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Abstract

Programmatic advertising involves matching publishers’ web page content with advertisers’
strategies, usually by filtering out content topics based on audience interests. However, this
approach can limit audience reach and overlook content nuances. Sentiment analysis comes
into place to enhance content understanding by categorizing web pages into sentiment groups.
While existing research often focuses on the “positive”, “negative”, and “neutral” labels, a
broader range of emotion categories can provide more details, better aligning content with
advertisers’ goals. This study investigates sentiment classification models that use fine-grained
emotion categories to classify the content of publishers’ web pages. Considering the multilin-
gual nature of the business, this research also explores and compares language-agnostic models.
Several models were trained using the GoEmotions dataset, composed of 58k English Reddit
comments annotated by humans using 28 emotion categories. These models were assessed
across various sentiment groupings and evaluated onmanually annotated real-world web page
texts. The final proposed emotion groups encompass six categories: “repudiation”, “sadness”,
“neutral”, “curiosity”, “appreciation”, and “positive experience”. Among the models com-
pared, transformermodels, particularly BERT-large, exhibited superior performance. The best
English-onlymodel achieved aweighted F1-score of 44%on the annotatedwebdata. Language-
agnostic models showed lower metrics on Italian texts but were comparable to English-only
models for English text. The leading language-agnostic model, Multilingual BERT, achieved a
weighted F1-score of 37% on the same data translated into Italian. The study achieved promis-
ing outcomes across the six emotion groups, surpassing the traditional “positive,” “negative,”
and “neutral” categories. Additionally, the evaluation of multilingual models demonstrated
their applicability to multiple languages despite being trained solely on English data.
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1
Introduction

This chapter presents a summary of the work done in this thesis. The following sections de-
scribe background knowledge and state of the art of the field, the problem to be solved, purpose
of the study, methods with relevant execution details, results, and their interpretation.

1.1 Background and need

The growth of digital advertising has been driven by the Internet’s expansion over the past two
decades, bringing to the spotlight the usage of Programmatic Advertising, which uses Real-
time Bidding (RTB) to instantly trade ad spaces when a user visits a web page, allowing ad-
vertisers (buyers of ad space) to target specific users, and effectively resolving issues of unsold
inventories. Machine learning algorithms play an important role in this context by enabling a
comprehensive understanding of visitors’ characteristics based on their data, facilitating precise
targeting of user groups, and improving content matching between publishers (owners of the
ad space) and users.

Sentiment text classification is often approached as a binary classification problem of posi-
tive andnegative sentiments, sometimes including a “neutral” class. However,more detailed in-
sights can be gained from the data by categorizing emotions into finer-grained sentiments. Var-
ious emotion taxonomies have been proposed for this purpose. Paul Ekman’s model [12] iden-
tifies six basic emotions (happiness, sadness, fear, anger, surprise, and disgust) and emphasizes
their universality across cultures based on recognizable facial expressions. Robert Plutchik [13]
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expanded on Ekman’s work with the “Wheel of Emotions” which organizes emotions in a cir-
cular diagram, including primary emotions and secondary emotions. In contrast, Russell [14]
introduced a continuous two-dimensional circumplex model, plotting emotions in a space de-
fined by valence (positive to negative) and arousal (calm to excited), providing a more nuanced
understanding of emotions. More recent approaches in psychology use computational tech-
niques to capture the “semantic space” of emotion and have identified various distinct emo-
tional experiences, classifying up to 28 distinct emotion categories [3, 15].
Amongst the most used machine learning models in text classification and sentiment anal-

ysis, the following approaches could be mentioned: Logistic Regression [16, 17, 18, 19, 20],
Support Vector Machines [16, 17, 18, 19, 20, 21, 22, 23], Feedforward Neural Networks [24,
25], Convolutional Neural Networks [17, 24, 26, 27], Recurrent Neural Networks (including
Long Short-TermMemory and Gated Recurrent Unit networks) [19, 23, 24, 26, 27, 28], and
Transformers [11, 23, 29, 30, 31, 32, 33].

In order to represent the text data in the classification models, simpler approaches were
known to be applied, such as Bag ofWords andTermFrequency-InverseDocument Frequency.
More recent techniques involve the use of deep learning models that learn the best way to rep-
resent words using vectors: such an approach is known as word embeddings. A few examples
of word embeddings are Word2Vec [34], GloVe [35], fastText [36], BERT [37], variations of
BERT (e.g. distilBERT [38] and RoBERTa [39]), Universal Sentence Encoder [40] and XL-
NET [41]. Some embeddings are specific to the English language, but the field of other lan-
guages and multilingual embedders has expanded.

Although a lot of research has been done in sentiment analysis over the years, few works
can be found regarding fine-grained emotion labels. This thesis aims to work with fine-grained
sentiment analysis in the programmatic advertising field.

1.2 Statement of the problem

The main focus of this thesis is the creation of a granular sentiment-based text classification
model to be applied in texts from web pages, in the context of digital advertising. Its final
application involves presenting content filters based on text sentiment to advertiser campaigns,
in order to more finely select the targeted content and audience.

The model is defined as multi-class classification machine learning model, preceded by nat-
ural language processing (NLP) pre-processing steps. The model’s labels are defined as de-
tailed sentiment groups, with a finer granularity than just positive, negative, and neutral la-
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bels. A study on the granularity of the sentiment labels is conducted with the aim of provid-
ing a more detailed classification about the text while avoiding high ambiguity between the
labels and maintaining a balance between positive and negative sentiment groups. This en-
ablesAnonymised toprovidemore information to advertisers regarding the publishers’ content
while keeping their choices in a small and meaningful range of emotion labels. This informa-
tion will be used by the advertisers to determine at which types of web pages they should be
advertising.

1.3 Purpose of the study

The research of a text classification model based on granular sentiment groups is intended for
Anonymised, a company in the field of digital advertising focused ondata privacy solutions that
bridge contacts between publishers and advertisers. The content of this work will be deployed
by Anonymised with the aim of providing sentiment labels for content of publishers’ websites,
in order to better categorize the content presented in the ad spaces offered to advertisers. The
final goal is to better match publisher content with advertiser strategies.
While the main focus of this work is on English-based text, due to the international aspect

of Anonymised’s clientele, an additional objective is to research language-agnostic models in
order to effectively work in other languages. It was a business requirement to have one model
for multiple languages instead of one model for each language, in order to simplify the main-
tenance of the model and pipeline. The evaluation of such models was performed using text
translated into Italian, this choice of language was prioritized as a business decision. Therefore,
a section of this thesis is dedicated to analyzing results using Italian text.
In summary, this thesis aims to answer the following research questions:

1. How well can web page texts be classified into more granular sentiment categories?

2. What level of sentiment granularity should be employed?

3. Is it feasible to employ a language-agnosticmodel for this task? If so, howdoes it compare
to a single language model?

3



1.4 Methodology

The main dataset used to train and evaluate the models was defined to be Google’s GoEmo-
tions dataset [11], due to its extensive number of sentiment categories as well as its large num-
ber of data points. Composed of 58k annotated English language Reddit comments, it was
constructed with 28 fine-grained emotion categories, that include 12 positive, 11 negative, 1
“neutral”, and 4 “ambiguous” emotion categories. Its training and validation splits are already
predefined by the authors, therefore they were used as is.

In addition toGoEmotions, another datasetwas experimentally used for training themodels.
The WASSA 2021 shared task dataset [42] presents 1.8k long essays (ranging from 300 to 800
characters) annotated with 6 emotion labels. This dataset was chosen due to its similarity in
length to the data that the models will be effectively executed on, as described next.

The web page text content (also referred to as “web data” in this work) for which themodels
were designed consists of a range of different text formats and different subjects. For instance,
it ranges from song lyrics, recipes, and tutorials to news articles about sports and politics. The
texts could be short (just a few words) but are generally long with several paragraphs.

Theweb data is collected by a scraper developed by the company, which extracts the title and
main text of the web pages, removes punctuation, and turns characters into lowercase. How-
ever, in the context of sentiment analysis, text punctuation and uppercase characters could be
potential carriers of emotional information. By preserving these elements within textual data,
we may gain insights into their ability to convey intensified sentiments. For instance, the in-
clusion of exclamation marks at the end of the text or the adoption of an all-uppercase writing
style could potentially signify heightened emotional expressions. Despite the potential signif-
icance of such modifications, altering the web scraper code was deemed outside the scope of
this project. As a result, we identify this aspect as a promising avenue for future work.

For the purpose of evaluating the models’ performance in the web data, 200 random web
page texts were collected from the company’s database and manually annotated by the author
and her supervisor fromAnonymised. Some texts were as short as 6 words, but others reached
20,208 words. The 200 data samples had an average of 888 words and a standard deviation of
1832. The textswere labeled according to the 28GoEmotions categories, and later summarized
into the 6 sentiment group selection (as described in section 4.2), subsequently summarized
into one label to evaluate single-label classifiers. These texts were then translated into Italian
with the aim of assessing the models’ performance in a multilingual scenario.

The final six emotion labels were chosen by grouping the fine-grained emotions according
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to both their correlations and their semanticmeaning. The number of groupswas chosenwith
the aim of balancing positive and negative emotion groups. This decision was made alongside
the company’s interests. The final groups were defined as follows:

Repudiation Anger, annoyance, disapproval, disgust
Sadness Disappointment, embarrassment, fear, grief, nervousness, remorse, sadness
Neutral Neutral

Curiosity Confusion, curiosity, realization, surprise
Appreciation Approval, gratitude, admiration, pride, caring, desire, love

Positive experience Amusement, excitement, joy, optimism, relief

The evaluation metrics obtained for evaluating the models were mainly accuracy across all
labels, averaged F1-score, and weighted averaged F1-score. The precision and recall per label
were also evaluated in order to ensure that the labels’ metrics were balanced out. When needed,
the F1-score metrics were preferred since they balance out precision and recall.
For the sake of incrementally experimenting and studying different techniques, the experi-

ments were divided into three main categories: firstly, non-neural network models were evalu-
ated on high-level label categories (positive, negative and neutral) using different feature repre-
sentations for the text input. Then themodels with the highestmetrics were re-evaluated in the
set of 28 emotion categories and compared to neural networks approaches. Finally, the models
with the highestmetrics were then chosen and comparedwith several Transformers approaches
based on the 6 sentiment groups chosen.

1.5 Results and findings

In the first set of experiments, themodels and feature representationswith the highestweighted
F1-scores were a Linear Support Vector Classifier using distilBERT embeddings and a Logis-
tic Regression using Multilingual Universal Sentence Encoder embeddings. The embeddings
feature representations outperformed count-based and feature-based approaches, probably be-
cause such embeddings obtain their values based on the context of the whole sentence and
not only on the choice of words in each sentence. Furthermore, LinearSVC and Logistic Re-
gression outperformed the other model choices probably due to their robustness against high-
dimensional data.

In the second set of experiments, the aforementioned models were re-evaluated in the new
target labels. They were nevertheless outperformed by almost all neural network approaches,
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with highlights to a Gated Recurrent Unit recurrent neural network and a fine-tuned distil-
BERT classifier. This was probably due to the fact that neural networks are able to better iden-
tify complex patterns in text data.
The third set of experiments showedhigherweightedF1-scores for the transformersRoBERTa,

BERT, XLNET, and LABSE. However, since RoBERTa and XLNET require more exten-
sive computational resources, BERT and LABSE were chosen as the best cost-benefit models.
Multi-label experiments were also performed in the data set labeled with 6 sentiment groups,
yet they presented lower F1-scores and accuracies when compared to the single-label models.
These models were later evaluated on the manually annotated texts extracted from the web,

and the BERT-largemodel presented the highest weighted F1-score. When analyzing their con-
fusionmatrices though, it became clear that the model was predicting most data points as neu-
tral or appreciation. After calibrating the prediction probabilities, the predictions were better
distributed, while the weighted F1-score remained the same.
Finally, the multilingual models (Multilingual BERT, LABSE, and neural network with

Multilingual Universal Sentence Encoder embeddings) trained on English-only data were eval-
uated on the manually annotated web data translated into Italian. Such models showed worse
results when compared to the results on English data, although calibrating the prediction prob-
abilities slightly increased their metrics.
Since themanually annotated web data was used before revisions on themodels and not as a

final test set, it is important to note that the results reported could be overfitting, whichmeans
that we could be focusing too much on the specific web dataset, and it would not generalize
well to unseen data. Further evaluations on new data need to be taken in place in order to assess
if the model is able to generalize well to such new data.

The thesis is structured as follows. Chapter 2 presents with more detail previous works re-
lated to this thesis: firstly an overviewof text classification solutions is introduced, with insights
into state-of-the-art approaches, including research onmultilingualmodels. It is then followed
by emotion taxonomies and available datasets in the literature. Subsequently, the need for this
research is presented.

Chapter 3 presents a detailed description of the problem to be solved in this work, while
Chapter 4describes thedatasets used formodel training and evaluation, followedby themethod-
ology, results and findings of experiments regarding classifications for three different target
types: high-level “positive, negative and neutral” models, fine-grained emotion labels from the
GoEmotions dataset, and middle-level emotion groups. The chapter is concluded with web
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data and a multilingual evaluation of the models chosen. Finally, concluding remarks and fu-
ture developments are reported in Chapter 5.
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2
Background

The sentiment analysis process encompasses several steps, including preprocessing, feature ex-
traction, and classification. During preprocessing, the raw text data is usually cleaned to re-
move special characters, numbers, and stop words. The text is subsequently transformed into
features using techniques such as Term-Frequency-Inverse Document Frequency (TF-IDF) or
word embeddings, as described in Section 2.1.5. The next steps entail classifying the processed
text into sentiments using machine learning methods, such as logistic regression, naïve Bayes,
support vector machines, or deep learning models like convolutional and recurrent neural net-
works, and transformers.

This chapter provides some background knowledge on the topics mentioned above and fur-
ther provides an overview of the recent progress in the field of sentiment analysis. It also ex-
plains about programmatic advertising, the specific field of application of the sentiment analy-
sis models in this work, and web scraping, the method used to extract the data.

2.1 Preliminaries

2.1.1 Programmatic advertising

The field of digital advertising has grown rapidly in the past two decades due to the exponen-
tial expansion of the Internet. Initially, digital advertising involved advertisers (organizations
looking to promote their products or services online) purchasing ad spaces directly from pub-
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lishers (website owners or content providers who seek to monetize their online inventory by
offering ad space on their platform), much like traditional magazine ads. Advertisers and pub-
lishers would reach agreements for specific time periods on particular websites. Consequently,
these ads were indiscriminately shown to all users browsing a publisher’s web page, without
considering user preferences.
This method proved highly inefficient for two primary reasons. Firstly, the majority of the

audience exposed to these ads was uninterested in the promoted products, as potential cus-
tomers constituted only a small portion of the overall web page visitors. Secondly, the rapid
proliferation of websites outpaced the number of companies willing to advertise, leading to
numerous unsold ad spaces due to the slow manual trading process.
To address these challenges, an automated solution was developed to manage the digital

advertising market, eliminating the need for human negotiations. This solution is known as
Programmatic Advertising. Programmatic advertising incorporates various factors to ensure
benefits for both advertisers and publishers. Through Real-time Bidding (RTB), trades occur
instantaneously when a user clicks on a web page, involving companies interested in targeting
that specific user. This approach effectively resolves the issues of unsold inventories and en-
hances targeting precision [9].

Within this context, the usage of machine learning algorithms brings value as they enable a
comprehensive understanding of visitors’ characteristics based on their data, thereby facilitat-
ing precise targeting of specific user groups. Additionally, machine learning proves valuable
in characterizing publishers’ content, thereby improving content matching with users’ prefer-
ences, and further enhancing the overall advertising process.

2.1.2 Web scraping

Web scraping is an automated technique used to extract data from websites that could be later
persisted, e.g. in a database. This process involves employing specialized software tools, scripts,
or algorithms to retrieve specific information, such as text, titles, images, or other data, from
various web pages. The web scraping process can be broken down into two steps: acquiring
web resources and then extracting the desired information from the acquired data. Once the
web data is downloaded, the extraction process parses, re-formats, and organizes the data into
a structured format [43].

In the context of this thesis, Anonymised’s web scraper serves the purpose of extracting titles
and main content of web articles from publishers who have authorized its usage. The goal is
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to classify the page content effectively using the extracted information. The scraper’s output is
ultimately the input of the models developed in this work.

2.1.3 Emotion taxonomies

Sentiment classification is usually formulated as a two-class classification problem, positive and
negative, with eventually a third class being “neutral”. However, in order to obtain better in-
sights from the data, it is interesting to classify it into finer-grained sentiments. This section
describes some of the most popular emotion taxonomies that have been used for this task.

Paul Ekman developed a widely recognized taxonomy based on cross-cultural research [12].
His model identified six basic emotions: happiness, sadness, fear, anger, surprise, and disgust.
He focused on the universality of facial expressions associated with these emotions, suggesting
that they have a biological basis and are recognizable across different cultures.

Plutchik expanded on Ekman’s basic emotions and presented the “Wheel of Emotions”
model [13]. He organized emotions into a circular diagram, showing the relationships between
emotions and their intensities. Plutchik’s model included 4 pairs of contrasting primary emo-
tions: joy-sadness, trust-disgust, fear-anger, and surprise-anticipation, aswell as secondary emo-
tions resulting from combinations of the primary ones, as illustrated in Figure 2.1.

Figure 2.1: Robert Plutchik’s Wheel of Emotions [1].
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Oppositely to the discrete emotion taxonomies aforementioned, Russell (1980) [14] intro-
duced a continuous two-dimensionalmodel (also known as the circumplexmodel) that plotted
emotions on a space defined by valence (ranging from pleasant to unpleasant), referring to the
positive and negative degree of emotion, and arousal (ranging from calm to excited), referring
to the intensity of emotion. The circumplex model is illustrated in Figure 2.2. This model
allowed for a more nuanced understanding of emotions and their interplay in emotional expe-
riences.

Figure 2.2: Russell’s circumplex model [2].

Recent advances in the field of psychology have introduced novel approaches to capture the
intricate “semantic space” of emotions [44] by studying the distribution of emotion responses
to a diverse range of stimuli via computational techniques. Studies guided by these principles
have reported several varieties of emotions labels. For example, Cowen and Keltner identified
27 varieties of emotional experience conveyed by short videos (Figure 2.3 illustrates most of
them) [3]. Furthermore, 13 emotion categories were identified conveyed by music [45], 28 by
facial expressions [15], 12 by speech prosody [46], and 24 by nonverbal vocalization [47].
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Figure 2.3: Videos mapped along 27 categorical judgment dimensions of reported emotional experience [3] .

2.1.4 Classifiers

Multi-label vs multi-class classification

In the context of machine learning and classification tasks, multi-label and multi-class classifi-
cation are two different approaches to handling datasets where the target class has more than
two possible outcomes for each data point [48].

Multi-class classification is defined as the case where each data point is classified into one
and only one class from a set of multiple classes. In other words, each instance in the dataset
is assigned to one exclusive category. For example, consider a dataset of animals categorized as
mammals, birds, reptiles, and amphibians. Each animal in the dataset can only belong to one
of these four classes.

On the other hand, multi-label classification is defined as the case where each data point can
belong to multiple classes simultaneously. In this scenario, a data point can be associated with
more than one label or category. For instance, consider a news article classification task, where
an articlemay belong tomultiple topics such asmovies, sports, and entertainment. Multi-label
classification algorithms aim to predict the presence or absence of each label independently for
each data point.
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Support VectorMachines

Support Vector Machines [49] (SVMs) are powerful supervised machine learning algorithms
used for classification and regression tasks. SVMmaps its data points to points in space where
each feature represents an axis. In the case of classification, the fundamental idea behind SVMs
is to find an optimal line or hyperplane that separates the data mapped into classes, by maxi-
mizing themargin of such line between different classes while still correctly classifying the data
points. The margin is the distance between the hyperplane and the nearest data points from
each class, known as support vectors.

Kernel functions can be used in SVMs helping to separate classes that wouldn’t be separable
otherwise, by transforming the data into a more suitable space. Some commonly used kernel
functions include polynomial kernels, radial basis function kernels, and sigmoid kernels.

Linear Support Vector Machine (or LinearSVC specifically for Classification) is a specific
implementation of SVMs for linearly separable data. It works with a linear kernel and is par-
ticularly efficient for large-scale datasets. LinearSVC has been widely used in text classification
tasks.

For two classes, Linear SVM is defined as follows: given a training dataset of n points in
the form (x1, y1), ..., (xn, yn), where yi indicates to which class the point xi belongs (-1 or 1),
the algorithm’s objective is to find the maximummargin hyperplane that divides the points xi

between the two classes.

Any hyperplane can be defined aswTx− b = 0, where w is the normal vector to the hyper-
plane (not necessarily normalized). In the case that the training data is linearly separable, it is
possible to obtain two different hyperplanes that separate the two classes with the maximum
distance between them. The region between these two hyperplanes is called the “margin”, and
the hyperplane that lies halfway between them is themaximum-margin hyperplane. With a nor-
malized dataset, these hyperplanes can be described by the equationswTx− b = 1 (describing
that any point that falls on or above this boundary belongs to class 1) and wTx − b = −1

(describing that any point that falls on or above this boundary belongs to class -1). These defi-
nitions are illustrated in Figure 2.4.

Geometrically, the distance between the two hyperplanes, i.e. the margin, is 2
∥w∥ . Therefore,

in order to maximize the margin we need to minimize ∥w∥. However, we also need to make
sure that all points fall into the respective side of the margin, that is: for each i, we need either
wTxi − b ⩾ 1 (if yi = 1), orwTxi − b ⩽ −1 (if yi = −1).
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Figure 2.4: Example of a Linear SVM trained with two classes. The red line represents themaximum‐margin hyperplane. Blue
points represent data belonging to class 1, green points represent data belonging to class ‐1. The yellow zone represents the
margin [4].

Thus, the problem to be solved by Linear SVM is defined as:

min
w,b

∥w∥22

s.t. yi(w
Txi − b ⩾ 1), ∀i ∈ {1, ..., n}

(2.1)

Neural Networks

Neural networks are machine learning models composed of interconnected artificial neurons,
organized in layers, designed to process complex patterns and make predictions from input
data.

The architecture of a neural network consists of three main types of layers: the input layer,
one or more hidden layers, and the output layer. The input layer receives raw data, which is
thenprocessed through the hidden layers using interconnectedneurons that transform the data
through mathematical operations. The output layer provides the final results of the model’s
computation, representing its predictions or classifications [50].

Amultilayer perceptron (MLP) is a specific type of neural network, also known as a feedfor-
ward neural network, where neurons are arranged in layers, and information flows only in one
direction—from input to output. Each neuron takes input values, multiplies them by corre-
sponding weights, and passes the result through an activation function to produce an output,
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as shown in Equation 2.2, where a represents the neuron’s activation, ϕ is the activation func-
tion, wj are the weights, xj are the neuron’s inputs, and b is the bias. The hidden layers in
an MLP allow the model to learn hierarchical representations of the data, making it effective
in capturing complex relationships and patterns. Figure 2.5 illustrates an MLP, where each
neuron (circle) has a variation of Equation 2.2.

a = ϕ

(∑
j

wjxj + b

)
(2.2)

Figure 2.5: Multilayer perceptron, or feedforward neural network.

Neural networks excel in learning complex and nonlinear patterns from large datasets. The
advent of deep learning, which involves neural networks with multiple hidden layers, has sig-
nificantly boosted the performance of these models, enabling them to learn hierarchical repre-
sentations of data and tackle even more challenging and sophisticated problems.

Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a class of deep learning models commonly used
for image recognition tasks. They are designed to automatically learn and extract hierarchical
patterns or features from images through an operation called convolution. CNNs consist of
multiple layers, including convolutional layers (that scan over the data to capture local patterns
and features), pooling layers (that reduce the spatial dimensions of the feature maps generated
by the convolutional layers), and fully connected layers (that combine the learned features).
AlthoughCNNswere originally developed for image data, their architectural principles can

be adapted for other types of data as well. For example, 1D CNNs can be used for processing
sequential data like time series or text data. In text processing, the 1D CNN employs one-
dimensional convolutional filters to slide over the text, capturing local patterns, word combi-
nations, or phrases [51]. Figure 2.6 shows an example of a CNN applied to a sentence.
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Figure 2.6: Example of a CNN architecture for text classification [5].

RecurrentNeural Networks

RecurrentNeural Networks (RNNs) are a class of neural networks designed to handle sequen-
tial data, making them particularly useful for text data, since the word order in text is usually
important. In an RNN, each word in a text sequence is processed one at a time, and the net-
workmaintains an internal hidden state that acts as its memory of previous inputs. This allows
the RNN to capture dependencies between words and contextual information in the text, en-
abling it to make predictions or generate outputs based on the entire sequence. Figure 2.7
illustrates the architecture of an RNN. The hidden states ht at each time step t are defined as:

ht = ϕ(Uxt +Wht−1), (2.3)

where ϕ is an activation function,U is a weight matrix, xt in the input at time step t, andW is
a hidden state matrix (that weights the value of ht−1).

Figure 2.7: Architecture of an unrolled RNN [6].

Long Short-Term Memory (LSTM) networks [52] and Gated Recurrent Unit (GRU) net-
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works [53] are variations of RNNs that can hinder traditional RNNs from effectively captur-
ing long-range dependencies in text data. LSTM and GRU architectures incorporate gating
mechanisms that allow the network to retain and control the flow of information through the
hidden states. This helps RNNs remember relevant information over longer sequences, mak-
ing themmore effective for handling long texts andmaintaining context over extended periods.
Figure 2.8 illustrates the diagrams for a simple RNN, an LSTM, and a GRU.

Figure 2.8: Diagram of an RNN, an LSTM and a GRU. xt is the input at time step t,Ot is the output at time step t, ht and
ht−1 are the hidden states at time steps t and t− 1, ct and ct−1 are the cell states at times t and t− 1, ϕ represents the
activation function, and σ represents selector vectors.

Long short-term memory
LSTMs use a concept called cell state (ct), which is passed from the input to the output of

each cell. It represents the long-term memory part of the LSTM. Furthermore, LSTMs have
three gates: input gate, forget gate, and output gate. These gates work as filters and control
which information to keep or discard throughout the flow of information between the cells.

The forget gate determines which information should be discarded. It uses a sigmoid func-
tion (σ) to represent the amount of information to be kept (from 0 to 1). Its output is defined
as a function of the current output (xt), the hidden state of the previous time step (ht−1), and
a bias (b), as shown in Equation 2.4

ft = σ(Wf,x + xt +Wf,hht−1 + bf ) (2.4)

The input gate determines which information should be added to the cell state. In this case,
it also uses a sigmoid function (σ), but to decide which values to keep. It is defined as follows:

it = σ(Wi,x + xt +Wi,hht−1 + bi) (2.5)
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The output gate of the LSTMdetermineswhich information from the cell state should com-
pose the output. Described by Equation 2.6, it is responsible for the short-term memory part
of the LSTM.

ot = σ(Wo,x + xt +Wo,hht−1 + bo) (2.6)

The cell state is finally updated using the forget and input gates, as follows:

ct = (ft ◦ ct−1 + it ◦ ϕ(ht−1)) , (2.7)

where ϕ represents the activation function tanh. Afterward, the hidden state of the current
time step (ht) is defined through the output gate and a tanh function that limits the cell state
between -1 and 1.

ht = ot ◦ tanh ct (2.8)

Gated Recurrent Unit
Contrary to theLSTM, theGRUdoes not have a cell state and is definedby only two gates: a

reset gate and an update gate. The reset gate represents the short-termmemory and determines
how much information from the past should be kept or discarded. Similarly to the LSTM
gates, it is defined as follows:

rt = σ(Wr,x + xt +Wr,hht−1 + br) (2.9)

The update gate, on the other hand, represents the long-termmemory and is comparable to
the LSTM’s forget gate:

ut = σ(Wu,x + xt +Wu,hht−1 + bu) (2.10)

The hidden state at the current time step is firstly defined as a combination of the current
input (xt) and the hidden state of the previous time step (ht−1), provided to an activation
function (ϕ). The reset gate controls the influence of the previous hidden state.

ĥt = ϕ(Wg,x + xt +Wg,h(rt ◦ ht−1) + bg) (2.11)

Then, the candidate hidden state (ĥt) is combinedwith ht−1 to calculate the current hidden
state. The update gate controls how they are combined.
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ht = ut ◦ ht−1 + (1− ut) ◦ ĥt. (2.12)

Bidirectional RNNs (BiRNNs) and Bidirectional LSTMs (BiLSTMs) [54] are extensions
of the standard RNN and LSTM architectures. While traditional RNNs process the text se-
quence from the beginning to the end, BiRNNs and BiLSTMs process the sequence in both
forward and backward directions simultaneously. By combining information from both pre-
ceding and succeeding contexts, BiRNNs and BiLSTMs can better capture bidirectional de-
pendencies in the text, enhancing their ability to understand the context and make more accu-
rate predictions.

These advanced RNN variants, including LSTM, GRU, BiRNN, and BiLSTM, have be-
come popular choices for various natural language processing (NLP) tasks. They excel in tasks
like language modeling, sentiment analysis, machine translation, and text generation. Their
ability to model sequential dependencies, handle long texts, and capture bidirectional context
makes them powerful tools for extractingmeaningful information and patterns from text data.
As a result, they play a crucial role in enabling machines to comprehend human language effec-
tively.

Transformers

Unlike traditional Recurrent Neural Networks (RNNs) and its variants, Transformers [8] do
not rely on sequential processing to capture dependencies between words in a text sequence.
Instead, they are neural networks that use an attentionmechanism that allows them to analyze
all words in the sequence simultaneously, making them highly parallelizable andmore efficient.

The transformer architecture consists of an encoder and a decoder. InNLP tasks such asma-
chine translation, the encoder processes the input text capturing both local and global context
simultaneously, while the decoder generates the corresponding output. Figure 2.9 illustrates
the encoder in action. When the model processes each word of the sentence, the attention
mechanism enables it to look at other words in the input sequence for clues that could help
to better encode the current word. The decoder, on the other hand, uses masked attention to
ensure that each word can only attend to the words that come before it in the output sequence,
preventing information leakage.
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Figure 2.9: The encoder attention distribution for the word “it” of a Transformer trained on English to French translation
(one of eight attention heads) [7]. Notice how the word is coupled with a different term (animal vs. street) depending on the
context of the sentence (the adjective at the end).

Diving deeper into the transformer architecture, it uses an encoder-decoder structure as
shown in Figure 2.10. The encoder is composed of a stack ofN identical layers, that have two
sub-layers each: one multi-head attention mechanism (described later in this section) followed
by an addition and normalization operations (defined as
LayerNorm(x + MultiHeadAttention(x)), and one position-wise fully connected feed-
forward network (FFN) also followed by addition and normalization (defined as
LayerNorm(x + FFN(x)). All sub-layers and embedding layers have outputs of dimen-
sion d = 512.

The position-wise fully connected feed-forward network consists of two linear transforma-
tions with a ReLu activation function in between, as described by Equation 2.13. It is applied
to each position separately and identically.

FFN(x) = max(0, xW1 + b1)W2 + b2 (2.13)

The decoder also has a stack ofN identical layers. Firstly it has a masked multi-head atten-
tion followed by addition and normalization. The masking part of the multi-head attention
means that it sets future positions to−∞, making themunreachable by current positions, and
preventing information leakage. Then, another multi-head attention sub-layer is applied over
the output of the encoder stack. Finally, a sub-layer with a position-wise fully connected FFN
is also applied with the addition and normalization layer.
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Figure 2.10: Transformer architecture [8]. The left gray square represents the encoder, while the right one represents the
decoder.

Attention is a function that maps a query and a set of key-value pairs to an output. The
query, keys, values, and outputs are all vectors. The query, key, and value are representations
of the input, that can change depending on the context of the problem. Their concept can be
extrapolated from retrieval systems: when googling something, for example, the search engine
maps the query (the text from the search bar) against a set of keys (website titles, tags, content)
in order to present the best matched websites (the values) [55].
The attention mechanism used in the Transformers paper [8] is called Scaled Dot-Product

Attention. It uses three input vectors: queries (Q) and keys (K) of dimension dk, and values
(V ) of dimension dv. It is calculated as the dot products of the queries with all keys, divided by√
dk. Then, a soft-max function is applied toobtain theweights of the values. These operations

are done matrix-wise. The matrix of outputs is computed as follows:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (2.14)
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Figure 2.11: Multi‐head attention [8].

The multi-head attention applies Scaled Dot-Product Attention focusing on different po-
sitions and using multiple representation sub-spaces. It uses multiple sets of query, key, and
value weight matrices randomly initialized and later trained to project the input embeddings
into different representation sub-spaces. The attention function is performed on each pro-
jected version ofQ,K andV , yielding output values of dimension dv. These output values are
then concatenated andprojected linearly, thus forming the final values, as shown in Figure 2.11.
It is represented as:

MultiheadAttention(Q,K, V ) = concat(head1, ..., headh)W
O

where headi = Attention(QWQ
i , KWK

i , V W V
i )

(2.15)

The projections are parameter matricesWQ
i ,WK

i ∈ Rdmodel×dk , W V
i ∈ Rdmodel×dv , and

WO ∈ Rhdv×dmodel .
The transformer model uses learned embeddings to convert the input and output text to

vectors of dimension dmodel. Before generating the output probabilities, it also uses a learned
linear transformation and a soft-max activation function in order to convert the output from
the decoder to predicted next-token probabilities.

The attention mechanism of transformers enables them to assign varying levels of impor-
tance to different words in the sequence based on their relevance to each other. This allows
them to consider long-range dependencies in the text effectively. By capturing these depen-
dencies, Transformers can understand the context and relationships between words in the text

23



more accurately, leading to better performance in NLP tasks.
A significant benefit offered by the transformer architecture is that at each stepwehave direct

access to all the other steps (through multi-head attention). Additionally, the architecture al-
lows for simultaneous consideration of preceding and subsequent elements, akin to the advan-
tages of bidirectional RNNs, yet without the accompanying twofold computational require-
ment. Notably, these operations occur in parallel rather than a sequential manner, resulting in
faster training and inference processes.

2.1.5 Sentiment analysis

Sentiment analysis constitutes a research field focused on examining people’s opinions, sen-
timents, evaluations, and appraisals concerning various entities, including products, services,
organizations, individuals, events, topics, and their attributes. Over the past years, sentiment
analysis applications have been applied in several domains, such as consumer products, services,
healthcare, financial services, social events, and political elections, among others [56].

Sentiment analysis has been generally studied at three levels:

• Document level: Classifying whole documents into positive or negative sentiments.
For example, given a news article, the system determines whether the article expresses
an overall positive or negative connotation on the news presented. Given that we need
to classify whole web pages, document-level analyses are the focus of this work.

• Sentence level: Performing the classification task not on the whole document at once,
but analyzing sentence-by-sentence and outputting a separate sentiment for each.

• Entity and aspect level: Performing finer-grained analysis than the two previous levels.
Instead of separating the unit by language constructs (such as documents, paragraphs,
sentences, etc.), it looks at the opinion itself, focusing not only on the sentiment but also
its target. For instance, the sentence “The south of Italy is beautiful, but its summers are
very hot.” evaluates two targets: appearance and temperature. The sentiment on the
south of Italy’s appearance is positive, but the sentiment on its temperature in summer
is negative.

When analyzing texts, sentiments can be seen from two perspectives: the author who ex-
presses an opinion, and the reader who can have a different reaction than the one intended by
the author. For example, if a text says “the housing price has gone down, which is bad for the
economy”, the author clearly brings up the negative impact of the house prices on the economy.
However, readersmight have different interpretations of these news based on their background.
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If readers are looking for selling houses the news is definitely negative, but if they want to buy
houses, this sentence could be perceived as good news. Since the reader’s perspective can have
multiple correct interpretations while the writer’s perspective is less variable, it was decided to
use the interpretation of the writer’s proposed sentiment when annotating the data with senti-
ment labels.
The main goal of sentiment classification is the same as that of a text classification problem.

Traditional text classification generally classifies documents of topics like politics, sciences, or
sports, where topic-related words serve as key features. However, sentiment classification fo-
cuses on words that convey a positive or negative sentiment, such as “lovely”, “amazing”, “hor-
rible”, “terrifying”, etc.
Being essentially a text classification problem, supervised learning methods have been em-

ployed in the literature, such as naïve Bayes classifiers and support vector machines (SVM) [57,
58], as well as deep learning approaches.

Text representations

In order to prepare the text for a classification task, every word needs to be represented as fea-
tures. One of the pioneeringworks to apply feature extraction in this context [59] showed good
results using both naïve Bayes and SVMs by representing the text as unigrams (also known as
bag of words), which represent the frequencies of words without establishing an order or con-
text between them. Another example used in subsequent research [60] was the usage of Term
Frequency-Inverse Document Frequency (TF-IDF), which represents the text by calculating
the word frequencies per document and dividing each of them by the frequency of the same
words in the entire document collection, with the goal of re-scaling theword frequency by how
rare or common they are across the collection.

In recent years, the usage of word embeddings as features has grown popularity. The main
difference between word embeddings and previous methods is the usage of machine learning
to best represent the text. The following paragraphs detail some of the most commonly used
embeddings.
Word2Vec, a “word to vector” interpretation, introduced by Mikolov et al. (2013) [34],

is composed of a two-layer neural network. It aims to represent words as vectors in a high-
dimensional space, where similar words are positioned closer to each other. Themethod comes
in twovariations: continuousbag-of-words (CBOW)and skip-gram. In theCBOWmodel, the
algorithm predicts a target word based on its surrounding context words, while in skip-gram,
it predicts the context words given a target word. Word2Vec has proven to be a powerful tool
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for various natural language processing tasks, as it captures semantic relationships and word
similarities in an efficient and scalable manner.
GloVe (GlobalVectors forWordRepresentation)was createdbyPenningtal et al. (2014) [35].

Unlike Word2Vec which focuses on local context, GloVe captures global word co-occurrence
statistics to generate word vectors. By factorizing a co-occurrence matrix that calculates how
often pairs of words appear together in a given text, it is able to preserve both semantic and
syntactic relationships.
FastText was introduced by Facebook’s research team in 2017 [36]. It represents words as

continuous-valued vectors, but with a significant improvement: it breaks words down into
smaller subword units. By doing so, fastText can handle out-of-vocabulary words and cap-
ture morphological information, which is especially useful for the representation of slang, real-
world text data with varying spellings, and languages with rich morphology. It operates by
constructing a bag-of-words representation for each subword and then learns the word embed-
dings using a shallow neural network. This approach allows fastText to be computationally
efficient and handle large vocabularies effectively.
USE, also known as Universal Sentence Encoder, is a powerful pre-trained sentence embed-

ding model introduced by Google Research in 2018 [40]. Unlike word embeddings that rep-
resent individual words, USE was designed to generate fixed-length vector representations for
entire sentences or short texts. The model is based on a deep transformer architecture and is
trained on a large-scale corpus containing diverse language data. What setsUSE apart is its versa-
tility, as it can encode sentences in multiple languages and handle sentences of varying lengths,
producing dense and semantically meaningful embeddings that capture the contextual infor-
mation of the entire sentence.
ELMo, short for Embeddings from Language Models, was introduced by Peters et al. in

2018 [61]. Their innovative work generates contextualized word embeddings, meaning that
the representation of aword varies depending on its context in a sentence. It is based on bidirec-
tional LSTM networks, whose higher-level states capture context-dependent aspects of word
meaning, while the lower-level states model aspects of syntax. During training, ELMo learns
to encode words in a way that considers the entire sentence, resulting in word embeddings that
are sensitive to the surrounding context. This allows ELMo to handle terms with multiple
meanings and capture nuances in word usage.
BERT, which stands for Bidirectional Encoder Representations fromTransformers, was in-

troduced by Devlin et al. (2018) [37]. Like ELMo, BERT also generates contextualized word
embeddings, but it utilizes a transformer-based architecture to achieve bidirectional context
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modelingmore efficiently. It employs the attentionmechanism of transformers to capture con-
textual information in a parallel andmore scalablemanner,making it computationally faster. It
has become a dominantmodel inNLP due to its exceptional ability to capture context, leading
to state-of-the-art performance on many natural language understanding tasks and inspiring
many other transformer-based embeddings.
Similar to other models, BERT has more than one model variation. In the paper it was

introduced there were twomodels: BERT-base and BERT-large. As the names suggest, the dif-
ference is in their sizes. While BERT-base has 12 transformer layers, 12 attention heads, and
110 million parameters, BERT-large has 24 layers, 16 attention heads, and 340 million param-
eters. BERT-large usually shows better performance than BERT-base, however it also requires
more computational resources and/or time to train and fine-tune. For example, BERT-base
was trained on 4 cloud TPUs for 4 days and BERT-large was trained on 16 TPUs for 4 days.

Multilingual BERT is a variation of BERT trained on the same large-corpus data, but across
104 languages instead of only English data.

RoBERTa, a Robustly Optimized BERT Pretraining Approach, was developed by Liu et
al. at Facebook AI in 2019 [39], as an optimized version of the BERT model. It was trained
on a large corpus of diverse text data, including news articles, to improve its language represen-
tation capabilities. The training process for RoBERTa involves a larger corpus of data, longer
sequences, larger batch sizes, and more iterations compared to BERT, resulting in a more pow-
erful language model.
DistilBERT is a distilled version of the original BERT model, introduced by Sanh et al. in

2020 [38]. The process of knowledge distillation involves compressing a large complex model
(teachermodel), like BERT, into a smaller andmore lightweight version (studentmodel), while
retaining as much of its knowledge as possible. During this process, the student model is
trained tomimic the outputprobabilities of the teachermodel on a labeleddataset. DistilBERT
achieves significant model compression (usually about 40% smaller) and faster inference while
still maintaining competitive performance with respect to the original BERT model on vari-
ous NLP tasks. This allows for more efficient deployment of BERT-like models on resource-
constrained devices or systems with limited computational capabilities.
LaBSE, which stands for Language-agnostic BERT Sentence Embedding, was introduced

by Feng et al. from Google AI Research in 2022 [62]. It is an extension of the original BERT
model with the goal of providing cross-lingual sentence representations. Trained on translated
sentence pairs, it learns language-agnostic sentence embeddings that capture semantic infor-
mation across different languages. This makes LaBSE particularly useful for multilingual ap-
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plications, as it can handle sentences from various languages and still provide meaningful and
comparable embeddings.

XLNET is a state-of-the-art languagemodel introduced by Yang et al. (2020) [41]. It builds
upon the transformer architecture andovercomes some limitations of previousmodels by intro-
ducing a permutation-based training approach that enables learning bidirectional contexts. It
does so bymaximizing the expected likelihood over all permutations of the factorization order,
thus considering all context combinations during training. This bidirectional context model-
ing results in better sentence representations and improved performance on variousNLP tasks,
being the current model with the highest accuracy on the Sentiment Analysis IMDb bench-
mark as reported by Papers with Code [63].

Cross-language sentiment classification

Cross-language, or language-agnostic, sentiment classification aims toperform sentiment classi-
fication in texts of multiple languages. Its main motivation would be the desire to use English-
trained models that are much more abundant in the literature in other languages and other
countries. In the context of this project, training on English data to create cross-languagemod-
els enables us to use the GoEmotions dataset to train models for all languages. This is interest-
ing because GoEmotions is one of the largest emotion human-annotated datasets and it has an
ample number of emotion categories, being greater than datasets in other languages.

In order to achieve language-agnostic classification, a few approaches have been proposed in
the literature. The simplest approach could be to translate the texts into English and then apply
the English-trained models. A few setbacks can be seen in this approach, such as the bias intro-
duced by the translator and the difficulty in translating words while keeping meaning and sen-
timent being represented. In order to overcome part of these issues, Wan (2008) [64] used the
output of several Chinese-to-English translators, which produced different English versions of
the same document. Those were then each classified separately and their results were aggre-
gated using different ensemble methods, such as average, maximum, voting, etc. More recent
approaches involve training word embeddings on large corpora of data in multiple languages
in order to obtain multilingual vector representations. Such approaches have reached good
results, as shown in the following section.
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2.2 Relatedwork

In recent years the number of studies encompassing text classification and even sentiment anal-
ysis specifically has grown greatly, due to the advances in text embedding and deep learning
techniques that come coupled with the advances in computational resources. This section pro-
vides a summary of the state-of-the-art with regard to sentiment analysis models.

2.2.1 Machine learning models

Some of the commonly used classifiers in sentiment analysis include non-deep learningmodels,
such as support vector machine (SVM), naïve Bayes, logistic regression, random forest, and
decision trees [65].
For instance, Jung et al. (2016) [66] usedmultinomial naïveBayes to classifyTweets into pos-

itive, negative, or neutral. They reported an accuracy of 85% on the Sentiment140 dataset [67],
which is a dataset collected by Stanford University that consists of 1.6 million labeled tweets
from customers, evenly split between the positive and negative sentiment classes.

Hemakala and Santhoshkumar (2018) [16] compared multiple machine learning models,
such as decision tree, random forest, support vector machine, k-nearest neighbors, logistic re-
gression, Gaussian naïve Bayes, andAdaBoost. The authors collected over 14k tweets related to
IndianAirlines, also labeled as positive, negative and neutral. The results showed thatRandom
Forest had the highest F1-score, reaching 87%.

Rahat et al. (2019) [21] compared sentiment analysis models on 10k tweets also labeled as
positive, negative and neutral. Themodels analyzedweremultinomial naïve Bayes and support
vector classifier (SVC) with linear kernels. Its results showed that the latter had the highest
accuracy, of 82% as opposed to 77% frommultinomial naïve Bayes.

A study conducted by Saad (2020) [18] on positive, negative and neutral classification com-
pared six different machine learning models: SVM, logistic regression, random forest, XG-
Boost, naïve Bayes, and decision trees. Its results showed that SVM achieved the highest ac-
curacy of 83%, followed by logistic regression with 82%.

Finally, Jemai et al. (2021) [20] employed five machine learning models using Twitter data
available in the Natural Language Toolkit [68] with an equal number of positive and negative
samples. The models employed were naïve Bayes, multinomial naïve Bayes, Bernoulli naïve
Bayes, logistic regression, and linear support vector machines. The preprocessing of the data
included tokenization, stopword removal, URL and symbol removal, case folding, and lemma-
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tization. Its results showed that the naïve Bayesmethod achieved the highest accuracy of 99.7%.
It is important to emphasize that the metrics across the papers cannot be directly compared

to each other, since they use different test datasets. These datasets may exhibit divergent label
distributions, cover distinct subject matters leading to disparate terminologies, and encompass
varying text lengths. For instance, while tweets are confined to 140 characters, other textual
formats might not be subject to any length limitations. These variations can produce different
results and need other types of models.
Furthermore,models exhibiting proficiency in one task (such as categorizing tweets concern-

ing airline opinions) may not necessarily excel in another task (for instance, analyzing lengthy
passages discussing war). This means that even though multinomial naïve Bayes reached an
impressing accuracy of 99.7% in a specific setting, it might not be the perfect model for all so-
lutions. Hence, the analysis of related work should be done by analyzing possible candidate
models to be tried for the specific goal of this work. This entails experimenting with models
that achieved good performance metrics, rather than applying those models to a different task
and aiming to achieve the same accuracy as the task reported in one of these papers. Table 2.1
shows a summary of the papers presented in this section.

Reference Dataset Dataset size
(# rows) Labels Models compared

(ordered by highest scoring first)
Jung et al. (2016) [66] Sentiment140 [67] 1.6M 3 emotions (positive, neutral, negative) MultinomialNB

Hemakala and Santhoshkumar (2018) [16] Twitter US Airline Sentiment [69] 14k 3 emotions (positive, neutral, negative) Random Forest, SVM, AdaBoost, Logistic Regression,
Gaussian Naïve Bayes, Decision Tree, KNN

Saad (2020) [18] Twitter US Airline Sentiment [69] 14k 3 emotions (positive, neutral, negative) SVM, Logistic Regression, Random Forest, XGBoost,
Gaussian Naïve Bayes, Decision Tree

Rahat et al. (2019) [21] Twitter Airline Reviews 10k 3 emotions (positive, neutral, negative) MultinomialNB, LinearSVC

Jemai et al. (2021) [20] NLTK’s Twitter corpus * 10k 2 emotions (positive, negative) Naïve Bayes, MultinomialNB, BernoulliNB,
Logistic Regression, LinearSVC

Table 2.1: Comparison of papers performing sentiment classification using non‐deep learning models

2.2.2 Deep learning models

Deep learning approaches have become more popular over the past years in the field of senti-
ment classification. Ranging frommulti-layer perceptrons (MLP) to transformers.

For example, a study conducted by Dholpuria et al. (2018) [17] compared several machine
learning and deep learning methods, such as naïve Bayes, SVM, logistic regression, k-nearest
neighbors, ensemble models, and a convolutional neural network (CNN). The dataset used
contained 3k reviews with positive and negative labels from IMDbmovie reviews. The results
showed that the highest accuracy was 99.3% belonging to the CNNmodel.

Furthermore, Yang (2018) [26] proposed a CNN that uses RNNs as the convolution filters.
The Stanford Sentiment Treebank (SST) dataset [70] was used, encoded with GloVe word em-
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beddings. The SST dataset consists of sentences from movie reviews, where each sentence is
parsed into a tree structure with sentiment labels assigned to nodes representing phrases or
words. It is represented in two forms, SST-2 (or SST binary) which only has positive and neg-
ative labels, and SST-5 (or SST fine-grained), which has labels negative, somewhat negative,
neutral, somewhat positive, and positive. Yang’s work concluded with an accuracy of 89% on
the SST-2 dataset and 53% on the SST-5 dataset.
Rhanoui et al. (2019) [27] used a dataset of two thousand articles and news articles labeled

as positive, negative and neutral and preprocessed using a pre-trained doc2vec model [71] (an
extension of word2vec) in their work. They presented a hybrid model that combines CNNs
and bidirectional long short-term memory (BiLSTM) networks for sentiment analysis, which
reached an accuracy of 91% on the dataset.

Dang et al. (2020) [24] performed a comparative study on sentiment analysis using 1.6 mil-
lion tweets andmovie, book, andmusic reviews obtained from eight datasets labeled as positive,
negative or neutral sentiments. The data was preprocessed using word2vec embeddings and
TF-IDF. An experimental study was conducted using a DNN, a CNN, and an RNN. The re-
sults showed thatTF-IDFhasworsemodels and requires longer computational time thanword
embeddings. Among the deep learningmodels, theCNNwas concluded to have the best trade-
off between processing time and accuracy, although the RNN had the highest accuracy over
all datasets.

The Sentiment140datasetwas once againused, alongwith theTwitterUSAirline Sentiment
dataset, a collection of customer reviews over six major American airlines published in 2017 by
CrowdFlower. Harjule et al. (2020) [19] used such datasets to compare multinomial naïve
Bayes, logistic regression, SVM, LSTM, and an ensemble of such models with majority voting.

Raza et al. (2021) [72] used an MLP model with five hidden layers to classify COVID-19
related tweets into positive, negative and neutral sentiments. The text data was represented
using two feature extractors: a TF-IDF and a count vectorizer, which were separately classified
and compared. The representation using the count vectorizer achieved the highest accuracy of
94%.

AL-Smadi et al. (2023) [73] developed a Pooled-GRU model with multilingual univer-
sal sentence encoder embeddings to perform aspect-based sentiment analysis in Arabic text.
The SemEval 2016 competition Task-5 dataset [74], that is composed by comments and re-
views from customers on six different domains (restaurants, hotels, museums, laptops, mobile
phones, and digital cameras) written in 8 languages, was used for training and evaluation. They
achieved an F1-score of 93%.
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Table 2.2 summarizes the papers described in this section.

Reference Dataset Dataset size
(# rows) Labels Models compared

(ordered by highest scoring first)
Dholpuria et al. (2018) [17] IMDbmovie reviews 3k 2 emotions (positive, negative) CNN, SVM, Logistic Regression, KNN, Naïve Bayes

Yang (2018) [26] SST dataset [70] 11k 5 emotions (negative, somewhat negative,
neutral, somewhat positive, positive) CNNwith RNN as filters

Rhanoui et al. (2019) [27] News articles 2k 3 emotions (positive, negative, neutral) CNNwith BiLSTM
Dang et al. (2020) [24] Movie, book, and music reviews from Twitter 1.6M 3 emotions (positive, negative, neutral) RNN, CNN, DNN

Harjule et al. (2020) [19] Sentiment140 [67],
Twitter US Airline Sentiment [69]

1.6M,
14k 3 emotions (positive, negative, neutral) RNNwith LSTM, SVM, Logistic Regression, MultinomialNB

Raza et al. (2021) [72] COVID-19 tweets 65k 3 emotions (positive, negative, neutral) MLP with count vectorizer, MLP with TF-IDF
AL-Smadi et al. (2023) [73] SemEval 2016 competition Task-5 dataset [74] (Arabic language) 3k 3 emotions (positive, negative, neutral) Pooled-GRU

Table 2.2: Comparison of papers performing sentiment classification using deep learning models

2.2.3 Transformers models

The following researchwasdone specificallyusing transformersmodels, comparing themamongst
themselves and with other approaches.

Munikar et al. (2019) [29] performed sentiment classification on the Stanford Sentiment
Treebank (SST) dataset using BERT, both “base” and “large” models. They reported an ac-
curacy of 83.9% for BERT-base and 84.2% for BERT-large for the SST-5 dataset (labeled with
5 emotion labels), while the accuracy increased to 94% and 94.7% respectively for the SST-2
dataset (with only “positive” and “negative” labels).

Younas et al. (2020) [31] compared twodeep learningmodels,multilingual BERT(mBERT)
and XLM-RoBERTa (a version of Roberta trained as a cross-language model), for sentiment
analysis of multilingual social media text. The dataset used (called Multisenti [75]) was col-
lected from Twitter during the 2018 general election in Pakistan, comprising 20k Tweets in
both English and Roman Urdu. The Tweets were categorized into positive, negative, and neu-
tral classes. After fine-tuning the learning rate of the models, the outcomes demonstrated that
mBERT achieved 69% accuracy, while XLM-R achieved 71% accuracy.

In another study,Dhola andSaradva (2021) [23] compared theperformanceof SVMs,multi-
nomial naïve Bayes, LSTM, and BERT models using the Sentiment140 dataset. The results
indicated that the best-performing model was BERT, which achieved 85% accuracy.

Smetanin and Komarov (2021) [32] compared several models for sentiment analysis in Rus-
sian, including Multilingual BERT, RuBERT, and two versions of the Multilingual Universal
Sentence Encoder. They usedmultiple datasets with 3 emotion classes and two datasets with 5
classes (namely, RuSentiment [76] and LINIS Crowd [77]). The study showed that RuBERT
had bettermetrics than the other approaches, reaching an F1-score of 72% in theRuSentiment
dataset, butmultilingual BERT andmultilingual Universal Sentence Encoder had competitive
metrics as well, presenting F1-scores of 71% and 69%, respectively, for the same dataset.
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Fattoh et al. (2022) [25] performed semantic sentiment classification on COVID-19 tweets
labeled as positive, negative, and neutral using a feedforward deep neural network (DNN) fed
with Universal Sentence Encoder embeddings, as described in Section 2.1.5. They achieved an
accuracy of 78% over 60 epochs.

The papers above are summarized in Table 2.3.

Reference Dataset Dataset size
(# rows) Labels Models compared

(ordered by highest scoring first)
Munikar et al. (2019) [29] SST [70] 11k 5 emotions (negative, somewhat negative, neutral, somewhat positive, positive) BERT-large, BERT-base

Younas et al. (2020) [31] Multisenti [75]
(multilingual: English and Roman Urdu) 20k 3 emotions (positive, neutral, negative) XLM-Roberta, mBERT

Dhola and Saradva (2021) [23] Sentiment140 [67] 1.6M 2 emotions (positive, negative) BERT, LSTM,MultinomialNB, SVM
Smetanin and Komarov (2021) [32] RuSentiment [78] (Russian language) 31k 3 emotions (positive, neutral, negative) RuBERT, mBERT,Multilingual USE
Fattoh et al. (2022) [25] COVID tweets 10k 3 emotions (positive, neutral, negative) DNN

Table 2.3: Comparison of papers performing sentiment classification using Transformers

2.2.4 Fine-grained sentiment analysis

The research shown in the subsections so far focuses on sentiment analysis based on positive,
negative andneutral emotion categories. In this subsection, relatedwork includingfine-grained
emotion categories is presented.

Adoma et al. (2020) [30] compared four Transformer-based models (BERT, RoBERTa, dis-
tilBERT, and XLNet) performing sentiment classification on the ISEAR dataset [79], which
consists of 7 thousand sentences labeled using 7 emotions: anger, disgust, fear, sadness, shame,
joy, and guilt. The outcomes showed RoBERTa has the highest accuracy (74%), followed by
XLNet (73%) and BERT (70%). DistilBERT achieved an accuracy of 67%. The authors also
presented that distilBERT was the fastest model, while XLNet was the slowest one.

WhenDemszky et al. (2020) [11] published the collectedGoEmotions dataset that includes
28 emotion categories as described in Section 4.1.1, they used a BERT-based model to provide
a baseline for future experiments. Their model achieved an average F1-score of 46% over their
taxonomy.

Suresh andOng (2021) [80] proposed a Label-awareContrastive Loss (LCL) that adaptively
weights a given input’s positive/negative samples basedon the label-relationships between them.
This loss brings semantically-similar labels (such as “sad” and “devastated”) closer, as opposed
to treating them the same as other label pairs (such as “sad” and “happy”). In order to compare
their results, they used an ELECTRA-base model [81] and 5 different datasets: Empathetic
Dialogues [82], a dataset of 25k conversations grounded in emotional situations labeled with
32 emotions; GoEmotions; ISEAR;EmoInt [83], a dataset created for theWASSA2017 shared
task consisting of tweets labeled with 4 emotion categories (joy, sadness, fear, and anger); and
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Reference Dataset Dataset size
(# rows) Labels Models compared

(ordered by highest scoring first)
Adoma et al. (2020) [30] ISEAR [79] 7k 7 emotions (anger, disgust, fear, sadness, shame, joy, guilt) RoBERTa, XLNET, BERT, distilBERT
Demszky et al. (2020) [11] GoEmotions [11] 58k 28 emotions BERT
Cortiz (2022) [33] GoEmotions [11] 58k 28 emotions RoBERTa, distilBERT, XLNET, BERT, ELECTRA

Suresh and Ong (2021) [80]

Empathetic Dialogues [82],
GoEmotions [11],
ISEAR [79],
EmoInt [84],
SST [70]

25k,
58k,
7k,
7k,
11k

32 emotions,
28 emotions,
7 emotions (anger, disgust, fear, sadness, shame, joy, guilt),
4 emotions (joy, sadness, fear, anger),
5 emotions (negative, somewhat negative, neutral, somewhat positive, positive)

ELECTRA

Table 2.4: Comparison of papers performing fine‐grained sentiment classification

the Stanford Sentiment Treebank. The results showed that the LCL approach had higher ac-
curacy and F1-score for the ELECTRA-base models in all datasets, achieving 65.5% accuracy
and 64.8% F1-score in the GoEmotions dataset.
Cortiz (2022) [33] performed a comparison on Transformers models on fine-grained emo-

tion recognition using the GoEmotions dataset. The models compared were BERT, Distil-
BERT,RoBERTa, XLNET, and ELECTRA. For the 28 sentiment labels, ELECTRA showed
the lowest results, with an F1-score of 33%, even though it was the fastest model. RoBERTa
achieved the highest F1-score of 49%, performing best for 14 out of the 28 emotion classes. The
model was followed by distilBERT (48%), XLNET (48%), and BERT (46%). Even though dis-
tilBERT and BERT achieved relatively low results, they were the only models who achieved
good results for the “pride” class (with an F1-score of 22% and 36%, respectively), while the
other models had an F1-score of zero. Furthermore, distilBERT was highlighted as a quick
model to train when compared to the other models, being presented as a good trade-off be-
tween time and performance.

A summary of the papers presented is shown in Table 2.4. As can be seen in the research
presented above, there are few studies focused on more than five fine-granular sentiments in
sentiment classification. While positive, negative, and neutral classes are frequently utilized in
sentiment analysis, they might not encompass the entire spectrum of emotions and intensities
a person can convey. In order to obtain more nuanced insights into the sentiment expressed
in a text, fine-grained sentiment analysis encompassing more specific classes like happy, caring,
sad, angry, or surprised could be pursued. This work presents an opportunity to fill this gap in
the field of programmatic advertising.

We can also see that even though Transformer models have been used in recent years, there
has also been space for other machine learning and deep learning approaches. Models such as
SVM, logistic regression, CNN, RNN, LSTM, and transformers are explored in this work.
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3
Problem exposition

This chapter presents a more detailed description of the field of programmatic advertising in
section 3.1, followed by an exploration of the business need for employing sentiment-based text
classification in section and a finer detailing of the research questions in section 3.2. Finally,
sections 3.3 and 3.4 provide a description of the data where the models will be applied and the
technical constraints that need to be met by the model.

3.1 Business Understanding

In the field of advertising, there are two main characters: publishers and advertisers. In the
past, agencies had to write directly to publishers in order to submit orders to publish their
ads and negotiate price, size, and other details. As the internet gained its space in society, it
brought the need for much more agility in this market. The need for higher speed brought up
the process of programmaticmedia-buying. It involves the automated negotiation of digital ad
space, encompassing various formats like display ads, banners, and videos. This process requires
a third player in the negotiation: the ad network, an advertising technology (AdTech) platform
that acts as a broker between the advertiser and publisher, efficiently buying and selling online
ads. The actions of the three players are described in Figure 3.1.
Real-time bidding (RTB) is a method used in programmatic media-buying where ad space

(or ad inventory) is negotiated by the number of impressions through an auction-based sys-
tem. An ad impression is the representation of one ad viewed by one user. The bidding system
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Figure 3.1: Description of the roles of the publisher, advertiser, and ad network in the field of programmaticmedia‐buying [9].

involves the buying and selling of individual ad impressions, where advertisers bid for the op-
portunity to display their ads to specific target audiences onwebsites or apps, which empowers
advertisers to display ads only to users who are more likely to engage with their products or
services [9].
In this context, Anonymised* has the role of the ad network, connecting advertisers and

publishers in a way that preserves the privacy of users, by anonymizing user data while still
sharing clusters of audiences with the targeted interest to advertisers.

One interesting feature of the ad network is the ability to properly categorize the publishers’
content in order to connect with the audiences targeted by the advertisers. Advertisers might
want to avoid specific topics, such as “violence”, however filtering only by topics could be re-
stricting websites and articles unnecessarily. The tone of the articles could also influence the
advertisers’ choices.

For example, articles that talk about war are potentially undesirable for advertisers. But if
instead the website talked positively about places where there is a war happening (e.g. “Beauti-
ful places in Ukraine before the war”), there might be an audience to be positively reached by
advertisers. Changing the point of view to publishers, there are articles about war video games
(such as “God of War” or “Call of Duty: ModernWarfare”) that could be avoided by advertis-
ers simply because of the topic, even though when actually analyzing the tone of the content,
they could be seen as good ad spaces for advertisers.

*https://www.anonymised.io/
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This issue brings forward an opportunity to apply sentiment analysis in publishers’ articles
in order to properly categorize them and make them available (or filtered out) to advertisers.

3.2 Detailed ResearchQuestions

Generally, existing solutions in the field of AdTech offer basic sentiment analysis models with
binary outputs (positive/negative). However, a more innovative product that provides nu-
anced emotions like sadness or anger, instead of a generic “negative” can offer greater value
from a business standpoint.

On theother hand, including similar sentimentswithoverlappingmeanings, such as “amuse-
ment” and “joy”may not be advantageous, since it is difficult for advertisers to discern between
them. When choosing ad spaces to reach their target audience, web content that conveys amuse-
ment or joy would have similar (if not the same) results. Understanding how to effectively
group these sentiments into meaningful categories is crucial for delivering value beyond sim-
plistic “positive,” “negative,” and “neutral” classifications.

Furthermore, considering the company’s international clients, an essential aspect to consider
is employing multilingual models. The development of a single language-agnostic model ca-
pable of interpreting multiple languages (without the need for additional training on specific
datasets for each language) would be ideal. Although having one model per language could
possibly result in better metrics per language, finding large datasets specific for each language
and labeled with fine-grained emotion categories is difficult. Moreover, maintaining multiple
models requires more computational resources, when compared to one multilingual model.

Hence, the objective of this thesis is to address the following research questions:

1. How well can web data be classified into more granular sentiment categories?

2. What level of sentiment granularity should be employed?

3. Is it feasible to employ a language-agnosticmodel for this task? If so, howdoes it compare
to a single language model?

3.3 Data Understanding

This section describes the web data on where the models will be applied.
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The web data being referenced in this thesis is composed of different types and topics, e.g.
news articles, recipes, tutorials, and song lyrics. Its texts range from a few sentences to long
texts with multiple paragraphs. The company has a web scraper that collects the texts from the
domains made available and authorized by the publishers and saves those texts and URLs in a
database. The texts collected can range from a couple of words, in the case of web pages mostly
composed of images, to long texts. Besides the main text, the scraper also collects article titles.
As of the development of this project, the scraper also performs some pre-processing on the
texts, by removing punctuation and turning all characters to lowercase.

3.4 Resource constraints

In order for this model to be feasibly used, a few constraints must be set in place. Here are
described resource constraints on the computational resources and time being utilized for the
training and prediction of the model.

The project’s goal is to train the model once and subsequently make daily inferences on
newly scraped publisher data. Therefore, the time constraints for the training phase are rela-
tively flexible. Regarding computational resources, it is assumed that amachine equippedwith
a GPU and 12GB of RAM will be available for this purpose. However, if larger models yield
significant and justifiable benefits, more extensive resources can be provided to accommodate
them.

Regarding execution resources, themodel’s runtime for processing thedaily newdata should
ideally be limited to a few hours, given that the model will likely be run during the early-hours
of the day.
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4
Methods, Results and Findings

This chapter presents the methodology, results, and their interpretation for the development
of machine learning models that predict granular sentiments of web text data.

Section 4.1 describes the datasets used for training and evaluating the models, followed by
a description of the sentiment groups chosen in Section 4.2. Then Section 4.3 describes the
preprocessing techniques used, followed by the description of the experiments using different
feature representations and algorithms in Section 4.4. Section 4.5 discusses the results of the
evaluation of the chosen models in real-world web data. Finally, Section 4.6 describes the eval-
uation of the selected models for multilingual data.

Namely, the research questions described in chapter 3 are answered in the following sections:

1. Howwell canwebdatabe classified intomore granular sentiment categories? Section4.4.3.

2. What level of sentiment granularity should be employed? Section 4.2.

3. Is it feasible to employ a language-agnosticmodel for this task? If so, howdoes it compare
to a single language model? Section 4.6.

Notes on the supervision of this project

This work was mainly supervised at Anonymised by Giovanni Vedana as Senior Data Scientist
and Mattia Fosci as Product Owner. The supervision included directions on the final goal of
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the project, the choice of the GoEmotions dataset as a starting point, which models to begin
with, and which approaches to pursue. For instance, the choice of starting from higher-level
sentiment categories and then studying models on fine-grained emotion categories later was
suggested by Giovanni. The emotion groups were first experimentally chosen by the author
who then presented them to the supervisors, who then contributed with the final groupings.
The supervisors also assisted in manually annotating the real-world web data, in order to pro-
vide different points of view for the labeled data.

4.1 Data sources

There are multiple data sources available in the literature. It was decided to use GoEmotions
due to its number of emotion labels, as well as its extensive amount of data. The need for an
additional dataset was brought up during the experiments, which brought to attention the
WASSA 2021 shared task dataset, whose data is more similar to the web data to be used in
production. Both datasets are described in the subsections below.

4.1.1 GoEmotions Dataset

GoEmotions* [11] is a large manually annotated dataset created by Google that consists of 58k
EnglishReddit† comments, labeledusing28 emotion categories, including “neutral”. TheRed-
dit comments were gathered from multiple subreddits that had at least 10k comments. Non-
English and deleted comments were discarded, and several curation measures were taken in
order to ensure that the content did not reinforce general or emotion-specific language biases.
Not safe for work content was also filtered out.

The emotion categories used are: admiration, amusement, approval, caring, desire, excite-
ment, gratitude, joy, love, optimism, pride, relief, anger, annoyance, disappointment, disap-
proval, disgust, embarrassment, fear, grief, nervousness, remorse, sadness, confusion, curiosity,
realization, surprise, and neutral; such categories are broadly grouped into positive, negative
and ambiguous emotion categories by the authors. This classification is illustrated inFigure 4.1.
Such choice of emotion categories brings a greater spectrum of positive emotions when com-
pared to Ekman’s taxonomy [12] that only has one positive emotion amongst 6 basic emotion
categories (joy, anger, fear, sadness, disgust, and surprise). For the goal of classifying website

*https://github.com/google-research/google-research/tree/master/goemotions
†https://www.reddit.com/
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texts, it was a business need to distribute the spectrum of positive and negative emotions more
evenly, so the choice of using a taxonomy broader than Ekman’s made sense.

Figure 4.1: GoEmotions taxonomy: 27 emotions categorized into positive, negative, and ambiguous [10].

For the data annotation, three English native speakers from India were assigned per data
example. The examples where no raters agreed on at least one emotion label were assigned to
two additional raters. Raters could choosemultiple emotions butwere instructed to only select
emotions forwhich theywere reasonably confident that itwas expressed in the text. In case they
were not certain about any emotion being expressed, they were instructed to select “neutral”.

Regarding the choice of emotion labels, the authors began experimentingwith the categories
presentedbyCowen andKeltner (2017) [85]. After reviewing the results from thepilot rounds,
they removed emotions that were scarcely selected by annotators and/or that had low interrater
agreement due to being too difficult to detect or being too similar to other emotions. These
emotions were boredom, doubt, heartbroken, indifference, and calmness. Other emotions
were added as suggested by the raters, which were desire, disappointment, pride, realization,
relief, and remorse.

The GoEmotions dataset provides multi-labeled data, which means that each data point
could have more than one label. The distribution of emotion labels is illustrated in Figure 4.2.
This distribution shows that the neutral label composed the vast majority of the data points,
followed by three positive sentiments (admiration, approval, and gratitude). It can also be ob-
served that there are sentiment labels with very low frequency, such as grief, pride, relief, ner-
vousness, and embarrassment.
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Figure 4.2: Distribution of training and validation data labels of the GoEmotions dataset. The colors indicate the macro
categories of the emotions (neutral, positive, negative, and ambiguous)

4.1.2 WASSA 2021 Dataset

The 11th Workshop on Computational Approaches to Subjectivity, Sentiment & Social Me-
dia Analysis (WASSA 2021)‡ has the goal of bringing together researchers in the field of text
analysis. Each year the workshop proposes a shared task to its participants and provides the
dataset for it. The 2021 edition presented the Shared Task on Empathy Detection and Emo-
tion Classification§.

The dataset provided by the shared task is composed of a group of essays between 300 and
800 characters long, that present empathic reactions to news stories [42]. This dataset is en-
riched with person-level demographic information (age, gender, ethnicity, income, education
level) as well as personality information, but such sensitive information is not used in the scope
of this project, since such data is not available in the web text data where the model will be ap-
plied. The dataset also provides emotion labels to the essays, at both document and sentence
levels. In the scope of this project, only the essays and emotion labels at the document-level
were used.

The dataset was created through a crowdsourcing task. The participants read a random se-
lection of five news articles, subsequently rated their level of empathy and distress (other infor-
mation available in the dataset but not used in the context of this project), then wrote about
their thoughts and feelings. The collected essays were then classified into the 6 basic Ekman
emotion labels, firstly automatically predicted and then manually verified.

The distribution of emotion labels in the training dataset (the only portion of the dataset
used in this project) is shown in the plot illustrated in Figure 4.3. The majority of the samples

‡https://wt-public.emm4u.eu/wassa2021/
§https://competitions.codalab.org/competitions/28713
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are represented by “sadness” and “anger”, while there is an even distribution amongst “disgust”,
“fear”, and “surprise”. There is also a smaller percentage of “joy” labels. The “no emotion”
labels can be interpreted as “neutral”.

Figure 4.3: Emotion label distribution
of the WASSA 2021 Shared Task
Dataset.

4.1.3 LabeledWeb Data

In order to properly evaluate the models in a production-like scenario, it is important to have
a sample of the data they will be predicted on. Therefore, a joint effort was made to manu-
ally label 200 data points extracted from randomly sampled domains in the scraper’s output
database.

Each data point was labeled by the author and her supervisor using the 28 GoEmotions
labels, which were later translated into the 6 sentiment groups proposed as described in Sec-
tion 4.2. The label provided could be a single emotion or a list of emotions. The output from
both annotators was afterward merged into one list. In order to facilitate the comparison of
the true labels with the output of the single-labelmodels, this list of emotions was later summa-
rized into one label, which was qualitatively chosen to be the most representative of each data
point.

4.2 Emotion groups

Although there was a business need to have more than one positive emotion (as opposed to
Ekman’s taxonomy), it was determined that the output of 28 categories was excessive for prac-
tical use during this stage of the product. Upon qualitative observation, certain emotions were
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not semantically distinct enough. For instance, texts describing grief or sadness could be inter-
preted similarly among advertisers; as would texts conveying excitement and joy. Hence there
was a need for reducing the number of emotion categories, while still maintaining a balance
among the number of positive and negative emotions. This balance was asserted by the busi-
ness in order to prevent biasing the advertiser’s choice of emotion to filter.
A study on the co-occurrence of the 27 emotion labels (“neutral” excluded) was explored in

the GoEmotions paper [11], which clustered the emotions using a dendrogram, where emo-
tions that occurred together in the same text would appear closer to each other in the graph,
as illustrated in Figure 4.4. For instance, it can be observed that emotions such as excitement
and joy are closely correlated, while excitement and love are further apart. An analysis of the
possible dendrogram clusters was done, taking into consideration the semantic meaning of the
emotions as well.

The number of emotion groups should be reduced in order to better represent similar emo-
tions and not confuse the user, while still maintaining an even number of positive and negative
emotions. The “ambiguous” emotion labels described in the GoEmotions paper were consid-
ered not to be positive or negative. Therefore, using the dendrogram clusters illustrated in
Figure 4.4, six groups of emotions were proposed. They are:

• Appreciation (positive emotions towards others)
• Positive experience (positive emotions towards oneself)
• Repudiation
• Sadness
• Curiosity
• Neutral

The 27 original GoEmotions categories are grouped according to Figure 4.5. The frequency
distribution of the GoEmotions training dataset categorized in the newly formed sentiment
groups is illustrated in Figure 4.6.

4.3 Preprocessing

We implemented a preprocessingmethod that resembled as much as possible the output of the
company’s web scraper, by converting all characters to lowercase, removing numbers and punc-
tuation. The use of proper punctuation and uppercase letters could improve the model’s per-
formance, especially in the case of word embeddings and transformers. Modifying the scraper
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Figure 4.4: Emotion co‐occurrence/correlation represented by the heatmap, while the dendrogram showcases the hierarchi‐
cal clustering of the emotion labels [11].

fell outside of this project, but it is suggested to have it as futurework and re-evaluate themodel
training with different preprocessing steps.
Some experiments were performed in order to evaluate the benefits of removing stop words

(commonly used words that generally don’t provide much meaningful information in a text),
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Figure 4.5: Emotion labels grouped in the 5 sentiment groups. The 6th group is the “neutral” category.

Figure 4.6: Frequency distribu‐
tion of the training dataset of
each label in the new sentiment
group.

replacing the “n’t” suffix with the word “not”, and removing numbers. They were tested in a
distilBERTclassifier usingdistilBERTembeddings and a simple neural networkusingMultilin-
gual Universal Sentence Encoder (mUSE) embeddings. The results are presented in Table 4.1.
It can be observed that most of these changes did not improve the results of any model. Partic-
ularly, removing stop words showed worse results than the default models that use such stop
words. This could indicate that the use of stop words when using word embeddings that take
the whole sentence into consideration actually brings meaning into the sentences’ interpreta-
tions. Given these results, stop words were not removed in the subsequent experiments.

Since the GoEmotions dataset is multi-labeled, certain criteria were determined to change
the labels of rows that were assigned more than one label in order to train single-label models.
The choice of experimenting with single-label models first was taken due to their being more
simple than multi-label approaches. Section 4.4.4 describes the experiments done on multi-
label models.
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Pre-processing step applied Model Accuracy Average F1-score
default distilBERT 0.65 0.63
replace “n’t” by “ not” distilBERT 0.65 0.63
remove stop words distilBERT 0.63 0.60
remove numbers distilBERT 0.65 0.63
default Neural Network + mUSE 0.57 0.52
replace “n’t” by “ not” Neural Network + mUSE 0.57 0.52
remove stop words Neural Network + mUSE 0.56 0.50
remove numbers Neural Network + mUSE 0.57 0.52

Table 4.1: Accuracy and average F1‐score metrics of different pre‐processing steps. “Default” represents the usage of the
models without the listed steps.

From the business perspective, predicting other emotion labels is more useful than predict-
ing “neutral” when possible. For instance, if a whole text has some neutral and some sad sen-
tences, the company finds it more valuable to categorize the text as sad. Therefore, instances in
the training dataset where a data point was labeled as both neutral and another emotion had
the neutral label removed. That way, when some portions of a text are neutral but pending to
another emotion (such as sadness), the text will be labeled with that emotion. This decision
introduces the potential for the model to exhibit a bias towards emotions other than neutral.
However, since the proportion of neutral data points in the dataset remains considerable even
after this adjustment, any impact on the models’ performance is expected to be minimal.
Furthermore, in order to avoid confusion in the model training, all remaining data points

that retained multiple labels (approximately 7% of the training dataset) were eliminated. This
prevents single-label models from being improperly trained with one label but not the other.
While thismight lead to a slight performance reduction compared tomodels trainedwithmulti-
labeled data, the percentage of discarded data is small enough that it is unlikely to significantly
impact the overall performance of the models.

4.4 Text classification

This section describes the experiments done with models using three different label groupings:
macro labels (only positive, negative, and neutral), all 28 GoEmotions labels, and the chosen
6 emotion groups. A final subsection is dedicated to the experiments regarding multi-label
models. All the metrics provided in this section were obtained by evaluating the models in the
validation set of the GoEmotions dataset. The training and validation split is already provided
separately in the tensorflow_datasets library. This library was used in order to ensure that
the same data (and split) is used as other works.
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In order to evaluate the models in the experiments performed, metrics such as accuracy and
F1-score were obtained. The goal of the final product is to be able to predict reasonably well all
the emotion categories, balancingoutnegative andpositive emotions. Therefore the evaluation
of amodel’s accuracy does not bring enough information. Precision and recall of each label are
evaluated to ensure that the models are evenly balanced between the emotion labels. Since the
metrics for each label and model are too many to feasibly compare between the models, the
weighted averaged F1-score was chosen as a comparison metric among the models. Then fur-
ther investigation into the precision and recall per label is done in the best-performing models.

4.4.1 Text classification on macro groups

This section describes the experiments done for modeling on labels based on macro groups:
positive, negative, and neutral. The goal of this study is to understand how different models
behave on a simpler choice of categories.

For the first experiment, non-neural network models were chosen. The following models
were evaluated: Logistic Regression, K-Nearest Neighbors Classification (KNeighborsClassi-
fier), Multinomial Naive Bayes (multinomialNB), Random Forest Classification, and Linear
Support Vector Classification (LinearSVC), described in Section 2.1.4.

Different feature representation techniques were also used along with the models aforemen-
tioned, such as Bag of Words, TF-IDF, Word2Vec (using word embeddings from Fast-Text,
Twitter, andGoogleNews), distilBERT embeddings, andMultilingual Universal Sentence En-
coder embeddings. Different preprocessing steps were also assessed (such as removing punc-
tuation, stopwords, and turning the text into lowercase). For each classifier, hyperparameter
tuning was also applied. LinearSVC and Logistic Regression were tested with different C val-
ues (the regularization parameter), ranging from 1 to 100. MultinomialNB was tested with
different alpha values (the smoothing parameter), ranging from 0.5 to 2. KNeighborsClassi-
fier was tested with different K values (the number of neighbors), ranging from 5 to 10, and
RandomForestClassifier was tested with different max_depth values (which determines how
deep the trees can be), ranging from 3 to 5. Table 4.2 illustrates the best results per model and
embedding strategy, based on the weighted average F1-score of all three labels.

Following table 4.2, theLinearSVCand theLogisticRegressionmodels showedhigherweighted
F1-score for all embedding options. Moreover, the choice of embedding had a small difference
(up to 5%) between each other for both Logistic Regression and LinearSVC but had higher
differences for MultinomialNB, KNeighborsClassifier, and RandomForestClassifier. When

48



Model Bag of Words BERT
embeddings

distilBERT
embeddings TF-IDF Multilingual USE

embeddings Word2Vec

LinearSVC 0.61 0.62 0.64 0.60 0.63 0.59
LogisticRegression 0.62 0.61 0.62 0.62 0.63 0.58
MultinomialNB 0.53 0.45 0.48 0.54 0.53 0.27
KNeighborsClassifier 0.50 0.52 0.53 0.41 0.52 0.50
RandomForestClassifier 0.22 0.41 0.41 0.22 0.46 0.44

Table 4.2: Weighted F1‐score for different models and feature representations predicting macro groups (positive, negative,
and neutral).

comparing the feature representations, distilBERT and Multilingual USE word embeddings
had the highest weighted F1-scores.
The good results for the linear models can be attributed to their better handling of high-

dimensional data, as opposed to Random Forest and K Nearest Neighbors which generally
perform worse with too many features. When comparing the linear models to Multinomial
Naive Bayes, one explanation for the latter’s worse results is its assumption of independence
between features, which tends not to hold for longer texts. Additionally, LinearSVC and Lo-
gistic Regression tend to be more robust when dealing with irrelevant features in the text data.
They can assign smaller weights or coefficients to less informative features, which helps in im-
proving the model’s generalization performance.
When comparing the feature representation options, Bag ofWords, TF-IDF, andWord2Vec

have lower F1-scores when compared to BERT, distilBERT, and Multilingual USE. This is
probably due to the fact that the better-performing representations create embeddings based
not only on the words themselves but also on the positioning and co-occurrence with other
words in each sentence. That characteristic enables them to embed more meaning into the
words, depending on how they are used in a sentence.

Tables 4.3 and4.4present the average training andprediction time (for the validationdataset)
for each of the models and feature representations discussed above.

Model Bag of Words BERT
embeddings

distilBERT
embeddings TF-IDF Multilingual USE

embeddings Word2Vec

LinearSVC 25.2 242.5 276.0 16.7 189.3 106.9
RandomForestClassifier 43.4 101.8 57.5 38.0 55.9 29.0
LogisticRegression 154.4 4.4 5.3 27.1 3.1 2.1
KNeighborsClassifier 2.9 0.1 0.1 12.4 0.1 0.1
MultinomialNB 1.6 0.2 0.2 1.7 0.2 0.2

Table 4.3: Average training time in seconds per model/feature representation pair.

It is noticeable that even thoughLinearSVC is themodel with the highest weighted F1-score,
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Model Bag of Words BERT
embeddings

distilBERT
embeddings TF-IDF Multilingual USE

embeddings Word2Vec

KNeighborsClassifier 109.9 6.1 7.1 63.0 4.5 3.3
RandomForestClassifier 1.8 0.4 0.4 1.5 0.4 0.3
LogisticRegression 1.3 0.3 0.4 0.8 0.3 0.4
LinearSVC 1.4 0.3 0.3 0.9 0.4 0.3
MultinomialNB 0.6 0.2 0.2 0.7 0.2 0.2

Table 4.4: Average scoring time in seconds per model/feature representation pair.

it also presents the highest training time for all word embeddings options (BERT, distilBERT,
andMultilingualUSE). This is probably due to its time complexity being quadratic, alongwith
the high dimensionality of the word embeddings. Random Forest Classifier was the second
slowest model to train (on average), especially when using BERT embeddings, probably due to
the number of trees used in training. With the exception of Logistic Regression with Bag of
Words, all the other models were relatively fast to train.

Regarding scoring time, K Nearest Neighbors stood out as the model with higher times
when using all feature representations, but exceptionally high times when using Bag of Words
andTF-IDF.Thismodel is known to take long to score since it has to compute eachdata point’s
neighbors in order to calculate its results. The remaining models took relatively low time to
predict the validation data points.
For the goal of predicting positive, negative and neutral labels in the GoEmotions dataset,

the models that performed better were LinearSVC with distilBERT embeddings and Logistic
Regression with Multilingual USE embeddings. When analyzing their training and scoring
times, LinearSVC showed a disadvantage of taking much longer to train, when compared to
Logistic Regression. Even though the models themselves are not neural networks, they use a
powerful text representation: word embeddings obtained through the training of neural net-
works.

4.4.2 Text classification on all GoEmotions labels

Before choosing the final sentiment groups, experiments were made using all sentiments pro-
vided by the GoEmotions dataset.

As shown in the previous section, the experiments for macro sentiments (positive, negative,
and neutral) showed that the best non-neural networksmodelwas LinearSVCwith distilBERT
embeddings, followed by Logistic Regression using Multilingual USE embeddings. Since our
focus is on fine-grained sentiment classification, we proceeded with our experiments directly
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to classify the 28GoEmotions labels when considering neural networkmodels. Thus, the next
steps in the experiments were to train both models with all 28 labels from the GoEmotions
dataset and compare them to neural network approaches.
Themetrics for the top-performingmodels from the previous section are shown inTable 4.5,

which outlines the mean accuracy across labels, the mean F1-score, and the mean weighted F1-
score, which is weighted based on the label frequency in the validation dataset. Notably, the
weighted F1-score holds particular interest as it assigns more importance to the performance
of minority classes, in contrast to the mean F1-score. It can be observed that both models have
similar metrics between each other, with LinearSVC having slightly higher accuracy. The re-
sults per sentiment label for the LinearSVCmodel are shown in Table 4.6. As expected by the
sentiment frequency distribution analyzed in section 4.1.1, some sentiments aremore frequent
in the training dataset and have higher metrics than others. It can also be observed in Table 4.6
that the recall of certain emotions is extremely low, such as annoyance, approval, disappoint-
ment, disapproval, excitement, nervousness, pride, and realization, and reaching zero in the
case of grief and relief.

Accuracy Average F1-score Weighted F1-score
LinearSVC
(distilBERT embeddings) 0.51 0.31 0.45

Logistic Regression
(multilingual USE embeddings) 0.49 0.31 0.45

Table 4.5: Performance metrics of linear models using word embeddings predicting the 28 emotion labels from the GoEmo‐
tions dataset.

For the Neural Networks approaches, the following models were initially attempted: a con-
volutional neural network (CNN), a recurrent neural network (RNN), a bidirectional recur-
rent neural network, a long-short-term memory neural network (LSTM), a gated recurrent
unit recurrent neural network (GRU), whose architectures are illustrated in Figures 4.7, 4.8
and 4.9, and a fine-tuned distilBERT classifier. All of themused distilBERTword embeddings.
The metrics of the models are shown in Table 4.7.

Table 4.7 shows that the distilBERT classifier presented the highest metrics overall. This
was expected since it is a more complex model that was pre-trained with a previous dataset.
When analyzing the othermodels, it canbe observed that simple neural networkmodels already
outperform the linear models, with the exception of the Simple RNN and the Bidirectional
RNN which performed worse than LinearSVC and Logistic Regression. The GRU RNN is
the non-pre-trained neural network model with the highest metrics.
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precision recall F1-score support
admiration 0.61 0.63 0.62 488
amusement 0.69 0.65 0.67 297
anger 0.45 0.34 0.39 192
annoyance 0.31 0.04 0.08 247
approval 0.44 0.09 0.15 355
caring 0.46 0.23 0.31 138
confusion 0.46 0.17 0.25 136
curiosity 0.44 0.41 0.43 205
desire 0.44 0.27 0.33 64
disappointment 0.15 0.02 0.04 129
disapproval 0.38 0.11 0.17 246
disgust 0.51 0.26 0.34 74
embarrassment 0.50 0.18 0.26 28
excitement 0.42 0.13 0.20 78
fear 0.49 0.36 0.42 74
gratitude 0.80 0.84 0.82 297
grief 0.00 0.00 0.00 10
joy 0.51 0.25 0.33 121
love 0.57 0.75 0.65 181
nervousness 0.20 0.09 0.13 11
neutral 0.46 0.86 0.60 1606
optimism 0.46 0.20 0.28 127
pride 1.00 0.11 0.20 9
realization 1.00 0.01 0.02 79
relief 0.00 0.00 0.00 8
remorse 0.47 0.47 0.47 47
sadness 0.37 0.26 0.31 84
surprise 0.37 0.15 0.21 95

macroavg 0.46 0.28 0.31 5426
weightedavg 0.49 0.50 0.45 5426

Table 4.6: Precision, recall, F1‐score, and support per label for the LinearSVC with distilBERT embeddings model applied in
the 28 GoEmotions labels.

Model Embeddings Average accuracy Average F1-score Weighted F1-score
LinearSVC distilBERT 0.50 0.31 0.45
Logistic Regression Multilingual USE 0.49 0.30 0.45
Simple CNN distilBERT 0.52 0.32 0.47
Simple RNN distilBERT 0.48 0.29 0.44
Bidirectional RNN distilBERT 0.46 0.25 0.41
LSTM distilBERT 0.53 0.37 0.5
GRU distilBERT 0.54 0.40 0.51
distilBERT classifier distilBERT 0.58 0.45 0.56

Table 4.7: Performance metrics per model and embedding pairs for all 28 emotion labels, evaluated on the GoEmotions
dataset.

Table 4.8 presents the metric per label for the distilBERT classifier model. Similar to the
LinearSVCclassifier, some emotions still have very low recalls, such as grief and relief. However,

52



(a) CNN (b) RNN

Figure 4.7: Architecture of the initial neural network models (CNN and RNN).

distilBERT had a worse recall for the label “pride” when compared to the LinearSVC model.
Nevertheless, other labels were better predicted, such as annoyance, approval, disappointment,
disapproval, and excitement. The best predicted emotions were admiration, amusement, fear,
gratitude, joy, love, neutral, and remorse.
In order to better indicate to the model that mistakes within the same macro category (e.g.

predicting sadness instead of grief) weremore acceptable thanmistakes acrossmacro categories
(e.g. predicting joy instead of grief), a custom loss function was developed based on distil-
BERT’s default loss function. This custom loss multiplies each pair of predicted data point
and true label by a weight as described by Table 4.9. The results of the experiment are shown
in Table 4.10. Given that the model’s loss was changed, it is expected to have worse F1-score
and accuracy metrics, however it was expected to have a smaller “custom error”, defined as an
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(c) Bidirectional RNN (d) LSTM

Figure 4.8: Architecture of the initial neural networks models (Bidirectional RNN and LSTM).

(e) GRURNN

Figure 4.9: Architecture of the initial neural networks models (GRU RNN).

error metric based on the weight matrix proposed. Yet the custom error was still larger for the
weighted loss, as indicated in the third column of the table. One possibility for the cause of
this result is the magnitude and range given by the multipliers. Subsequent trials with more
complex weight matrices yielded no enhancement compared to the default model’s outcomes.
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precision recall F1-score support
admiration 0.66 0.80 0.73 488
amusement 0.75 0.85 0.80 297
anger 0.44 0.49 0.46 192
annoyance 0.36 0.26 0.30 247
approval 0.44 0.28 0.34 355
caring 0.47 0.41 0.44 138
confusion 0.49 0.36 0.42 136
curiosity 0.47 0.49 0.48 205
desire 0.62 0.53 0.57 64
disappointment 0.41 0.26 0.32 129
disapproval 0.44 0.31 0.36 246
disgust 0.44 0.49 0.46 74
embarrassment 0.65 0.54 0.59 28
excitement 0.36 0.28 0.32 78
fear 0.60 0.64 0.62 74
gratitude 0.87 0.83 0.85 297
grief 0.00 0.00 0.00 10
joy 0.55 0.50 0.52 121
love 0.65 0.82 0.73 181
nervousness 1.00 0.09 0.17 11
neutral 0.59 0.68 0.63 1606
optimism 0.55 0.54 0.54 127
pride 0.00 0.00 0.00 9
realization 0.52 0.19 0.28 79
relief 0.00 0.00 0.00 8
remorse 0.61 0.70 0.65 47
sadness 0.44 0.52 0.48 84
surprise 0.47 0.53 0.50 95

macro avg 0.49 0.44 0.45 5426
weighted avg 0.56 0.58 0.56 5426

Table 4.8: distilBERT classifier metrics per label for the 28 emotion labels, evaluated on the GoEmotions dataset.

For the 28 emotion labels, the best results achievedwere from thedistilBERTclassifier. How-
ever, some emotions did not achieve desirable results, such as pride, grief, relief, nervousness,
and realization, that had F1-scores below 0.3. The next section continues the experiments by
grouping the labels into the 6 chosen emotion groups.

4.4.3 Text classification on 6 sentiment groups

This subsection describes the experiments done for the target being the 6 emotion groups
described in Section 4.2: repudiation, sadness, neutral, curiosity, appreciation, and positive
experience. Given the good results of a fine-tuned model in the previous section, the experi-
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Negative sentiment Neutral sentiment Positive sentiment
Negative sentiment 0.25 0.5 1
Neutral sentiment 0.5 0.25 0.5
Positive sentiment 1 0.5 0.25

Table 4.9: Proposed weight matrix for the custom loss.

Accuracy Average F1-score Custom error metric
default 0.58 0.44 0.21

with weighted loss 0.55 0.43 0.22

Table 4.10: Performance metrics of the distilBERT classifier comparing the usage of a weighted loss function, evaluated on
the GoEmotions dataset.

ments will be focused on different transformer models, being compared to a neural network
usingMultilingual Universal Sentence Encoder (USE) embeddings. The transformers assessed
were: distilBERT, BERT, RoBERTa, XLNET, Multilingual BERT (mBERT), and Language-
Agnostic BERT Sentence Embedding (LABSE). Even though there are multiple multilingual
models in this evaluation, they are assessed for English texts only in this subsection, while mul-
tilingual evaluations are presented in Section 4.6.

Table 4.11 presents the metrics for each of the models evaluated. It can be observed that the
transformer models with their own embeddings perform better than the neural network with
Multilingual Universal Sentence Encoder embeddings. This is expected, since the transformer
models were pre-trained on a larger corpus of data, as opposed to the simple neural network
built for the mUSE embeddings. Further investigation could be performed using the mUSE
embeddings inmore complex neural networks, however itwas decided to prioritize the research
using only the transformer models since they showed more promising results.

Model Accuracy Average F1-score Weighted F1-score
distilBERT 0.65 0.63 0.65
BERT-base 0.66 0.64 0.66
BERT-large 0.66 0.64 0.66
RoBERTa 0.67 0.65 0.67
mBERT 0.65 0.64 0.65
XLNET 0.66 0.64 0.66
LABSE 0.66 0.64 0.66
mUSE 0.57 0.52 0.57

Table 4.11: Performance metrics of the transformer models trained on the 6 sentiment groups, evaluated on the GoEmotions
dataset.
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It can also be observed that the transformers perform relatively similarly amongst each other,
with RoBERTa presenting slightly higher metrics overall. This can be due to the fact that
RoBERTawas pre-trained using a larger corpus. There was one drawback regardingRoBERTa
and XLNET though: when training the models, such models required a higher tier of GPU
andRAMthan the one available by theprovided trainingmachine. Thesemodels had tobe run
in a machine with an A100 GPUwith 32GB of RAM, as opposed to the free and standard T4
GPU with 12.7GB of RAM provided by Google Colaboratory¶. Due to these limitations in
theworking environment, it was decided to proceed further experimentswith the othermodels
that are less computationally intensive.

When comparing the distilBERT classifier results between the 6 group classification (shown
in Table 4.11) and the 28 emotion labels classification (shown in Table 4.7, it can be noted that
all metrics (average F1-score, weighted F1-score, and accuracy) are higher at least by 8 percent-
age points for the classification using the 6 label groups. This is expected for a few reasons.
First of all, the emotion labels that have low frequencies and showed F1-scores below 0.3 in the
28-label classification (such as grief, relief, and pride) are merged together in the 6-label classifi-
cation (in groups sadness, positive experience, and appreciation, respectively) along with emo-
tion labels that are more frequent in the GoEmotions dataset and consequently present better
metrics. Secondly, just like humans, the model might have a hard time differentiating between
similar or ambiguous emotions, thus having worse metrics. Finally, a higher number of labels
increases the complexity of the classification problem. Themodel needs to distinguish between
a larger number of classes, and this can make it more challenging for the model to generalize
well to unseen data.

With the aim of improving the results reached so far, the training dataset was augmented by
adding the WASSA 2021 shared task dataset to it. The WASSA labels were replaced by their
respective labels in the 6-label emotion group. The final training data was then shuffled to
avoid clustering all theWASSA data in one training epoch. In order to compare the results, the
validation dataset remains the same across all experiments, it remains as the GoEmotions pre-
determined validation dataset. The results of this experiment are shown in Table 4.12. When
comparing these results with the ones obtained by training without theWASSA dataset shown
inTable 4.11, it can be observed that the results are very similar among the two approaches, and
the results using only the GoEmotions trained models are slightly better. This could be justi-
fied by the fact that the validation dataset is sourced from the GoEmotions dataset, following
the same distribution as the training dataset. The data augmentation with theWASSA dataset

¶https://colab.research.google.com/
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is further evaluated on manually annotated real-word web texts in Section 4.5.

Model Accuracy Average F1-score Weighted F1-score
distilBERT 0.65 0.63 0.65
BERT-base 0.65 0.64 0.65
BERT-large 0.66 0.64 0.66
RoBERTa 0.66 0.64 0.66
mBERT 0.65 0.63 0.65
XLNET 0.66 0.63 0.65
LABSE 0.66 0.65 0.66
mUSE 0.56 0.52 0.56

Table 4.12: Performance metrics of models trained with GoEmotions + WASSA 2021 datasets for the 6 emotions groups as
labels.

4.4.4 Multi-label experiments

Given the fact that the GoEmotions dataset is multi-labeled and even the human difficulty of
providing only one label to a text (see Section 4.1.3 formore details), it is intuitive to think that
multi-labeled modeling would be more reasonable and would probably work better than the
models presented so far. Therefore, this section details the experiment done using multi-label
modeling.

As in Subsection 4.4.3, several models were trained and evaluated, this time using the multi-
labeled data from the GoEmotions dataset. Table 4.13 presents the best results obtained with
multi-label approaches, after iterations of trying to use a weighted custom loss, providing sam-
ple weights, and training with the additional WASSA 2021 dataset. The best results were ob-
tained by training the model with an unweighted binary cross entropy loss function, without
providing sample weights to themodel’s training, andwithout theWASSA dataset in the train-
ing of the model. The F1-scores shown in Table 4.13 were firstly independently calculated and
then averaged (without weights in the first column and with weights in the second column).
The subset accuracy was omitted due to its very low results (close to zero in almost all cases),
since it only outputs a correct prediction if all sentiments were correctly predicted. For exam-
ple, the subset accuracy would count it as correct when exactly predicting that a task belongs
to two specific labels, and only those labels (a task that is extremely hard even for humans, as
noticed by the author whenmanually labeling the web data and comparing her labels with the
ones from other annotators).
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Model Average F1-score Weighted F1-score
distilBERT 0.37 0.42
BERT-base 0.34 0.40
BERT-large 0.32 0.38
RoBERTa 0.38 0.44
mBERT 0.35 0.40
XLNET 0.32 0.38
LABSE 0.36 0.42

Table 4.13: Best metrics obtained for multi‐label models, evaluated on the GoEmotions dataset.

When comparing the multi-label results in Table 4.13 with the ones shown in Table 4.11, it
is evident that the multi-label approach yielded worse results. This could be the case of need-
ing more multi-labeled data in order to yield more significant results, or changing the classifi-
cation problem to associate a single label for each sentence instead of the entire text snippet
(as a multi-labeled text could present different sentiments over different sentences). Since it
wasn’t a business priority to output more than one label in the final product, this experiment
was discontinued. Further investigation is necessary to understand how to properly model a
multi-label classifier.

4.5 Evaluation onweb data

Given the results obtained in Section 4.4.3, the next stepwas to evaluate themodels on the data
where they will be effectively applied: the web data provided by the company’s scraper. After
applying the models in the manually labeled data points sampled from the company’s dataset,
the results obtained were gathered and presented in Table 4.14.

Model Accuracy Average F1-score Weighted F1-score
distilBERT 0.45 0.26 0.38
BERT-base 0.46 0.31 0.41
BERT-large 0.48 0.37 0.44
RoBERTa 0.48 0.35 0.43
mBERT 0.45 0.25 0.37
mUSE 0.39 0.21 0.31
LABSE 0.43 0.25 0.35

Table 4.14: Performance metrics of the models applied to the manually labeled web data.
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Based on the information in Table 4.14, it is clear that the BERT-large model provided the
highest accuracy and F1-scores, even higher than RoBERTa (a model that was more expensive
to train).

In order to further evaluate the BERTmodel, Table 4.15 presents the precision and recall for
each of the emotion groups. Additionally, Figure 4.10 illustrates the confusion matrix given
by the model’s results. From these results, it becomes apparent that neutral and appreciation
are the groups with the highest recall but also the highest bias in the model. This is probably
due to the higher frequency of these two groups in the training dataset.

precision recall F1-score support
repudiation 1 0.14 0.25 14
sadness 0.83 0.19 0.31 26
neutral 0.54 0.71 0.61 85
curiosity 0.43 0.18 0.26 33
appreciation 0.35 0.73 0.47 37
positive experience 0.47 0.23 0.31 30

macro avg 0.6 0.36 0.37 225
weighted avg 0.55 0.48 0.44 225

Table 4.15: Metrics per emotion group for the BERT‐large model, evaluated on the manually annotated web data.

Figure 4.10: Confusion matrix
of the BERT‐large model ap‐
plied on the manually labeled
web data.
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It can be seen in the results that the models predict most data points as neutral and appre-
ciation. One way to remediate this issue is to work on the thresholds for the decision-making
of each label, which was the next experiment done. The thresholds chosen were the mean of
the prediction probabilities computed in the training dataset. The mean and standard devia-
tion per label of the training dataset predictions were then used to re-calibrate the prediction
probabilities per label of the scoring data in the following manner:

ypred[label] =
ypred[label]− y′mean[label]

y′stdev[label]
(4.1)

where ypred represents the prediction probabilities given by the scoring of themodel for each of
the 6 labels andy′ represents the trainingdataset prediction vector for the respective labels. This
model calibration proves useful not only for balancing the prediction probabilities but could
also reduce the bias towards the training dataset label distribution since it doesn’t necessarily
follow the real data label distribution.

After calibrating themodel, themaximumprediction is chosen as the output. This way, the
highest value amongst the predictions is still chosen, but only after balancing out the training
dataset bias. The results of this modification are presented in Table 4.16.

Accuracy Average F1-score Weighted F1-score
distilBERT 0.48 0.43 0.47
BERT-base 0.47 0.47 0.48
BERT-large 0.43 0.46 0.44
RoBERTa 0.47 0.48 0.48
mBERT 0.43 0.41 0.43
mUSE 0.33 0.26 0.32
LABSE 0.46 0.39 0.43

Table 4.16: Performance metrics of the models applied to the manually labeled web data after re‐calibrating the prediction
probabilities.

Upon reviewingTable 4.16, it becomes apparent that the accuracy of somemodels decreased,
but their F1-scores (both averages and weighted averages) increased. Re-calibrating changed
the values of the probabilities, increasing the recall and reducing the precision of the models.
Additionally, it can be observed that the models BERT-base and RoBERTa have the highest
F1-scores. Since RoBERTa’s training is more expensive and BERT-base has similar results, we
have decided to choose BERT-base as the final model.

Additionally to model calibration, in order to solve the model’s bias towards the neutral
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and appreciation labels, the training dataset could be artificially balanced. By either down-
sampling the most frequent labels or over-sampling the other labels, the over-represented cate-
gories would become balanced with the others. However, this technique could lead to a loss of
valuable information that might have been present in the discarded samples. This is suggested
to be investigated in future work.
In order to compare the results with the ones shown in Table 4.15, the metrics per label and

confusion matrix of the BERT-large model are shown in Table 4.17 and Figure 4.11. Finally,
the results for the BERT-base model are shown in Table 4.18 and Figure 4.12.

precision recall F1-score support
repudiation 0.75 0.64 0.69 14
sadness 0.53 0.38 0.44 26
neutral 0.66 0.36 0.47 85
curiosity 0.41 0.42 0.42 33
appreciation 0.29 0.62 0.39 37
positive experience 0.3 0.33 0.32 30

macro avg 0.49 0.46 0.46 225
weighted avg 0.5 0.43 0.44 225

Table 4.17: Metrics per emotion group for the BERT‐large model after re‐calibrating the prediction probabilities, evaluated
on the manually annotated web data.

Figure 4.11: Confusion matrix
of the BERT‐large model ap‐
plied on the manually labeled
web data after re‐calibrating
the prediction probabilities.
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precision recall F1-score support
repudiation 1 0.43 0.6 14
sadness 0.88 0.27 0.41 26
neutral 0.57 0.54 0.56 85
curiosity 0.47 0.48 0.48 33
appreciation 0.29 0.57 0.39 37
positive experience 0.4 0.33 0.36 30

macro avg 0.6 0.44 0.47 225
weighted avg 0.55 0.47 0.48 225

Table 4.18: Metrics per emotion group for the BERT‐base model after re‐calibrating the prediction probabilities, evaluated
on the manually annotated web data.

Figure 4.12: Confusion matrix
of the BERT‐base model ap‐
plied on the manually labeled
web data after re‐calibrating
the prediction probabilities.

As a business decision, it was decided to prioritize models that correctly predict negative
sentimentsmore than positive ones since it ismore harmful to publish an ad on awebsite falsely
seen as positive, but actually conveying negative sentiments (and thus possibly harming the
reputation of the advertising brand), rather than avoiding publishing an ad in one website that
conveys positive emotions because it was misclassified with a negative sentiment. Hence, the
BERT-large model was selected as the final choice from among the options with the highest
F1-scores, primarily based on the highest recall for the “repudiation” and “sadness” labels.
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4.6 Multilingual evaluation onweb data

The final goal of this project is to evaluate if the models developed can be used for a language
other than English without further training. Given that the company has multiple clients in
Italy, Italian was chosen as the language to validate the language-agnostic models.

In order to perform such evaluation, the web data that was previously manually annotated
was then translated into Italian usingGoogleTranslate and input into themodels. Even though
there are Italian datasets in the literature that could be used instead of the translated data cho-
sen, these datasets [86, 87, 88] don’t provide the same data distribution and variety as what is
expected from the real web data and don’t have the same diversity of emotion labels as the ones
suggested in this work.

Table 4.19 presents the results of the language-agnostic models used in the experiments,
while Table 4.20 presents the results after re-calibrating the predictions according to Equa-
tion 4.1. It can be observed that re-calibrating the predictions increased the average F1-score
and the weighted F1-score (with the exception of mUSE, where it was merely maintained), at
the cost of decreasing accuracy. Nevertheless, it is clear that the results for the same models
on Italian texts are worse than for English data, as expected since the models were trained with
English text. These results could also be caused by partially incorrect translations of the text,
which could alter its overall sentiment in the Italian language.

Accuracy Average F1-score Weighted F1-score
mUSE 0.37 0.18 0.28
LABSE 0.40 0.18 0.29
mBERT 0.42 0.23 0.32

Table 4.19: Performance metrics of the multilingual models on manually annotated web data translated to Italian.

Accuracy Average F1-score Weighted F1-score
mUSE 0.32 0.22 0.28
LABSE 0.38 0.32 0.35
mBERT 0.36 0.32 0.37

Table 4.20: Performance metrics of the multilingual models on manually annotated web data translated to Italian after re‐
calibrating the predictions.
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precision recall F1-score support
repudiation 0.40 0.14 0.21 14
sadness 0.33 0.08 0.12 26
neutral 0.43 0.92 0.58 85
curiosity 0.00 0.00 0.00 33
appreciation 0.41 0.30 0.34 37
positive experience 0.50 0.07 0.12 30

macro avg 0.34 0.25 0.23 225
weighted avg 0.36 0.42 0.32 225

Table 4.21: Metrics per label for the Multilingual BERT model applied in manually annotated web data translated to Italian.

precision recall F1-score support
repudiation 0.24 0.50 0.33 14
sadness 0.33 0.46 0.39 26
neutral 0.63 0.46 0.53 85
curiosity 0.20 0.09 0.13 33
appreciation 0.23 0.35 0.28 37
positive experience 0.31 0.27 0.29 30

macro avg 0.32 0.35 0.32 225
weighted avg 0.40 0.36 0.37 225

Table 4.22: Metrics per label for the Multilingual BERT model applied in manually annotated web data translated to Italian
after re‐calibrating the predictions.

Tables 4.21 and 4.22 present the precision, recall, and F1-scoremetrics per label for theMul-
tilingual BERTmodel before and after re-calibrating, respectively. The calibration parameters
used are shown in Table 4.23. We can see from the parameters that themean of the predictions
on the training dataset for the “neutral” label is much higher than the othermeans. Themodel
calibration intends to balance that discrepancy. Figure 4.13 illustrates the confusion matrices
of both models. It is clear from the confusion matrices that re-calibrating the predictions re-
duced the bias of the models towards the neutral label.

Label Repudiation Sadness Neutral Curiosity Appreciation Positive experience
y′mean 0.4 0.3 0.7 0.4 0.5 0.4
y′stdev 0.3 0.3 0.2 0.3 0.3 0.3

Table 4.23: Calibration parameters per label for the Multilingual BERT model
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(a) Default model (b) Calibrated model

Figure 4.13: Confusion matrices of the Multilingual BERT model applied on the manually labeled web data translated to
Italian before and after re‐calibrating the prediction probabilities.

Onefinal experimentwas conductedby augmenting the trainingdataset by adding theWASSA
2021data and shufflingbothdatasets together. The results of the retrainedmodels are shown in
Tables 4.24 (showing resultswithout re-calibrating) and4.25 (showing results after re-calibrating).
When comparing the results without re-calibrating, as shown in Tables 4.19 and 4.24, it can be
observed that the SimpleNeuralNetworkwithMultilingualUSEembeddings and theLanguage-
Agnostic BERTSentence Encodermodels have improved theirmetrics after being trainedwith
the GoEmotions and WASSA datasets, as opposed to the multilingual BERT model. On the
other hand, the Multilingual BERT model trained with only GoEmotions data still performs
better than the best version of the other models.

Model Accuracy Average F1-score Weighted F1-score
mUSE 0.41 0.28 0.32
LABSE 0.42 0.24 0.30
mBERT 0.41 0.23 0.31

Table 4.24: Performance metrics of the models trained with WASSA data evaluated on the manually annotated web data
translated to Italian before re‐calibrating the predictions.

As an end result, the Multilingual BERT calibrated model trained with the GoEmotions
dataset showed the best results for Italian web data. It is important to note that such modifica-
tions on themodel after the first evaluation of the annotated web data might lead to themodel
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Model Accuracy Average F1-score Weighted F1-score
mUSE 0.36 0.26 0.31
LABSE 0.36 0.34 0.35
mBERT 0.32 0.25 0.30

Table 4.25: Performance metrics of the models trained with WASSA data evaluated on the manually annotated web data
translated to Italian after re‐calibrating the predictions.

becoming too tailored to this specific data, overfitting to such data. This risk stems from the
absence of a test set consisting ofmanually annotatedweb data, which could serve as ameans of
evaluating the model. Hence, it becomes imperative to monitor the model’s performance on
new, unseen data and ascertain whether its performance metrics continue to align with those
observed in this study.
This chapter has described several experiments using different models and sets of labels in

order to determine the model with best results, for both English and Italian texts. The BERT-
large model for English data and the Multilingual BERT model for Italian data were chosen
as the best-fit models for the task of predicting web data between 6 groups of emotion labels.
BERT-large has achieved a weighted F1-score of 44% and accuracy of 48% amongst the 6 emo-
tion categories in themanually annotatedEnglishwebdata, whileMultilingual BERTachieved
a weighted F1-score of 37% and accuracy of 36% over the 6 emotion categories in the Italian
translated web data, and a weighted F1-score and accuracy of 43% in the English web data.
Reflecting on our third research question (Is it feasible to employ a language-agnosticmodel

for this task? If so, how does it compare to a single language model?) we can conclude that it
is possible and feasible to build language-agnostic models pre-trained onmultilingual data, yet
fine-tuned solely on English data. Such models perform relatively similarly to single-language
models on English evaluation data. However, it is noticeable that there is a decay in model
performancewhen comparing those language-agnosticmodels betweenEnglish and Italian test
data.
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5
Conclusion

In this work, an approach to sentiment classification using finer-grained sentiment groups bal-
ancingoutpositive andnegative sentimentswasproposed. Six sentiment groupswereproposed
bygrouping the28 emotion labels presented in theGoEmotionsdataset, namely “repudiation”,
“sadness”, “neutral”, “curiosity”, “appreciation”, and “positive experience”. As the final goal
of this workwas to apply it to web data, which is different from the training dataset used, a por-
tionof real-worldwebdatawas selected andmanually annotated inorder to evaluate themodels
that were considered. By experimenting with several machine learning models including logis-
tic regression, multinomial naïve Bayes, support vector machines, convolutional and recurrent
neural networks, and transformers, itwas concluded thatTransformersmodels performusually
better than the others tested. The model BERT-large achieved the highest weighted F1-score
of 44% and an accuracy of 48% on the web dataset, among the 6 emotion categories.

Another goal of this study was to use language-agnostic models in order to classify texts
from non-English websites. To achieve this goal, three language-agnostic models and embed-
dings (Multilingual BERT,Multilingual Universal Sentence Encoder, and Language-Agnostic
BERT Sentence Embeddings) were evaluated on the manually annotated web data translated
into Italian, the language of one of the company’s clients. It was concluded that although their
performances in Italian texts were lower than in English texts, the models achieved feasible re-
sults. Multilingual BERT, the model with the highest weighted F1-score on the 6 emotion
categories, reached a weighted F1-score of 37% and accuracy of 36% on the collected web data.

Overall, this study was able to research several models, evaluate them in a portion of man-
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ually annotated real-world web data, and obtain fairly good results over different emotion
groups, finer-grained that “positive”, “negative” and “neutral” categories. It has also been able
to identify and evaluate multilingual models in order to obtain the best models that can be
applied to multiple languages while still being trained only on English data.

5.1 Future work

Regarding future developments, it is suggested to experiment with the usage of another cus-
tom loss function to take into account the difference between positive and negative labels,
for example, the Label-Aware Contrastive Loss function [80]. Also, down-sampling the over-
represented emotion categories could be researched in order to improve the models’ bias to-
wards such categories. Furthermore, reducing model size could be important to reduce pro-
cessing time, and thus execution costs, thus the process of knowledge distillation could be im-
plemented and experimented as well.

One other point of improvement is not on the model itself, but on the web scraper that
collects the data. Future development is suggested to improve the scraper by better separating
real content from noise, and also collecting the text data maintaining uppercase letters and
punctuation.

Regarding the implementation of the researched model in production, future works also
include actually implementing the model into the data pipeline and evaluating the costs of the
execution of the model in a GPU environment, as opposed to a CPU one.
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