1,752 research outputs found

    A Dynamical Model of Twitter Activity Profiles

    Full text link
    The advent of the era of Big Data has allowed many researchers to dig into various socio-technical systems, including social media platforms. In particular, these systems have provided them with certain verifiable means to look into certain aspects of human behavior. In this work, we are specifically interested in the behavior of individuals on social media platforms---how they handle the information they get, and how they share it. We look into Twitter to understand the dynamics behind the users' posting activities---tweets and retweets---zooming in on topics that peaked in popularity. Three mechanisms are considered: endogenous stimuli, exogenous stimuli, and a mechanism that dictates the decay of interest of the population in a topic. We propose a model involving two parameters η⋆\eta^\star and λ\lambda describing the tweeting behaviour of users, which allow us to reconstruct the findings of Lehmann et al. (2012) on the temporal profiles of popular Twitter hashtags. With this model, we are able to accurately reproduce the temporal profile of user engagements on Twitter. Furthermore, we introduce an alternative in classifying the collective activities on the socio-technical system based on the model.Comment: 10 pages, 5 figure

    Efficiency of Human Activity on Information Spreading on Twitter

    Full text link
    Understanding the collective reaction to individual actions is key to effectively spread information in social media. In this work we define efficiency on Twitter, as the ratio between the emergent spreading process and the activity employed by the user. We characterize this property by means of a quantitative analysis of the structural and dynamical patterns emergent from human interactions, and show it to be universal across several Twitter conversations. We found that some influential users efficiently cause remarkable collective reactions by each message sent, while the majority of users must employ extremely larger efforts to reach similar effects. Next we propose a model that reproduces the retweet cascades occurring on Twitter to explain the emergent distribution of the user efficiency. The model shows that the dynamical patterns of the conversations are strongly conditioned by the topology of the underlying network. We conclude that the appearance of a small fraction of extremely efficient users results from the heterogeneity of the followers network and independently of the individual user behavior.Comment: 29 pages, 10 figure

    Influence of augmented humans in online interactions during voting events

    Full text link
    The advent of the digital era provided a fertile ground for the development of virtual societies, complex systems influencing real-world dynamics. Understanding online human behavior and its relevance beyond the digital boundaries is still an open challenge. Here we show that online social interactions during a massive voting event can be used to build an accurate map of real-world political parties and electoral ranks. We provide evidence that information flow and collective attention are often driven by a special class of highly influential users, that we name "augmented humans", who exploit thousands of automated agents, also known as bots, for enhancing their online influence. We show that augmented humans generate deep information cascades, to the same extent of news media and other broadcasters, while they uniformly infiltrate across the full range of identified groups. Digital augmentation represents the cyber-physical counterpart of the human desire to acquire power within social systems.Comment: 11 page

    On Web User Tracking: How Third-Party Http Requests Track Users' Browsing Patterns for Personalised Advertising

    Get PDF
    On today's Web, users trade access to their private data for content and services. Advertising sustains the business model of many websites and applications. Efficient and successful advertising relies on predicting users' actions and tastes to suggest a range of products to buy. It follows that, while surfing the Web users leave traces regarding their identity in the form of activity patterns and unstructured data. We analyse how advertising networks build user footprints and how the suggested advertising reacts to changes in the user behaviour.Comment: arXiv admin note: substantial text overlap with arXiv:1605.0653

    Characterizing interactions in online social networks during exceptional events

    Get PDF
    Nowadays, millions of people interact on a daily basis on online social media like Facebook and Twitter, where they share and discuss information about a wide variety of topics. In this paper, we focus on a specific online social network, Twitter, and we analyze multiple datasets each one consisting of individuals' online activity before, during and after an exceptional event in terms of volume of the communications registered. We consider important events that occurred in different arenas that range from policy to culture or science. For each dataset, the users' online activities are modeled by a multilayer network in which each layer conveys a different kind of interaction, specifically: retweeting, mentioning and replying. This representation allows us to unveil that these distinct types of interaction produce networks with different statistical properties, in particular concerning the degree distribution and the clustering structure. These results suggests that models of online activity cannot discard the information carried by this multilayer representation of the system, and should account for the different processes generated by the different kinds of interactions. Secondly, our analysis unveils the presence of statistical regularities among the different events, suggesting that the non-trivial topological patterns that we observe may represent universal features of the social dynamics on online social networks during exceptional events

    A Universal Lifetime Distribution for Multi-Species Systems

    Full text link
    Lifetime distributions of social entities, such as enterprises, products, and media contents, are one of the fundamental statistics characterizing the social dynamics. To investigate the lifetime distribution of mutually interacting systems, simple models having a rule for additions and deletions of entities are investigated. We found a quite universal lifetime distribution for various kinds of inter-entity interactions, and it is well fitted by a stretched-exponential function with an exponent close to 1/2. We propose a "modified Red-Queen" hypothesis to explain this distribution. We also review empirical studies on the lifetime distribution of social entities, and discussed the applicability of the model.Comment: 10 pages, 6 figures, Proceedings of Social Modeling and Simulations + Econophysics Colloquium 201

    When-To-Post on Social Networks

    Full text link
    For many users on social networks, one of the goals when broadcasting content is to reach a large audience. The probability of receiving reactions to a message differs for each user and depends on various factors, such as location, daily and weekly behavior patterns and the visibility of the message. While previous work has focused on overall network dynamics and message flow cascades, the problem of recommending personalized posting times has remained an underexplored topic of research. In this study, we formulate a when-to-post problem, where the objective is to find the best times for a user to post on social networks in order to maximize the probability of audience responses. To understand the complexity of the problem, we examine user behavior in terms of post-to-reaction times, and compare cross-network and cross-city weekly reaction behavior for users in different cities, on both Twitter and Facebook. We perform this analysis on over a billion posted messages and observed reactions, and propose multiple approaches for generating personalized posting schedules. We empirically assess these schedules on a sampled user set of 0.5 million active users and more than 25 million messages observed over a 56 day period. We show that users see a reaction gain of up to 17% on Facebook and 4% on Twitter when the recommended posting times are used. We open the dataset used in this study, which includes timestamps for over 144 million posts and over 1.1 billion reactions. The personalized schedules derived here are used in a fully deployed production system to recommend posting times for millions of users every day.Comment: 10 pages, to appear in KDD201
    • …
    corecore