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Abstract

This study investigates the design of a novel real-time system to detect walking behavior changes using an accelerometer on

a rollator. No sensor is required on the user. We propose a new non-invasive approach to detect walking behavior based on the

motion transfer by the user on the walker. Our method has two main steps; the first is to extract a gait feature vector by analyzing

the three-axis accelerometer data in terms of magnitude, gait cycle and frequency. The second is to classify gait with the use of

a decision tree of multilayer perceptrons. To assess the performance of our technique, we evaluated different sampling window

lengths of 1, 3 an 5 seconds and four different Neural Network architectures. The results revealed that the algorithm can distinguish

walking behavior such as normal, slow and fast with an accuracy of about 86%. This research study is part of a project aiming at

providing a simple and non-invasive walking behavior detector for elderly who use rollators.
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1. Introduction

The proportion of senior citizens is increasing in many countries. Around 23% of the population is already aged

60 years or over and that proportion is estimated to reach 32% in 20501. Loosing complete or part of mobility, affects

not only the ability to walk but also the ability to perform personal care. This is a major concern for life quality, which

causes dependence on others in daily life. To help with their mobility, millions of people thus use rollators. However,

in several situations these devices fail to help and even contribute to increase the likelihood of an accident producing

falls. Approximately, 87% of elderly people falls are attributable to walkers use2.

Falls occur as a result of a complex interaction of risk factors. The main risk factors are classified in three different

categories: environmental, behavioral and biological. Environmental factors encapsulate the interplay of individuals

physical condition and the surrounding environment. They include home hazards and hazardous features in public

environment. Behavioral risk factors include those concerning human actions and affective states. Biological factors

embrace characteristics of individuals that are pertaining to the human body like: age, gender and physical impedi-

ments.3.

∗ Corresponding author. Tel.: +41(22)379 0151; fax: +41(22)379 0250.

E-mail address: viviana.weiss@unige.ch

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Peer-review under responsibility of the Scientific Committee of IHCI 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82398442?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2014.11.008&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2014.11.008&domain=pdf


44   Viviana Weiss et al.  /  Procedia Computer Science   39  ( 2014 )  43 – 50 

In this context, the Eyewalker project targets the development of an independent accessory that can simply be

clipped on a standard non-motorized walker. The goal of the Eyewalker device is to warn users of potentially risky

situations; in a similar manner we have started working on environmental factors on Cloix4 and Weiss5. In this

paper, we focus on the behavioral factors and study the walking behavior to identify and analyze possible causes of

rollators accidents. Movement analysis is a powerful and intuitive way of determining a subject’s health, functional

and emotional status6. Gait analysis provides relevant information about the affective state; the categories happy, sad

and angry are distinctive in motion7. Crane and Gross8 identify gait velocity, stride length and cadence as significant

parameters which are affected by emotion.

Gait analysis is already used for clinical assessment, but it is often constrained to a laboratory environment. The

systems are expensive, they must be installed in appropriate rooms and can only record movements in a small area. We

propose a new non-invasive approach to detect walking behavior for rollator users. This work uses the acceleration

data in order to extract gait parameters and detect a modification in the user walking behavior. Our approach is

based on the motion transfer by the user on the rollator. We aim at determining whether is it possible to classify

normal/fast/slow walk pace from acceleration samples. The fast and slow gait speeds are related to the highest risk

of fall. Falls due to fast gait are more likely to happen outdour, while indoor falls are more likely to occur with

individuals walking slowly. Furthermore, a decline in gait speed is an important predictor of future falls9, since slow

gait is related to affective disorders like depression and bipolar10.

The paper is organized as follows: Section 2 discusses relevant work related to the state of the art in gait analysis;

Section 3 presents the proposed methodology to detect walking behavior. Section 4 describes the experiment and the

obtained results. Finally, conclusions and future work are given in Section 5.

2. Related Work

In the last few years more attention has been given to human behavior and the gait is a way to detect changes.

Various psychological studies indicate that humans are not only capable to recognize the intended action, but also

gender, identity and even emotions from body movements11,12.

Gait analysis is the evaluation of the manner or style of walking usually done by observing the human as he/she

walks in a straight line. This evaluation can be performed in two different ways. The first is by empirical analysis,

while the second is based on sophisticated instrumentation measuring body movements, body mechanics and activity

of the muscles. Various works were carried out using different hardware such as force platform, optical markers and

3D-cameras. But these motion capture systems are expensive and they must be installed in appropriate rooms and

can only be operated by specially trained personnel. These systems can only record movements performed in a small

area13.

A simple way to analyse the motion is to use accelerometers. In motion analysis, the main interests are activity

recognition14 and detection of specific gait events (e.g. falls). Most research on fall detection uses the linear acceler-

ation and gyroscopes. They typically detect falls by applying thresholds to accelerations, velocities and angles15,16.

However, the performance of these systems depend strongly on the position of the sensors (e.g. the wrist, waist, ankle)

and they can not help to prevent accidents.

A current research challenge is the authentication of users based on gait recognition. The research described in

Rong et al17 is focused on the identification of a person based on the way that he/she walks using dynamic time

warping. However, during a natural walk, a person could change the way that he/she walks making it difficult the

identification. Nickle et al18, conducted a similar study of user authentication using Hidden Markov Models, however,

their results are not sufficiently accurate and the performance of their algorithm is strongly related to the sensor.

Specifically, they collected data from a standard mobile phone with low sampling rate.

Finally, many studies have been conducted to find the best position body on the where to carry the accelerometers;

despite all these studies, the acceptance of the user has not been showed19.

3. Methodology

The main purpose of this research is to implement an algorithm capable to detect a walking change in real time

without any sensor on the user. Not having to put any sensor on the user is a key requeriment for user acceptance.
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Fig. 1. (a) Hardware setup; (b) Accelerometer axis configuration.

We propose a detection method involving several specialized Artificial Neural Networks (ANN) combined in a simple

decision procedure. Specifically, we use a decision tree of ANN.

The method developed in this research study comprises of three key stages. Firstly, accelerometer signals from the

sensor are acquired and standardized. Secondly, we extract the gait feature of each segment. And finally, we apply a

decision tree in order to detect the walking behavior of the user.

3.1. Data Acquisition and Preprocessing

We use a Shimmer20 sensor in order to extract the acceleration data on the X,Y,Z axis. Shimmer is a small wireless

sensor platform designed to integrate wireless body sensor technology into a wide range of application areas.

The sensor is equipped with an 8 MHz Texas Instruments MSP430 CPU. The RAM is of 10 KB, the Flash memory

of 48 KB and 8 channels of 12 bits A/D are used. The wireless connection is established using the Class 2 Bluetooth

radio and data is acquired using the 3-Axis Freescale accelerometer placed on the walker as shown in Fig. 1. Moreover,

the device provides a MicroSD of about 2 Gbytes and an Integrated Li-Ion battery that provides wearability. For our

experiments, data acquisition was performed using a sampling frequency of 51.2 Hz for each channel. Additionally,

each axis reports the current magnitude of acceleration in terms of [g], where 1 [g] is equal to the force of Earth’s

gravity.

It is important to remark, that in movement like walking, the signal presents harmonics and the sensor can add

some noise. It is imperative to apply a filter in order to obtain a clear signal. For this purpose, a wavelet denoising

filter was applied21. It allows to remove the noise present in the signal while preserving the signal characteristics22.

In this study, we applied symlets wavelet with decomposition level 3 and soft-thresholding to filter 3D acceleration

noise. Additionally, the signal was normalized to a range -1 and 1 [g]. Then we used a sliding window that overlaps

50% of the window length.

3.2. Gait Feature Extraction

Feature extraction was performed to recognize the principal characteristics of gait. These characteristics are divided

into three groups: 3-axis acceleration (see Sec.3.2.1), gait cycle (see Sec.3.2.2) and frequency domain features (see

Sec.3.2.3).

The coordinates are shown at Fig.1(b): X corresponds to the vertical axis with respect to the ground, Y correspond

to the horizontal axis which is perpendicular to the direction of walking, and Z corresponds to the horizontal axis along

the walking direction. The signal is segmented with different window lengths. Afterwards, we extract the feature of

segments to detect the walking behavior. A classic example of the signal in the Z−axis sampling in 1, 3 and 5 seconds

is shown in Fig. 2.

3.2.1. 3-Axis Acceleration
As previously mentioned, we use a three-axis coordinates system to extract the acceleration values. The global

acceleration, Axyz, is a representative parameter which includes gait acceleration (Z−axis), trunk’s vertical acceleration

(X − axis) and lateral acceleration of pelvis (Y − azis). The global acceleration is defined as:

Axyz =

√
A2

x + A2
y + A2

z (1)
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Fig. 2. Example of a gait in a sampling window of (a) 1 second ; (b) 3 seconds (c) 5 seconds.

where Axyz is the resultant acceleration; and Ax, Ay, Az are accelerations in the accelerometer’s local coordinates

system.

We implemented the cross correlation between Z −axis and the signals in X and Y coordinates, in order to detect if

there is a similarity between the axis where the users’ walking are visible (Z-axis) and the others two axis. The cross

correlation is defined as:

Corrx,z(l) =
N∑

n=0

x(n)z(n − l) and Corry,z(l) =
∑N

n=0 y(n)z(n − l) (2)

The feature extracted from the 3-axis signal from each segment were: variance of the resultant acceleration,

var(Axyz); mean acceleration on all three axes and the resultant acceleration, Axyz , Ax , Ay , Az; and correlation

between X , Y and Z. The feature vector of the ith segment for 3-axis signal is represented by:

Fxyz(i) = [var(Axyz), Axyz, Ax, Ay, Az,Corrx,z,Corry,z] (3)

3.2.2. Gait cycle
Human walking is a periodic movement of the body parts and includes repetitive motions. To understand this

periodic walking course better and more easily, we can divide it into gait cycles. The gait cycle can be seen as the

period of time from one heel strike to the next heel strike of the same foot23. The gait can be divided into two phases:

the stance and swing phase (Fig. 3).

A peak detection is applied in the Z − axis to find the peaks associated with the gait cycle. Some small false peaks

could be produced during walking. We set a peak filter to eliminate the false peaks between two maximum peaks.

From Fig. 3(b), the peaks A,B and C have been detected and the time of each peak is computed respectively.

We know that the stance phase is longer than the swing phase, then if:

tB − tA > tC − tB ⇒ TS tance = tB − tA and TS wing = tC − tB (4)

Otherwise,

TS tance = tC − tB and TS wing = tB − tA (5)

Fig. 3. (a)Gait Cycle 24 (b) Shimmer data collected along the Z-axis during a typical walk.
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The duration of the gait cycle is given by:

GaitCycletime = TS tance + TS wing (6)

The Cadence value is defined as the number of steps per minute.

Finally, the feature extracted from the gait cycle from each segment is defined as:

Fgait(i) = [GaitCycletime, TS tance, TS wing,Cadence] (7)

3.2.3. Frequency domain feature
The periodicity of the cycle is easy to detect from the horizontal acceleration signal (z − axis). The Fast Fourier

transform (FFT) can be applied to extract the frequency content of a segment. We used FFT to extract the fundamental

frequency of the signal. The Entropy measures the distribution of frequency components and the Energy is the sum

of square discrete FFT-component magnitudes of the signal.

The feature vector extracted in the frequency domain is given by:

F f req(i) = [Zf undamental f requency, ZEntropy, ZEnergy] (8)

Finally, all features extracted from the segment are organized in a vector:

F(i) = [Fxyz(i), Fgait(i), F f req(i)] (9)

3.3. Decision tree

The segment feature is used to detect the walking behavior. Specifically, our goal is identify five different classes:

no movement, movement, slow, normal and fast. The decision procedure is decomposed into a decision tree containing

three binary classifiers (see Fig. 4). For each binary classifier, we consider a ANN multilayer perceptrons with n
neurons in the input layer (F(i)), l neurons in the hidden layer and m in the output layer. The size of the hidden layer is

determined empirically (see Sec.4.3), whereas the output layer has two neurons. Each neuron representing a class; for

instance, the Normal vs Abnormal classifier, one represents the detection of Normal walk pace and the other indicates

Abnormal walk pace.

Firstly, we detect whether one is moving or not. If one is moving we detect if it is a normal or abnormal behavior.

In case the behavior is abnormal, the walk pace can be classified as fast or slow.

4. Evaluation

A data set has been collected from a group of of 6 participants; 4 males and 2 females between 30 and 48 years old.

Each participant was asked to walk a route of 18 meters. The route considered a different walk pace each 6 meters:

starting with normal, followed by fast, and ending with slow (see Fig. 5). Each participant walked the same distance

twice and changed her/his speed at markers installed on the path. The information about the ground truth associated

with each experiment (when the walk has begun, changed and ended) has been obtained from the video sequences

taken from a camera attached to the walker. The obtained gait data was used to create two data sets for each person.

The training set of our detector corresponds to the first set, the second being used as an independent testing set.

Fig. 4. Decision tree.
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Fig. 5. Experiment setup.

Accuracy, Sensitivity and Precision were used as the standard measures for the evaluation of the classifiers. Accu-

racy is defined as a measure of performance to identify correct recognition rate. Sensitivity is the measure of positive

results, a test with a good sensitivity has a low false negative rate. Precision is another important measure, it measures

the rate of positive classifications; a classifier with a high precision has a low type I error (otherwise known as false

positive) rate. The Accuracy, Sensitivity and Precision are given by:

Accuracy =
∑

Truepositive+
∑

Truenegative∑
Totalpopulation

, S ensitivity =
∑

Truepositive∑
Conditionpositive

and Precision =
∑

Truepositives∑
Testoutcomepositive

(10)

4.1. Evaluation of the Accelerations Obtained for the Different Walk Paces

The distribution of acceleration for each walk pace for one user is shown on Fig. 6. We observe that accelerations

present a wider distribution as users are asked to increase the velocity. We notice that the difference between a normal

and a slow gait is smaller that the one presented between a normal and a fast gait.

In our experiment, slow walk paces go from 0.69 [g] to 0.82 [g], and the most frequent acceleration is at 0.77 [g].

Normal walk paces go from 0.68 [g] to 0.84 [g], and the most frequent acceleration is at 0.77 [g]. Finally, fast walk

paces go from 0.60 [g] to 0.98 [g], and the most frequent acceleration is at 0.76 [g]. We observe that the peak of all

walk paces is situated around the same acceleration.

4.2. Evaluation of Different Window Lengths

First of all, we analyze the data using 1, 3 and 5 seconds as window lengths show in Table 1. The best classifier

is the Movement vs No movement with an improvement with increasing window length in most of the cases of a 20%

approximately. The window length that provides the best results for accuracy and precision is the one with length 5

seconds. In terms of sensitivity, window lengths of 3 and 5 seconds exhibit similar performance. Taking into account

window lengths of 5 seconds we can state that the best accuracy and precision are obtained for Slow vs Fast classifier.

Moreover, we can observe that the results between Normal vs Slow and Normal vs Fast are very similar. The worst

accuracy and precision are obtained when dealing with walk paces that are classified as Normal or Abnormal. In

addition to this, we observe that walk paces defined as Normal or Slow and Normal or Fast get similar sensitivities. It

is remarkable to mention, that the classifiers Normal vs Abnormal and Slow vs Fast present an improvement of about

10% with respect to the other two classifiers mentioned. Furthermore, they offer almost identical results.

Fig. 6. Example of (a) Slow gait ; (b) Normal gait; (c) Fast gait.
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Table 1. Evaluation of different sampling window lengths.

Accuracy Precision Sensitivity

Window length (s) 1 3 5 1 3 5 1 3 5

Movement vs No movement 96.2 95.0 94.7 96.9 95.8 96.8 98.3 96.5 96.8

Normal vs Abnormal 75.8 75.9 76.0 78.5 76.1 75.2 85.9 90.9 94.0

Slow vs Fast 75.9 77.0 96.0 78.1 76.2 94.7 86.9 86.2 94.7

Normal vs Slow 75.2 78.4 81.4 79.8 81.0 89.1 84.6 91.5 84.4

Normal vs Fast 74.7 78.4 81.4 80.1 81.0 89.1 84.3 91.5 84.4

Average 79.6 80.9 85.9 82.7 82.0 89.0 88.0 91.3 90.9

Table 2. Evaluation of different number of neurons in the hidden layer.

Accuracy Precision Sensitivity

Neurons (l) 5 8 10 15 5 8 10 15 5 8 10 15

Movement vs No movement 93.8 95.0 93.8 94.4 96.1 95.8 95.8 96.1 96.5 98.1 96.5 96.9

Normal vs Abnormal 76.7 75.9 80.9 73.5 78.1 76.1 88.2 74.6 88.5 90.9 81.2 89.1

Slow vs Fast 80.0 77.0 83.5 82.6 78.0 76.2 83.8 83.6 90.0 86.2 87.7 86.2

Normal vs Slow 79.5 76.7 77.6 79.8 85.0 77.8 78.6 82.6 86.5 94.3 94.3 90.9

Normal vs Fast 79.5 76.7 77.6 79.8 85.0 77.8 78.6 82.6 86.5 94.3 94.3 90.9

Average 81.9 80.3 82.7 82.0 84.4 80.7 85.0 83.9 89.6 92.8 90.8 90.8

4.3. Evaluation of Different ANN Arquitectures

In order to determine the best number of neurons in the hidden layer we analyzed the data sets taking into account

all the walk paces proposed. As previously, the best results are obtained when dealing with walk paces defined as

Movement or No movement. In general terms, the best results for accuracy and precision were obtained for ANN of

10 hidden neurons, while for sensitivity ANN of 8 neurons show an improvement of 2% compared to 10 neurons.

Concerning classifiers, Normal vs Abnormal and Slow vs Fast present an improvement of about 5% in terms of

accuracy and precision when compared with the Normal vs Slow and Normal vs Fast. However, in terms of sensitivity

the last two classifiers mentioned offer an improved performance of about 10% compared to the other two classifiers.

5. Conclusion

Walking behavior is a vital skill that can show important medical, affective and cognitive information about the

user. The developed algorithm allows in real time to detect if the walker is being used or not (Movement vs No
Movement), and can also determine to some extent the different walk paces (slow, normal and fast). This research

investigated the possibility to identify the walking behavior of rollator user, based on the motion transferred by the

user to the walker. Our results confirm the possibility to detect walking behavior changes without any sensor on the

user.

This detector was built using three binary ANN cascade classifiers, each classifier differentiating two classes.

The proposed method proposed uses a gait feature vector using three-axis accelerometer data in terms of magnitude,

gait cycle characteristics and frequency domain. The main results of our research show that the best classifier is

(Movement vs No Movement) and the most difficult classes to distinguish are Normal and Abnormal. The experiments

demonstrate that the use of a window length of 5 seconds gives improvement in the accuracy about 5% compared to

window lengths of 1 and 3 seconds. Our studies show that the ANN with 10 neurons in the hidden layer achieved the

best performance in terms of accuracy and precision, but the ANN with 8 hidden neurons gave the best performance

in terms of sensitivity of the system. The experiments show promising results which reflect that our walking behavior

detector can be used in real situations and in real-time.

Future work will be carried out in order to reduce the false positive rate by filtering on the temporal dimension

and ignoring initial and trailing oscillations (outside the walking section of the trace). In parallel to doing evaluations

with more participants, we plan to extend our detector to the cases when the user is not walking on a straight line. In



50   Viviana Weiss et al.  /  Procedia Computer Science   39  ( 2014 )  43 – 50 

addition, we will envisage some data reduction to focus on relevant parameters and eliminate those that might disturb

the recognition process. Finally, we intend to investigate how walking behavior can inform about the changes of

affective states that can potentially lead to harmful situations.
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