39 research outputs found

    Modeling Empathy and Distress in Reaction to News Stories

    Full text link
    Computational detection and understanding of empathy is an important factor in advancing human-computer interaction. Yet to date, text-based empathy prediction has the following major limitations: It underestimates the psychological complexity of the phenomenon, adheres to a weak notion of ground truth where empathic states are ascribed by third parties, and lacks a shared corpus. In contrast, this contribution presents the first publicly available gold standard for empathy prediction. It is constructed using a novel annotation methodology which reliably captures empathy assessments by the writer of a statement using multi-item scales. This is also the first computational work distinguishing between multiple forms of empathy, empathic concern, and personal distress, as recognized throughout psychology. Finally, we present experimental results for three different predictive models, of which a CNN performs the best.Comment: To appear at EMNLP 201

    Modeling Emotion Dynamics in Song Lyrics with State Space Models

    Get PDF
    Most previous work in music emotion recognition assumes a single or a few song-level labels for the whole song. While it is known that different emotions can vary in intensity within a song, annotated data for this setup is scarce and difficult to obtain. In this work, we propose a method to predict emotion dynamics in song lyrics without song-level supervision. We frame each song as a time series and employ a State Space Model (SSM), combining a sentence-level emotion predictor with an Expectation-Maximization (EM) procedure to generate the full emotion dynamics. Our experiments show that applying our method consistently improves the performance of sentence-level baselines without requiring any annotated songs, making it ideal for limited training data scenarios. Further analysis through case studies shows the benefits of our method while also indicating the limitations and pointing to future directions

    Emotion Embeddings \unicode{x2014} Learning Stable and Homogeneous Abstractions from Heterogeneous Affective Datasets

    Full text link
    Human emotion is expressed in many communication modalities and media formats and so their computational study is equally diversified into natural language processing, audio signal analysis, computer vision, etc. Similarly, the large variety of representation formats used in previous research to describe emotions (polarity scales, basic emotion categories, dimensional approaches, appraisal theory, etc.) have led to an ever proliferating diversity of datasets, predictive models, and software tools for emotion analysis. Because of these two distinct types of heterogeneity, at the expressional and representational level, there is a dire need to unify previous work on increasingly diverging data and label types. This article presents such a unifying computational model. We propose a training procedure that learns a shared latent representation for emotions, so-called emotion embeddings, independent of different natural languages, communication modalities, media or representation label formats, and even disparate model architectures. Experiments on a wide range of heterogeneous affective datasets indicate that this approach yields the desired interoperability for the sake of reusability, interpretability and flexibility, without penalizing prediction quality. Code and data are archived under https://doi.org/10.5281/zenodo.7405327 .Comment: 18 pages, 6 figure
    corecore