264 research outputs found

    Quickest detection in coupled systems

    Full text link
    This work considers the problem of quickest detection of signals in a coupled system of N sensors, which receive continuous sequential observations from the environment. It is assumed that the signals, which are modeled a general Ito processes, are coupled across sensors, but that their onset times may differ from sensor to sensor. The objective is the optimal detection of the first time at which any sensor in the system receives a signal. The problem is formulated as a stochastic optimization problem in which an extended average Kullback- Leibler divergence criterion is used as a measure of detection delay, with a constraint on the mean time between false alarms. The case in which the sensors employ cumulative sum (CUSUM) strategies is considered, and it is proved that the minimum of N CUSUMs is asymptotically optimal as the mean time between false alarms increases without bound.Comment: 6 pages, 48th IEEE Conference on Decision and Control, Shanghai 2009 December 16 - 1

    Fusing image representations for classification using support vector machines

    Full text link
    In order to improve classification accuracy different image representations are usually combined. This can be done by using two different fusing schemes. In feature level fusion schemes, image representations are combined before the classification process. In classifier fusion, the decisions taken separately based on individual representations are fused to make a decision. In this paper the main methods derived for both strategies are evaluated. Our experimental results show that classifier fusion performs better. Specifically Bayes belief integration is the best performing strategy for image classification task.Comment: Image and Vision Computing New Zealand, 2009. IVCNZ '09. 24th International Conference, Wellington : Nouvelle-Z\'elande (2009

    Preference fusion and Condorcet's Paradox under uncertainty

    Get PDF
    Facing an unknown situation, a person may not be able to firmly elicit his/her preferences over different alternatives, so he/she tends to express uncertain preferences. Given a community of different persons expressing their preferences over certain alternatives under uncertainty, to get a collective representative opinion of the whole community, a preference fusion process is required. The aim of this work is to propose a preference fusion method that copes with uncertainty and escape from the Condorcet paradox. To model preferences under uncertainty, we propose to develop a model of preferences based on belief function theory that accurately describes and captures the uncertainty associated with individual or collective preferences. This work improves and extends the previous results. This work improves and extends the contribution presented in a previous work. The benefits of our contribution are twofold. On the one hand, we propose a qualitative and expressive preference modeling strategy based on belief-function theory which scales better with the number of sources. On the other hand, we propose an incremental distance-based algorithm (using Jousselme distance) for the construction of the collective preference order to avoid the Condorcet Paradox.Comment: International Conference on Information Fusion, Jul 2017, Xi'an, Chin

    Scanpath assessment of visible and infrared side-by-side and fused video displays

    Get PDF
    • …
    corecore