8 research outputs found

    Development and Validation of Functional Model of a Cruise Control System

    Full text link
    Modern automobiles can be considered as a collection of many subsystems working with each other to realize safe transportation of the occupants. Innovative technologies that make transportation easier are increasingly incorporated into the automobile in the form of functionalities. These new functionalities in turn increase the complexity of the system framework present and traceability is lost or becomes very tricky in the process. This hugely impacts the development phase of an automobile, in which, the safety and reliability of the automobile design should be ensured. Hence, there is a need to ensure operational safety of the vehicles while adding new functionalities to the vehicle. To address this issue, functional models of such systems are created and analysed. The main purpose of developing a functional model is to improve the traceability and reusability of a system which reduces development time and cost. Operational safety of the system is ensured by analysing the system with respect to random and systematic failures and including safety mechanism to prevent such failures. This paper discusses the development and validation of a functional model of a conventional cruise control system in a passenger vehicle based on the ISO 26262 Road Vehicles - Functional Safety standard. A methodology for creating functional architectures and an architecture of a cruise control system developed using the methodology are presented.Comment: In Proceedings FESCA 2016, arXiv:1603.0837

    Towards an agriculture knowledge ecosystem :A social life network for farmers in Sri Lanka

    Get PDF
    We have developed and successfully trialled a Social Life Network (SLN); a Mobile Based Information System to support farming activities in Sri Lanka. It provides information required to support activities such as crop selection and cultivation planning in the context of farmer, farm location, season and task being performed. The system also provides a facility for farmers to sell farming related products and services to other farmers. The final system architecture evolved through a series of iterative relevance and design cycles based on Design Science Research methodology. In the first relevance cycle we identified farmer information needs, their current decision making patterns, and some possible ways to enhance their decision making process. In the first design cycles we developed the initial prototype to visualise a possible solution and in subsequent cycles a crop ontology to reorganise published crop information that would be queried in context and processes to empower farmers. Next we went through 2 cycles of creating functional prototypes, field testing with farmers and improving these to arrive at the final system. We noted that this system can enhance the flow of information in the agriculture domain by aggregating or disaggregating information produced by some stakeholders to be consumed by others. Based on this observation the overall architecture was reconceptualised as a Digital Knowledge Ecosystem

    An industry-academia, multidisciplinary and expertise-heterogeneous design approach: a case study on designing for mobility

    Get PDF
    Trabalho apresentado na: "DIGICOM 2021 – 5th International Conference on Design and Digital Communication", 4-6 November 2021, Teatro Gil Vicente, Barcelos, Portugal.The purpose of this article is to provide a better understanding of how to effectively develop design projects that simultaneously leverage industry and academic partners, participants from various disciplinary backgrounds, and vari- ous levels of expertise to solve complex problems. The article reports a single case of an ongoing project focused on designing smart and connected devices for mobility, which integrates the dimensions of interest. Our findings highlight the importance of careful planning of the collaborative process, contemplating of- fline and real-time communication opportunities, identifying cross-boundary roles, and considering the development of shared expertise and knowledge within the team. By confronting these findings with key literature, we offer five recom- mendations to inform similar future projects.This work is supported by European Structural and Investment Funds in the FEDER component, through the Operational Competitiveness and Internationalization Pro- gramme (COMPETE 2020) [Project no 039334; Funding Reference: POCI-01-0247- FEDER-039334]. This work has additional financial support from Project Lab2PT - Landscapes, Heritage and Territory laboratory - AUR/04509, with financial support from FCT/MCTES through national funds (PIDDAC) and co-financing from the Eu- ropean Regional Development Fund (FEDER) POCI-01-0145-FEDER-007528, in line with the new partnership agreement PT2020 through COMPETE 2020 – Compet- itiveness and Internationalization Operational Program (POCI)

    Cloud Platform for Research Crowdsourcing in Mobile Testing

    Get PDF
    Mobile application testing and testing over a cloud are two highly topical fields nowadays. Mobile testing presents specific test activities, including verification of an application against a variety of heterogeneous smartphone models and versions of operating systems (OS), build distribution and test team management, monitoring and user experience analytics of an application in production, etc. Cloud benefits are widely used to support all these activities. This study conducts in-depth analyses of existing cloud services for mobile testing and addresses their weaknesses regarding research purposes and testing needs of the critical and business-critical mobile applications.   During this study, a Cloud Testing of Mobile Systems (CTOMS) framework for effective research crowdsourcing in mobile testing was developed. The framework is presented as a lightweight and easily scalable distributed system that provides a cloud service to run tests on a variety of remote mobile devices. CTOMS provides implementation of two novel functionalities that are demanded by advanced investigations in mobile testing. First, it allows full multidirectional testing, which provides the opportunities to test an application on different devices and/or OS versions, and new device models or OS versions for their compatibility with the most popular applications in the market, or just legacy critical apps, etc. Second, CTOMS demonstrates the effective integration of the appropriate testing techniques for mobile development within such a service. In particular, it provides a user with suggestions about coverage of configurations to test on using combinatorial approaches like a base choice, pair-wise, and t-way. The current CTOMS version supports automated functional testing of Android applications and detection of defects in the user interface (UI). This has a great value because requirements for UI and user experience are high for any modern mobile application.    The fundamental analysis of possible test types and techniques using a system like CTOMS was conducted, and ways of possible enhancements and extensions of functionality for possible research are listed. The first case studies prove the work of implemented novel concepts, their usefulness, and their convenience for experiments in mobile testing. The overall work proves that a study of cloud mobile testing is feasible even with small research resources.  M.S

    Building Stronger Bridges: Strategies for Improving Communication and Collaboration Between Industry and Academia in Software Engineering

    Get PDF
    Background: The software engineering community has expressed growing concern regarding the need for more connections between research and practice. Despite the large amount of knowledge researchers generate, its impact on real-world practice is uncertain. Meanwhile, practitioners in industry often struggle to access and utilize relevant research outcomes that could inform and enhance their work. Collaboration between industry and academia is seen as a potential solution to bridge this gap, ensuring that research remains relevant and applicable in real-world contexts.Objective: This research aims to explore challenges in communication and collaboration between industry and to design, evaluate, and implement strategies that foster this collaboration. Methodology: The design science paradigm inspires this research, as we aim to obtain knowledge about industry-academia communication and collaboration by studying challenges and solutions in context. The thesis includes case studies; some are exploratory, while others focus on evaluating specific strategies.Results: In terms of problem understanding, we identified challenges that impact communication and collaboration, such as different expectations, perspectives, and ways of working. Furthermore, we pinpointed factors facilitating communication, including long-term projects, research relevance, and practitioners' involvement.Regarding how to improve communication and collaboration, we investigated two strategies. The first strategy involves using the SERP-taxonomy approach in a project on software vulnerability management in IoT systems. The second strategy involves the proposal of interactive rapid reviews, conducted in close collaboration with practitioners. We share the lessons from conducting two reviews (one in testing machine learning systems and the other in software component selection). The benefits of conducting interactive rapid reviews include mutual understanding, the development of networks, and increased motivation for further studies.Conclusion: The thesis emphasizes the importance of industry-academia collaboration as a key aspect in closing gaps between research and practice. The strategies discussed provide tools to understand industry-academia partnerships better and support future collaborations

    EMBRACING MODEL TRANSFORMATIONS IN FUNCTIONAL REQUIREMENTS SPECIFICATION

    Get PDF
    corecore