit interactions can be

parallelized in a straightforward manner. In addition, the use
of sophisticated data representations, such as binary decision
diagrams (BDDs) [32], can address a number of the issues
surrounding the amount of computational power and space
required to analyze larger systems. Therefore, we argue that
the proposed approach can scale to handle larger and more
complex systems, but due to resource limitations, we do
not provide a full scalability study in this paper. However,
as a priority for our future work, we identify the need for
setting up a simulation environment and workbench to study
the practical effectiveness and scalability of our approach
in order to obtain estimates on the bounds of the size and
complexity of systems for which our approach can feasibly
identify implicit component interactions.

6. Concluding remarks and future work

We have presented an approach for identifying implicit
interactions in distributed cyber-physical systems in an effort
to address an important open question (e.g., [6]) related
to the application of formal methods to protecting critical
systems from cyber-threats. The approach is based on the
specification and analysis of a system using the C2KA
framework. It is meant to be used as a tool for analyzing
the designs of distributed cyber-physical systems and to
guide the effort of designing-in security through the de-
velopment of approaches for mitigating the existence and
threat of implicit interactions in system designs. Our results
show that a substantial fraction of the potential interactions
represented as communication paths can exist as implicit
interactions that may be unintended or unforeseen by the
system designer. Consequently, we have demonstrated that
the proposed approach can help to specify, design, and
implement systems with improved cybersecurity assurance.

In our current and future work, we are developing a
framework to characterize the severity of implicit interac-
tions, as that information can be invaluable in identifying
where to focus efforts aimed at improving system stability
and security. In addition, we intend to provide simulations
of cyber-attacks mounted upon implicit interactions to study
the effects in their systems. Furthermore, we aim to further
examine the scalability of the proposed approach using
case studies of more complex models inspired by critical
infrastructure systems. Subsequently, we plan to investigate
solutions, like those proposed in [33], for mitigating implicit
interactions in distributed cyber-physical systems.
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