138 research outputs found

    Walking Behavior Change Detector for a “Smart” Walker

    Get PDF
    AbstractThis study investigates the design of a novel real-time system to detect walking behavior changes using an accelerometer on a rollator. No sensor is required on the user. We propose a new non-invasive approach to detect walking behavior based on the motion transfer by the user on the walker. Our method has two main steps; the first is to extract a gait feature vector by analyzing the three-axis accelerometer data in terms of magnitude, gait cycle and frequency. The second is to classify gait with the use of a decision tree of multilayer perceptrons. To assess the performance of our technique, we evaluated different sampling window lengths of 1, 3 an 5seconds and four different Neural Network architectures. The results revealed that the algorithm can distinguish walking behavior such as normal, slow and fast with an accuracy of about 86%. This research study is part of a project aiming at providing a simple and non-invasive walking behavior detector for elderly who use rollators

    Walking Behavior Change Detector for a “Smart” Walker

    Get PDF
    AbstractThis study investigates the design of a novel real-time system to detect walking behavior changes using an accelerometer on a rollator. No sensor is required on the user. We propose a new non-invasive approach to detect walking behavior based on the motion transfer by the user on the walker. Our method has two main steps; the first is to extract a gait feature vector by analyzing the three-axis accelerometer data in terms of magnitude, gait cycle and frequency. The second is to classify gait with the use of a decision tree of multilayer perceptrons. To assess the performance of our technique, we evaluated different sampling window lengths of 1, 3 an 5seconds and four different Neural Network architectures. The results revealed that the algorithm can distinguish walking behavior such as normal, slow and fast with an accuracy of about 86%. This research study is part of a project aiming at providing a simple and non-invasive walking behavior detector for elderly who use rollators

    A Bayesian Framework for Enhanced Geometric Reconstruction of Complex Objects by Helmholtz Stereopsis

    Get PDF

    Modality-Aware Contrastive Instance Learning with Self-Distillation for Weakly-Supervised Audio-Visual Violence Detection

    Full text link
    Weakly-supervised audio-visual violence detection aims to distinguish snippets containing multimodal violence events with video-level labels. Many prior works perform audio-visual integration and interaction in an early or intermediate manner, yet overlooking the modality heterogeneousness over the weakly-supervised setting. In this paper, we analyze the modality asynchrony and undifferentiated instances phenomena of the multiple instance learning (MIL) procedure, and further investigate its negative impact on weakly-supervised audio-visual learning. To address these issues, we propose a modality-aware contrastive instance learning with self-distillation (MACIL-SD) strategy. Specifically, we leverage a lightweight two-stream network to generate audio and visual bags, in which unimodal background, violent, and normal instances are clustered into semi-bags in an unsupervised way. Then audio and visual violent semi-bag representations are assembled as positive pairs, and violent semi-bags are combined with background and normal instances in the opposite modality as contrastive negative pairs. Furthermore, a self-distillation module is applied to transfer unimodal visual knowledge to the audio-visual model, which alleviates noises and closes the semantic gap between unimodal and multimodal features. Experiments show that our framework outperforms previous methods with lower complexity on the large-scale XD-Violence dataset. Results also demonstrate that our proposed approach can be used as plug-in modules to enhance other networks. Codes are available at https://github.com/JustinYuu/MACIL_SD.Comment: ACM MM 202

    A Bayesian Framework for Enhanced Geometric Reconstruction of Complex Objects by Helmholtz Stereopsis

    Get PDF
    Helmholtz stereopsis is an advanced 3D reconstruction technique for objects with arbitrary reflectance properties that uniquely characterises surface points by both depth and normal. Traditionally, in Helmholtz stereopsis consistency of depth and normal estimates is assumed rather than explicitly enforced. Furthermore, conventional Helmholtz stereopsis performs maximum likelihood depth estimation without neighbourhood consideration. In this paper, we demonstrate that reconstruction accuracy of Helmholtz stereopsis can be greatly enhanced by formulating depth estimation as a Bayesian maximum a posteriori probability problem. In reformulating the problem we introduce neighbourhood support by formulating and comparing three priors: a depth-based, a normal-based and a novel depth-normal consistency enforcing one. Relative performance evaluation of the three priors against standard maximum likelihood Helmholtz stereopsis is performed on both real and synthetic data to facilitate both qualitative and quantitative assessment of reconstruction accuracy. Observed superior performance of our depth-normal consistency prior indicates a previously unexplored advantage in joint optimisation of depth and normal estimates

    A General-Purpose Graphics Processing Unit (GPGPU)-Accelerated Robotic Controller Using a Low Power Mobile Platform

    Get PDF
    Robotic controllers have to execute various complex independent tasks repeatedly. Massive processing power is required by the motion controllers to compute the solution of these computationally intensive algorithms. General-purpose graphics processing unit (GPGPU)-enabled mobile phones can be leveraged for acceleration of these motion controllers. Embedded GPUs can replace several dedicated computing boards by a single powerful and less power-consuming GPU. In this paper, the inverse kinematic algorithm based numeric controllers is proposed and realized using the GPGPU of a handheld mobile device. This work is the extension of a desktop GPU-accelerated robotic controller presented at DAS’16 where the comparative analysis of different sequential and concurrent controllers is discussed. First of all, the inverse kinematic algorithm is sequentially realized using Arduino-Due microcontroller and the field-programmable gate array (FPGA) is used for its parallel implementation. Execution speeds of these controllers are compared with two different GPGPU architectures (Nvidia Quadro K2200 and Nvidia Shield K1 Tablet), programmed with Compute Unified Device Architecture (CUDA) computing language. Experimental data shows that the proposed mobile platform-based scheme outperform s the FPGA by 5 and boasts a 100 speedup over the Arduino-based sequential implementation

    Unsupervised learning of clutter-resistant visual representations from natural videos

    Get PDF
    Populations of neurons in inferotemporal cortex (IT) maintain an explicit code for object identity that also tolerates transformations of object appearance e.g., position, scale, viewing angle [1, 2, 3]. Though the learning rules are not known, recent results [4, 5, 6] suggest the operation of an unsupervised temporal-association-based method e.g., Foldiak's trace rule [7]. Such methods exploit the temporal continuity of the visual world by assuming that visual experience over short timescales will tend to have invariant identity content. Thus, by associating representations of frames from nearby times, a representation that tolerates whatever transformations occurred in the video may be achieved. Many previous studies verified that such rules can work in simple situations without background clutter, but the presence of visual clutter has remained problematic for this approach. Here we show that temporal association based on large class-specific filters (templates) avoids the problem of clutter. Our system learns in an unsupervised way from natural videos gathered from the internet, and is able to perform a difficult unconstrained face recognition task on natural images: Labeled Faces in the Wild [8]
    • …
    corecore