3 research outputs found

    800-nA Process-and-Voltage-Invariant 106-dB PSRR PTAT Current Reference

    No full text
    This brief presents a novel process-and-voltage invariant proportional to absolute temperature (PTAT) current reference. The proposed circuit is designed and fabricated in 180-nm mixed-mode CMOS technology. Measurement results show that the I-PTAT varies only by +/- 2.4% (+/- 3 sigma/mean) across 18 test chips. One thousand Monte Carlo simulation runs show that the maximum deviation (+/- 3 sigma/mean) from the desired value of the PTAT current is +/- 5.4%. The proposed PTAT current reference uses a process, voltage, and temperature (PVT)-invariant resistor circuit having R-ON variation reduced by 4.2 times, as compared to a fixed biased MOSFET. The proposed PTAT current reference draws only 800-nA current from the supply voltage and also exhibits a high dc power supply rejection ratio (PSRR) of 106 dB. This brief also presents a PVT-invariant transconductance using the implemented PVT-invariant resistor

    CMOS Integrated Circuits for RF-powered Wireless Temperature Sensor

    Get PDF
    This dissertation presents original research contributions in the form of twelve scientific publications that represent advances related to RF-to-DC converters, reference circuits (voltage, current and frequency) and temperature sensors. The primary focus of this research was to design efficient and low power CMOS-based circuit components, which are useful in various blocks of an RF-powered wireless sensor node.  The RF-to-DC converter or rectifier converts RF energy into DC energy, which is utilized by the sensor node. In the implementation of a CMOS-based RF-to-DC converter, the threshold voltage of MOS transistors mainly affects the conversion efficiency. Hence, for the first part of this research, different threshold voltage compensation schemes were developed for the rectifiers. These schemes were divided into two parts; first, the use of the MOSFET body terminal biasing technique and second, the use of an auxiliary circuit to obtain threshold voltage compensation. In addition to these schemes, the use of an alternate signaling scheme for voltage multiplier configuration of differential input RF-harvesters has also been investigated.  A known absolute value of voltage or current is the most useful for an integrated circuit. Thus, the circuit which generates the absolute value of voltage or current is cited as the voltage or current reference circuit respectively. Hence, in the second part of the research, simple, low power and moderately accurate, voltage and current reference circuits were developed for the power management unit of the sensor node. Besides voltage and current reference circuits, a frequency reference circuit was also designed. The use of the frequency reference circuit is in the digital processing and timing functions of the sensor node.  In the final part of the research, temperature sensing was selected as an application for the sensor node. Here, voltage and current based sensor cores were developed to sense the temperature. A smart temperature sensor was designed by using the voltage cores to obtain temperature information in terms of the duty-cycle. Similarly, the temperature equivalent current was converted into the frequency to obtain a temperature equivalent output signal.  All these implementations were done by using two integrated circuits which were fabricated during the year 2013-14.

    Ultra-low power mixed-signal frontend for wearable EEGs

    Get PDF
    Electronics circuits are ubiquitous in daily life, aided by advancements in the chip design industry, leading to miniaturised solutions for typical day to day problems. One of the critical healthcare areas helped by this advancement in technology is electroencephalography (EEG). EEG is a non-invasive method of tracking a person's brain waves, and a crucial tool in several healthcare contexts, including epilepsy and sleep disorders. Current ambulatory EEG systems still suffer from limitations that affect their usability. Furthermore, many patients admitted to emergency departments (ED) for a neurological disorder like altered mental status or seizures, would remain undiagnosed hours to days after admission, which leads to an elevated rate of death compared to other conditions. Conducting a thorough EEG monitoring in early-stage could prevent further damage to the brain and avoid high mortality. But lack of portability and ease of access results in a long wait time for the prescribed patients. All real signals are analogue in nature, including brainwaves sensed by EEG systems. For converting the EEG signal into digital for further processing, a truly wearable EEG has to have an analogue mixed-signal front-end (AFE). This research aims to define the specifications for building a custom AFE for the EEG recording and use that to review the suitability of the architectures available in the literature. Another critical task is to provide new architectures that can meet the developed specifications for EEG monitoring and can be used in epilepsy diagnosis, sleep monitoring, drowsiness detection and depression study. The thesis starts with a preview on EEG technology and available methods of brainwaves recording. It further expands to design requirements for the AFE, with a discussion about critical issues that need resolving. Three new continuous-time capacitive feedback chopped amplifier designs are proposed. A novel calibration loop for setting the accurate value for a pseudo-resistor, which is a crucial block in the proposed topology, is also discussed. This pseudoresistor calibration loop achieved the resistor variation of under 8.25%. The thesis also presents a new design of a curvature corrected bandgap, as well as a novel DDA based fourth-order Sallen-Key filter. A modified sensor frontend architecture is then proposed, along with a detailed analysis of its implementation. Measurement results of the AFE are finally presented. The AFE consumed a total power of 3.2A (including ADC, amplifier, filter, and current generation circuitry) with the overall integrated input-referred noise of 0.87V-rms in the frequency band of 0.5-50Hz. Measurement results confirmed that only the proposed AFE achieved all defined specifications for the wearable EEG system with the smallest power consumption than state-of-art architectures that meet few but not all specifications. The AFE also achieved a CMRR of 131.62dB, which is higher than any studied architectures.Open Acces
    corecore