528 research outputs found

    From Anecdotal Evidence to Quantitative Evaluation Methods:A Systematic Review on Evaluating Explainable AI

    Get PDF
    The rising popularity of explainable artificial intelligence (XAI) to understand high-performing black boxes, also raised the question of how to evaluate explanations of machine learning (ML) models. While interpretability and explainability are often presented as a subjectively validated binary property, we consider it a multi-faceted concept. We identify 12 conceptual properties, such as Compactness and Correctness, that should be evaluated for comprehensively assessing the quality of an explanation. Our so-called Co-12 properties serve as categorization scheme for systematically reviewing the evaluation practice of more than 300 papers published in the last 7 years at major AI and ML conferences that introduce an XAI method. We find that 1 in 3 papers evaluate exclusively with anecdotal evidence, and 1 in 5 papers evaluate with users. We also contribute to the call for objective, quantifiable evaluation methods by presenting an extensive overview of quantitative XAI evaluation methods. This systematic collection of evaluation methods provides researchers and practitioners with concrete tools to thoroughly validate, benchmark and compare new and existing XAI methods. This also opens up opportunities to include quantitative metrics as optimization criteria during model training in order to optimize for accuracy and interpretability simultaneously.Comment: Link to website added: https://utwente-dmb.github.io/xai-papers

    Median K-flats for hybrid linear modeling with many outliers

    Full text link
    We describe the Median K-Flats (MKF) algorithm, a simple online method for hybrid linear modeling, i.e., for approximating data by a mixture of flats. This algorithm simultaneously partitions the data into clusters while finding their corresponding best approximating l1 d-flats, so that the cumulative l1 error is minimized. The current implementation restricts d-flats to be d-dimensional linear subspaces. It requires a negligible amount of storage, and its complexity, when modeling data consisting of N points in D-dimensional Euclidean space with K d-dimensional linear subspaces, is of order O(n K d D+n d^2 D), where n is the number of iterations required for convergence (empirically on the order of 10^4). Since it is an online algorithm, data can be supplied to it incrementally and it can incrementally produce the corresponding output. The performance of the algorithm is carefully evaluated using synthetic and real data

    Filtering using a tree-based estimator

    Full text link

    Matching with PROSAC – Progressive Sample Consensus

    Get PDF
    A new robust matching method is proposed. The progressive sample consensus (PROSAC) algorithm exploits the linear ordering defined on the set of correspondences by a similarity function used in establishing tentative correspondences. Unlike RANSAC, which treats all correspondences equally and draws random samples uniformly from the full set, PROSAC samples are drawn from progressively larger sets of top-ranked correspondences. Under the mild assumption that the similarity measure predicts correctness of a match better than random guessing, we show that PROSAC achieves large computational savings. Experiments demonstrate it is often significantly faster (up to more than hundred times) than RANSAC. For the derived size of the sampled set of correspondences as a function of the number of samples already drawn, PROSAC converges towards RANSAC in the worst case. The power of the method is demonstrated on wide-baseline matching problems

    Text Recognition Past, Present and Future

    Get PDF
    Text recognition in various images is a research domain which attempts to develop a computer programs with a feature to read the text from images by the computer. Thus there is a need of character recognition mechanisms which results Document Image Analysis (DIA) which changes different documents in paper format computer generated electronic format. In this paper we have read and analyzed various methods for text recognition from different types of text images like scene images, text images, born digital images and text from videos. Text Recognition is an easy task for people who can read, but to make a computer that does character recognition is highly difficult task. The reasons behind this might be variability, abstraction and absence of various hard-and-fast rules that locate the appearance of a visual character in various text images. Therefore rules that is to be applied need to be very heuristically deduced from samples domain. This paper gives a review for various existing methods. The objective of this paper is to give a summary on well-known methods

    Instant Volumetric Head Avatars

    Full text link
    We present Instant Volumetric Head Avatars (INSTA), a novel approach for reconstructing photo-realistic digital avatars instantaneously. INSTA models a dynamic neural radiance field based on neural graphics primitives embedded around a parametric face model. Our pipeline is trained on a single monocular RGB portrait video that observes the subject under different expressions and views. While state-of-the-art methods take up to several days to train an avatar, our method can reconstruct a digital avatar in less than 10 minutes on modern GPU hardware, which is orders of magnitude faster than previous solutions. In addition, it allows for the interactive rendering of novel poses and expressions. By leveraging the geometry prior of the underlying parametric face model, we demonstrate that INSTA extrapolates to unseen poses. In quantitative and qualitative studies on various subjects, INSTA outperforms state-of-the-art methods regarding rendering quality and training time.Comment: Website: https://zielon.github.io/insta/ Video: https://youtu.be/HOgaeWTih7

    Meta Co-Training: Two Views are Better than One

    Full text link
    In many practical computer vision scenarios unlabeled data is plentiful, but labels are scarce and difficult to obtain. As a result, semi-supervised learning which leverages unlabeled data to boost the performance of supervised classifiers have received significant attention in recent literature. One major class of semi-supervised algorithms is co-training. In co-training two different models leverage different independent and sufficient "views" of the data to jointly make better predictions. During co-training each model creates pseudo labels on unlabeled points which are used to improve the other model. We show that in the common case when independent views are not available we can construct such views inexpensively using pre-trained models. Co-training on the constructed views yields a performance improvement over any of the individual views we construct and performance comparable with recent approaches in semi-supervised learning, but has some undesirable properties. To alleviate the issues present with co-training we present Meta Co-Training which is an extension of the successful Meta Pseudo Labels approach to two views. Our method achieves new state-of-the-art performance on ImageNet-10% with very few training resources, as well as outperforming prior semi-supervised work on several other fine-grained image classification datasets.Comment: 16 pages, 14 figures, 10 tables, for implementation see https://github.com/JayRothenberger/Meta-Co-Trainin
    corecore