5 research outputs found

    Leveraging tagging data for recommender systems

    Get PDF
    The goal of recommender systems is to provide personalized recommendations of products or services to users facing the problem of information overload on the Web. They provide personalized recommendations that best suit a customer's taste, preferences, and individual needs. Especially on large-scale Web sites where millions of items such as books or movies are offered to the users, recommender system technologies play an increasingly important role. One of their main advantages is that they reduce a user's decision-making effort. However, recommender systems are also of high importance from the service provider or system perspective. For instance, they can convince a customer to buy something or develop trust in the system as a whole which ensures customer loyalty and repeat sales gains. With the advent of the Social Web, user generated content has enriched the social dimension of the Web. New types of Web applications have emerged which emphasize content sharing and collaboration. These so-called Social Web platforms turned users from passive recipients of information into active and engaged contributors. As a result, the amount of user contributed information provided by the Social Web poses both new possibilities and challenges for recommender system research. This work deals with the question of how user-provided tagging data can be used to improve the quality of recommender systems. Tag-based recommendations and explanations are the two main areas of contribution in this work. The area of tag-based recommendations deals mainly with the topic of recommending items by exploiting tagging data. A tag recommender algorithm is proposed which can generate highly-accurate tag recommendations in real-time. Furthermore, the concept of user- and item-specific tag preferences is introduced in this work. By attaching feelings to tags users are provided a powerful means to express in detail which features of an item they particularly like or dislike. Additionally, new recommendation schemes are presented that can exploit tag preference data to improve recommendation accuracy. The area of tag-based explanations, on the other hand, deals with questions of how explanations for recommendations should be communicated to the user in the best possible way. New explanation methods based on personalized and non-personalized tag clouds are introduced. The personalized tag cloud interface makes use of the idea of user- and item-specific tag preferences. Furthermore, a first set of possible guidelines for designing or choosing an explanation interface for a recommender system is provided

    Semantic Selection of Internet Sources through SWRL Enabled OWL Ontologies

    Get PDF
    This research examines the problem of Information Overload (IO) and give an overview of various attempts to resolve it. Furthermore, argue that instead of fighting IO, it is advisable to start learning how to live with it. It is unlikely that in modern information age, where users are producer and consumer of information, the amount of data and information generated would decrease. Furthermore, when managing IO, users are confined to the algorithms and policies of commercial Search Engines and Recommender Systems (RSs), which create results that also add to IO. this research calls to initiate a change in thinking: this by giving greater power to users when addressing the relevance and accuracy of internet searches, which helps in IO. However powerful search engines are, they do not process enough semantics in the moment when search queries are formulated. This research proposes a semantic selection of internet sources, through SWRL enabled OWL ontologies. the research focuses on SWT and its Stack because they (a)secure the semantic interpretation of the environments where internet searches take place and (b) guarantee reasoning that results in the selection of suitable internet sources in a particular moment of internet searches. Therefore, it is important to model the behaviour of users through OWL concepts and reason upon them in order to address IO when searching the internet. Thus, user behaviour is itemized through user preferences, perceptions and expectations from internet searches. The proposed approach in this research is a Software Engineering (SE) solution which provides computations based on the semantics of the environment stored in the ontological model

    Finding optimal alternatives based on efficient comparative preference inference

    Get PDF
    Choosing the right or the best option is often a demanding and challenging task for the user (e.g., a customer in an online retailer) when there are many available alternatives. In fact, the user rarely knows which offering will provide the highest value. To reduce the complexity of the choice process, automated recommender systems generate personalized recommendations. These recommendations take into account the preferences collected from the user in an explicit (e.g., letting users express their opinion about items) or implicit (e.g., studying some behavioral features) way. Such systems are widespread; research indicates that they increase the customers' satisfaction and lead to higher sales. Preference handling is one of the core issues in the design of every recommender system. This kind of system often aims at guiding users in a personalized way to interesting or useful options in a large space of possible options. Therefore, it is important for them to catch and model the user's preferences as accurately as possible. In this thesis, we develop a comparative preference-based user model to represent the user's preferences in conversational recommender systems. This type of user model allows the recommender system to capture several preference nuances from the user's feedback. We show that, when applied to conversational recommender systems, the comparative preference-based model is able to guide the user towards the best option while the system is interacting with her. We empirically test and validate the suitability and the practical computational aspects of the comparative preference-based user model and the related preference relations by comparing them to a sum of weights-based user model and the related preference relations. Product configuration, scheduling a meeting and the construction of autonomous agents are among several artificial intelligence tasks that involve a process of constrained optimization, that is, optimization of behavior or options subject to given constraints with regards to a set of preferences. When solving a constrained optimization problem, pruning techniques, such as the branch and bound technique, point at directing the search towards the best assignments, thus allowing the bounding functions to prune more branches in the search tree. Several constrained optimization problems may exhibit dominance relations. These dominance relations can be particularly useful in constrained optimization problems as they can instigate new ways (rules) of pruning non optimal solutions. Such pruning methods can achieve dramatic reductions in the search space while looking for optimal solutions. A number of constrained optimization problems can model the user's preferences using the comparative preferences. In this thesis, we develop a set of pruning rules used in the branch and bound technique to efficiently solve this kind of optimization problem. More specifically, we show how to generate newly defined pruning rules from a dominance algorithm that refers to a set of comparative preferences. These rules include pruning approaches (and combinations of them) which can drastically prune the search space. They mainly reduce the number of (expensive) pairwise comparisons performed during the search while guiding constrained optimization algorithms to find optimal solutions. Our experimental results show that the pruning rules that we have developed and their different combinations have varying impact on the performance of the branch and bound technique

    Improving accuracy of recommender systems through triadic closure

    Get PDF
    The exponential growth of social media services led to the information overload problem which information filtering and recommender systems deal by exploiting various techniques. One popular technique for making recommendations is based on trust statements between users in a social network. Yet explicit trust statements are usually very sparse leading to the need for expanding the trust networks by inferring new trust relationships. Existing methods exploit the propagation property of trust to expand the existing trust networks; however, their performance is strongly affected by the density of the trust network. Nevertheless, the utilisation of existing trust networks can model the users’ relationships, enabling the inference of new connections. The current study advances the existing methods and techniques on developing a trust-based recommender system proposing a novel method to infer trust relationships and to achieve a fully-expanded trust network. In other words, the current study proposes a novel, effective and efficient approach to deal with the information overload by expanding existing trust networks so as to increase accuracy in recommendation systems. More specifically, this study proposes a novel method to infer trust relationships, called TriadicClosure. The method is based on the homophily phenomenon of social networks and, more specifically, on the triadic closure mechanism, which is a fundamental mechanism of link formation in social networks via which communities emerge naturally, especially when the network is very sparse. Additionally, a method called JaccardCoefficient is proposed to calculate the trust weight of the inferred relationships based on the Jaccard Cofficient similarity measure. Both the proposed methods exploit structural information of the trust graph to infer and calculate the trust value. Experimental results on real-world datasets demonstrate that the TriadicClosure method outperforms the existing state-of-the-art methods by substantially improving prediction accuracy and coverage of recommendations. Moreover, the method improves the performance of the examined state-of-the-art methods in terms of accuracy and coverage when combined with them. On the other hand, the JaccardCoefficient method for calculating the weight of the inferred trust relationships did not produce stable results, with the majority showing negative impact on the performance, for both accuracy and coverage

    Artificial Intelligence for Online Review Platforms - Data Understanding, Enhanced Approaches and Explanations in Recommender Systems and Aspect-based Sentiment Analysis

    Get PDF
    The epoch-making and ever faster technological progress provokes disruptive changes and poses pivotal challenges for individuals and organizations. In particular, artificial intelligence (AI) is a disruptive technology that offers tremendous potential for many fields such as information systems and electronic commerce. Therefore, this dissertation contributes to AI for online review platforms aiming at enabling the future for consumers, businesses and platforms by unveiling the potential of AI. To achieve this goal, the dissertation investigates six major research questions embedded in the triad of data understanding of online consumer reviews, enhanced approaches and explanations in recommender systems and aspect-based sentiment analysis
    corecore