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Abstract 

The exponential growth of social media services led to the information overload problem 

which information filtering and recommender systems deal by exploiting various techniques. 

One popular technique for making recommendations is based on trust statements between 

users in a social network. Yet explicit trust statements are usually very sparse leading to the 

need for expanding the trust networks by inferring new trust relationships. Existing methods 

exploit the propagation property of trust to expand the existing trust networks; however, their 

performance is strongly affected by the density of the trust network. Nevertheless, the 

utilisation of existing trust networks can model the users’ relationships, enabling the inference 

of new connections. The current study advances the existing methods and techniques on 

developing a trust-based recommender system proposing a novel method to infer trust 

relationships and to achieve a fully-expanded trust network. In other words, the current study 

proposes a novel, effective and efficient approach to deal with the information overload by 

expanding existing trust networks so as to increase accuracy in recommendation systems. 

More specifically, this study proposes a novel method to infer trust relationships, called 

TriadicClosure. The method is based on the homophily phenomenon of social networks and, 

more specifically, on the triadic closure mechanism, which is a fundamental mechanism of link 

formation in social networks via which communities emerge naturally, especially when the 

network is very sparse. Additionally, a method called JaccardCoefficient is proposed to 

calculate the trust weight of the inferred relationships based on the Jaccard Cofficient 

similarity measure. Both the proposed methods exploit structural information of the trust 

graph to infer and calculate the trust value. 

Experimental results on real-world datasets demonstrate that the TriadicClosure method 

outperforms the existing state-of-the-art methods by substantially improving prediction 

accuracy and coverage of recommendations. Moreover, the method improves the 

performance of the examined state-of-the-art methods in terms of accuracy and coverage 

when combined with them. On the other hand, the JaccardCoefficient method for calculating 

the weight of the inferred trust relationships did not produce stable results, with the majority 

showing negative impact on the performance, for both accuracy and coverage.  
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Glossary 

Accuracy. The closeness of the prediction of a recommender system to the needs of its 
users. It measures the effectiveness of the recommendations. 

Collaborative filtering. Recommendations based on correlations between users formed by 
the similarities of the opinions and preferences of users.  

Coverage. Prediction coverage refers to the percentage of items for which the system can 
provide predictions.  

Homophily. Refers to the tendency of humans in a social environment to form more 
associations with similar parties than with dissimilar ones. Some of the definitions for 
homophily are: “Similarity breeds connection”, “birds of a feather flock together”, 
“people love those who are like themselves”. 

Information Overload. It is the inability of the internet user to cope with and manage all the 
available information in an efficient way.  

Propagation. In Social Network Analysis, propagation phenomenon is used to examine how 
information, diseases or rumours and fads spread across a social network. Through 
propagation trust can be inferred in a social network, since trust information can be 
propagated and create trust chains 

Recommender system. An information system that make predictions for its users by 
exploiting information about their tastes, preferences, and needs. 

Sparsity. Users do not usually rate enough items or/and other users leading to incomplete 
modelling of the user due to insufficient information.  

Triadic Closure. It is a fundamental mechanism of link formation in social networks which 
can be perceived as triads tending to close-up. It is based on the phenomenon in 
social communities that two strangers who possess a mutual friend will tend to 
become friends in the future. 

Trust. In this study is defined as “relationship between two agents namely the trustor and 
the trustee where the trustor trusts the trustee in a specific context”. 

Trust inference. A mechanism via which a trust relation can be established in a social 
network between two nodes not being yet connected. This mechanism is 
implemented through a trust inference algorithm or in other words a ‘trust metric’, 
recommending an unknown trust value from one user to another 

Trust metric. An approach to calculate and predict trust links between users. 

Trust network. A social network on which users state explicitly their trust belief about 
another user. 

Trust-based recommender systems. Recommender systems that use explicit trust 
relationships between users instead of other measures to calculate the similarity 
between users. 
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Introduction  

1.1 Motivation-Research problem  
During recent years, the rapid evolution in ICT and mobile technology has brought 

tremendous change in all sectors of modern society. Since the Internet became widely 

known, information traffic has radically increased whereby knowledge was distributed. 

One step further than the first Web and its ‘static’ information was Web 2.0, which as 

soon as it emerged, saw an increasing interest in information sharing. The advent of 

Web 2.0 technologies, along with the hardware development for faster connections, 

boosted the user contribution on the Internet and content sharing became familiar to 

every user, not just experts. Web 2.0 applications allow millions of users to publish and 

edit content as well as to share and tag data in an uncontrolled way and, thus, Web 2.0 

technologies have radically transformed not only the way that users interact with 

information, but also the information available and its volume. 

Hence, the explosive growth of information has led to the ‘information overload’ 

problem - that is, the inability to cope with and manage all the available information in 

an efficient way. As Ricci et al. (2011) stated, this means that traditional information 

retrieval systems face tremendous difficulties in retrieving information from ‘a mess’. 

One approach to deal with the information overload problem is to adapt the content of 

a web page according to the needs and special characteristics of the user; viz. by 

exploiting personalisation techniques. 

At the same time, all this constantly growing information, as well as the advent of new 

businesses and services, led users to a labyrinth of choices, making the final decision 

difficult and at many times with limited confidence (Schwartz, 2004). Difficulties in the 
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decision-making process are usually increased due to the user’s limited knowledge 

about a topic, or the time spent on dealing with the volume of the available information. 

This process is even more complicated when there are too many alternatives, 

intensified by information overload, as it then becomes too time-consuming to acquire 

deep knowledge of all the different alternatives. Considering the case of a travel plan, 

the task is even more complicated as the user needs to find information on different 

topics, regarding accommodation, attractions, destinations, etc. A typical solution to 

this, in real life, is to seek advice and suggestions from friends and/or experts. In 

practice, users need information filtering and recommendations from experts to 

support their decisions and to avoid waste of time. Recommender systems are proved 

(Ricci et al., 2011) to be a valuable means to support users in their information-seeking 

process and cope successfully with the information overload problem. 

The purpose of a recommender system is to assist the user to deal with the vast amount 

of information which is available on the Internet and, moreover, to function as a 

support tool to the decision-making process. In fact, recommender systems are tools 

that deal with the information overload by filtering information through various 

techniques and make suggestions for information items of probable interest to the user. 

One of the first studies in recommender systems was Tapestry (Goldberg et al., 1992), 

which also introduced the term ‘collaborative filtering’. Approaches based on 

collaborative filtering take into account the preferences of a multitude of users. The 

main concept of this technique is that common preferences and choices between two 

or more users in the past tend to be the same in the future. The other main technique 

in recommender systems is content-based filtering whereby the items are 

recommended according to the similarity of their characteristics. All the other 

approaches are based on one or both of these filtering techniques. 

Despite the increasing research effort and a variety of approaches for improving 

recommendations, recommender systems still face limitations and need further 

improvements to be more effective and applicable to a broader range of real-life 

applications (Gao, Liu and Wu, 2010). A common problem is that users typically do not 

provide sufficient ratings for items, leading to a very sparse ratings matrix for the 

recommender system. This sparsity causes problems to typical collaborative filtering 

algorithms, basing their recommendations on user neighbourhoods formed by users 

that rate common items. The same problem also exists for users not having yet rated 
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any item (cold-start users). Another usual problem of typical recommender systems is 

that of malicious attacks in copying a user’s rating profile for gaining similarity. 

Additional limitations and challenges also exist in recommender systems which will be 

discussed later in Section 5.1. However, the aforementioned led to the enhancement 

of trust statements between users, which are relations between them, such as the 

‘friendship’ relation in a social network. These systems are called ‘trust-based 

recommender systems’. 

The emergence and widespread use of social networks have afforded opportunities to 

develop new approaches for recommender systems exploiting not only the comments 

and tags created by users, but also the relationships between these users. Friends in a 

social network form a kind of trusted network, which is exploited by the trust-based 

recommender systems. A recent survey (Nielsen, 2015) reports that more than eight-

in-ten global respondents (83%) say they completely or somewhat trust the 

recommendations of friends and family. But trust isn’t confined only to those in our 

inner circle. In fact, two-thirds (66%) say they trust consumer opinions posted online. 

Gretzel and Yoo (2008) also report that word-of-mouth plays a key role in reducing the 

risks and uncertainty involved in the consumer’s decision-making process. However, 

Social Web provides valuable information, such as the relationships between users 

forming trusted neighbourhoods. Therefore, recommender systems can take 

advantage of the Social Web and exploit the networks that built the users, to provide 

more trusted recommendations from friends and family than the recommendations 

based on completely unknown users. As a consequence, the social recommender 

systems emerged and, along with the trust-based recommender systems, generated a 

rising interest in the research area to improve the accuracy and quality of the 

recommendations by manipulating the available social information. However, just as 

the typical recommender systems suffer from sparsity in ratings matrix, trust-based 

systems also suffer from an insufficient number of trust statements.  

While research in recommender systems focuses on the improvement of accuracy while 

maintaining privacy and scalability, current methods, however, need further 

improvements in order to be more effective (Mehta et al., 2011) and to overcome 

existing problems. The cold-start problem, the sparseness and malicious ratings cause 

user profiles to become the weakest link in the whole recommendation process. On the 

other hand, the explosive growth of social networks, the empirical observations of the 
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impact of word-of-mouth on a community and on social behaviours, afford potential to 

overcome these problems. However, without sufficient knowledge about users, even 

the most sophisticated recommendation strategy will not be able to make satisfactory 

recommendations (Zhou et al., 2012). Finally, novel methods are needed for modelling 

the user to overcome the existing limitations. 

1.2 Aim 
The aim of this study is to improve the accuracy of trust-based recommender systems 

through the inference of new connections between users, based on existing 

relationships within a trust network. 

1.3 Objectives 
The objectives of this study are to:  

 Review the literature on existing methods and techniques on recommender 

systems. Furthermore, review, identify and evaluate contemporary trust-based 

approaches (Chapter 3, Chapter 4 and Chapter 5). 

 Develop a new method for expanding existing trust networks (Section 6.3). 

 Develop a new method to calculate trust for inferred trust relationships 

(Section 6.4). 

 Investigate the influence of the proposed methods on the accuracy of 

recommendations (Sections 6.5.1 and 7.2). 

 Integrate the proposed methods into other state-of-the-art methods and 

investigate the influence on the accuracy of recommendations (Chapter 7). 

 Evaluate the proposed methods and compare them with existing state-of-the-

art approaches (Chapter 7). Present and analyse the results and discuss the 

learning outcome (Sections 7.3 and 8.1). Finally, draw conclusions about the 

proposed system and make any suggestions for future work (Sections 8.3 and 

8.2). 

1.4 Research hypotheses 
Due to the fact that typically not enough users are directly connected within trust 

networks, the research hypotheses of this study are that, by exploiting the existing trust 

relationships, we can model users and infer new connections. The inferred trust 

relationships can then contribute to improve the accuracy of recommender systems. 
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1.5 Research questions 
Therefore, the purpose of this study is to address the following questions: 

RQ1. How can the accuracy of recommender systems be improved? Is it possible to 

utilise trust data to improve accuracy? 

RQ2. How to can the sparsity in the item and trust ratings matrices be dealt with? 

RQ3. How can we expand an existing trust network? 

RQ4. Is there any new way of utilising existing trust data to expand the trust 

network? Can we predict the new connections from knowledge of the existing 

trust network? 

RQ5. Can we predict topical similarity from the trust network? 

RQ6. What is the impact of expanding a trust network on the accuracy of 

recommender systems? 

1.6 Contributions 
The main contribution of the current study is the use of a novel trust inference 

technique that increases the range of the existing neighbours of a user and improves 

recommendation accuracy since it performs better than existing standard trust 

inference techniques. The novelty of the proposed approach is the way that 

relationships are handled, as described later in Section 6.3, inspired by real-life 

scenarios. The other contributions of this research are summarised as follows: 

 Proposes a new algorithm to infer trust relationships based on the triadic 

closure property of social networks (Section 6.3). 

 Proposes a new method to calculate trust (Section 6.4). 

 Investigates the triadic closure influence on the accuracy of recommendations 

(Section 6.5). 

 Evaluates extensively the proposed algorithms in comparison with other well-

known recommendation algorithms (Chapter 7). 

 Provides evidence that the proposed model substantially improves prediction 

accuracy and coverage with respect to previous methods (Section 7.2). 

1.7 Publications 
This study led to the publication of the following two papers presented in conferences: 



6 
 

1. Tselenti, P. and Danas, K., 2014. A Review of Trust-Aware Recommender 

Systems Based on Graph Theory. In International Conference on Computer 

Science, Computer Engineering, and Social Media. 12-14 Dec 2014, 

Thessaloniki, Greece, pp. 1–12.  

2. Tselenti, P. and Danas, K., 2016. Trust-based recommendations through triadic 

closure. In 2016 7th International Conference on Information, Intelligence, 

Systems & Applications (IISA). Chalkidiki: 13-15 July, IEEE, pp. 1–6.  

1.8 Thesis overview 
An overview of the remainder of this study is presented below: 

Chapter 2 presents the methodology followed for this study. All the stages of the 

engineering cycle followed to complete this study are analysed and are linked with the 

sections of the remainder of this study. A special focus is given on the datasets and the 

measures used during the experimental study along with a detailed description of the 

experimental design in order to be reproducible. Finally, it presents all the tools and 

technologies used during all the stages for completing this study. 

Chapter 3 is a literature review presenting the various approaches for producing 

recommendations and analysing the two major methods of recommender systems with 

the way they work. Additionally, there is a Section (3.6) presenting the various methods 

for evaluating recommender systems.  

Chapter 4 provides an extensive presentation of the trust-based recommender systems, 

including definitions and computational properties of trust. The investigation of the 

trust inference mechanism and the survey of the existing trust metrics is the necessary 

preparatory step for obtaining all the in-depth knowledge to fulfil the aim of this study. 

Chapter 5 initially presents the limitations of the current recommender systems and 

then surveys and classifies existing trust models based on the techniques they use. 

Then, it presents a comparison of the main literature in graph-based models and 

concludes that there is need for a new system that considers also the ‘common friends’ 

and not only ‘the friend of my friend’ to propagate trust and incorporate it in 

recommender systems. 
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Chapter 6 proposes a novel method to infer trust, called TriadicClosure, based on the 

homophily phenomenon. Initially, it presents the mechanism of forming links in a social 

network and how it is measured. Next, it describes thoroughly the mechanism of 

inferring trust with triadic closure and presents the TriadicClosure algorithm, as well as 

a new method to calculate trust, based on the JaccardCoefficient algorithm. Finally, the 

chapter ends with a description of how to incorporate the proposed methods in the 

recommendation process and validates the proposed methods by evaluating them with 

synthetic data. 

Chapter 7 presents and analyses the results of the experimental evaluation of the two 

proposed methods (TriadicClosure and JaccardCoefficient). Initially, the TriadicClosure 

algorithm is compared with basic trust-based approaches and then it is incorporated 

into the state-of-the-art trust-based approaches. In the next stage, the 

JaccardCoefficient is compared against all the above methods and, finally, the 

performance of both the proposed methods is evaluated for different views of datasets. 

Finally, Chapter 8 discusses the results of experimental evaluation of the methods in 

comparison with other state-of-the-art methods presenting the usefulness and impact 

of the TriadicClosure method and how the research questions have been addressed. 

Moreover, it discusses the limitations of the two methods and also any challenges that 

arose during this study. Then, it discusses possible extensions and applications of the 

proposed methods for future work and, finally, it concludes, based on the literature 

review and the results of the experimental evaluation, by stating the contributions of 

this study. 
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Research methodology  

The current study follows the engineering cycle to solve a ‘world problem’ as described 

by Wieringa and Heerkens (2006). This ‘world problem’ here is described by the aim 

(Section 1.2) of the current study. The steps (Figure 2-1) followed to solve the research 

problem as described previously (Chapter 1), are listed next: 

1. Problem investigation. Extensively review the literature and investigate in-

depth the research problem.  

2. Solution design. Think and examine several techniques that could offer a 

solution to the problem.  

3. Design validation. Initially, validate the proposed method. 

4. Choice of solution. Choose the best solution. 

5. Implementation description. Describe the implementation of the chosen 

method. 

6. Implementation evaluation. Evaluate the proposed method. 
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Figure 2-1 Steps followed to solve the research problem 

Phase 1

Problem 
investigation

•Survey
•Existing methods (Chapter 3, Chapter 4 and Chapter 5)
•Evaluation methods (section 3.6)

•Identify
•Limitations of existing methods (section 5.1).
•Unsolved aspects of the general research problem (Chapter 4). 

•Enquire existing datasets for possible use (sections 2.5.2 and 3.6.1.1).

Phase 2

Solution design

•Identify and design any novelty that could give a solution (section 6.2).
•Thoroughly describe and analyse the identified methods (sections 6.3 

and 6.4).

Phase 3 
Design 

validation

•Validate with synthetic data (section 6.5.1)
•Impact of TriadicClosure and JaccardCoefficient methods on the 

performance of recommender systems (section 6.6).

Phase 4

Choice of 
solution

•Choose the best  techniques of the previous step.
•Choose the appropriate evaluation metrics for the chosen solution that 

will be used in the evaluation process (sections 2.5.1 and 3.6.2.1).

Phase 5

Implementation 
description

•Describe the implementation of the proposed method (section 6.5, 
Appendix I).

•Describe extensively the evaluation measures (section 2.5.1). 
•Choose the appropriate datasets (section 2.5.2)
•Describe thoroughly the experiments involved for the evaluation 

(section 2.5.3).

Phase 6

Implementation 
evaluation

•Evaluate and compare the performance of the proposed method to 
other state-of-the-art methods.

•Analyse the evaluation results.
•Draw conclusions.

Impact of methods 
on 

recommendation 
performance 

Predictive 
accuracy metrics 

Experiments 

Evaluation and 
conclusions 

TriadicClosure and 
JaccardCoefficient 

methods 

The need for a 
new system 
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2.1 Problem investigation  
This step (Chapter 3, Chapter 4 and Chapter 5) involves the extensive literature review 

and the in-depth investigation of the research problem. More specifically, the tasks of 

this step are to:  

a. Study the state-of-art solutions and identify possible limitations of each one of 

them (Chapter 3, Chapter 4 and Chapter 5). 

b. Detect any unsolved (sub-problems) aspects of the general research problem 

(Section 5.1).  

c. Except the methods to be surveyed, enquire also for any existing datasets that 

could be used (Sections 2.5.2 and 3.6.1.1). 

d. Survey the evaluation methods followed in the specific research area (Section 

3.6). 

The outcome of this step is the need of a novel method to infer new connections 

between users in trust-networks considering not only ‘the friend of my friend’ but also 

the ‘common friends’. 

For the literature review and the in-depth investigation of the research problem, 

various tools and sources were used, such as hardcopy books, digital libraries and 

scholar search engines as well as also forums, membership to professional groups and 

networks, etc. Kingston University’s online library catalogue (iCat) was useful for both 

printed and electronic resources searching, but also to view online the full text of 

electronic resources such as journals, conference proceedings and electronic books. 

Membership to Springer and ACM as well as ResearchGate proved valuable for 

extending and updating the review on the state-of-the-art methods. Moreover, the 

Mendeley reference manager proved one of the most valuable tools during this 

research, since, except its primary role as a reference manager, it also offers 

functionality to search and import sources as well as provides personalised suggestions 

for articles based on the user’s library. 

2.2 Solution design  
In this step (Chapter 6) several techniques are examined that could offer a solution to 

the problem. The tasks of this step are to:  
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a. Identify and design any novelty that could give a solution (Section 6.2). 

b. Thoroughly describe and analyse the identified methods (Sections 6.3 and 6.4). 

More specifically, existing methods of the research area of Social Network Analysis are 

examined as a possible solution to the problem. Finally, TriadicClosure is proposed as a 

solution to infer new trust relationships. Moreover, a novel method to calculate the 

trust weight of an inferred trust relationship is proposed, called JaccardCoefficient. The 

design and the description of the two proposed methods are thoroughly discussed in 

Chapter 6.  

2.3 Design validation  
In this step, the proposed methods of the previous step are validated as an initial proof 

of their validity. To achieve this, the proposed methods are initially evaluated with 

synthetic data (Section 6.5.1) in order to form an early conclusion about the 

performance and validate the design of the proposed methods. The results of this 

evaluation also indicate the impact of the proposed methods on the performance of 

the recommender system when recommending items (Section 6.6). 

2.4 Choice of solution 
 In this step, the best solution is chosen (Chapter 7), involving two tasks: 

a. Choose the best of the validated techniques of the previous step. 

b. Choose the appropriate evaluation metrics for the chosen solution that will be 

used in the evaluation process. In the current study, the experiments for 

measuring and evaluating the quality of rating predictions of various methods, 

use the predictive accuracy metrics (Sections 2.5.1 and 3.6.2.1), since the 

proposed methods, and, also, the examined state-of-the-art methods, produce 

item ratings and, in this case, these are the most appropriate metrics. 

2.5 Implementation description  
The chosen method of the previous step that best serves the solution to the research 

problem is implemented (Chapter 6 and Chapter 7); therefore, the tasks are to:  

a. Describe the implementation of the proposed method (Section 6.5, Appendix 

I). 

b. Describe extensively the evaluation measures (Section 2.5.1).  
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c. Choose the appropriate datasets (Section 2.5.2) 

d. Describe thoroughly the experiments involved for the evaluation (Sections 

2.5.3, 7.1 and 7.2). 

2.5.1 Evaluation measures 
In the experiments, all the methods are evaluated for their performance in terms of 

prediction accuracy and coverage. The evaluation metrics used for measuring the 

prediction accuracy of all the methods are the Mean Absolute Error or else MAE 

(Eq. 3.16) and the Root Mean Squared Error or else RMSE (Eq. 3.18). Recall that RMSE 

emphasises large errors thus, for a broader view of the performance of each algorithm 

the two metrics (MAE and RMSE) are used together to diagnose the variation in the 

errors of prediction. For consistency, the two metrics are given below as in Section 

3.6.2.1: 

 
,( , ) ,u u i u ii Test

p r
MAE

Test






  (Eq. 3.16) 

and 
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p r

RMSE
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  (Eq. 3.18) 

where ru , i  is the real rating while pu , i  is the predicted rating for a pair of user-item u, i  

and |Test| is the size of the testing set. The lower the MAE and RMSE are, the more 

accurately the recommendation engine predicts user ratings. 

Moreover, as it will be analysed later (Section 3.6.3), coverage is a measure being 

always considered in conjunction with accuracy. Therefore, we define the Ratings 

Coverage (RC) which is similar to the predictions coverage identified by (Herlocker et 

al., 2004) and measures “the ratio of the number of predicted rating over the total 

number of the testing ratings”, described by the formula: 
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R
RC

R
   (Eq. 1.1) 
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Users Coverage (UC) is similar to ‘user space coverage’ described by (Shani and 

Gunawardana, 2011) and is the “proportion of users for which the system can provide 

recommendations”. It is formulated as: 

 
pred

test

U
UC

U
   (Eq. 1.2) 

were |Up r e d |  is the number of users that the method provided predictions and |U t e s t|  

is the number of users in the testing set. 

Combining the RMSE and coverage RC into a single metric resulting in the FMeasure, 

which is the balance between accuracy and coverage. According to (Jamali and Ester, 

2009), we can compute it as: 

 2 Precision  RC
FMeasure  

Precision RC

 



  (Eq. 1.3) 

where Precision is the RMSE converted into a precision metric in the range [0,1] defined 

as follows: 

 1
max min

RMSE
Precision

r r

 
 


 


  (Eq. 1.4) 

 with rm a x  — rm i n  the maximum and the minimum rating value of the rating scale, 

respectively. Higher values of FMeasure indicate better overall performance. 

All the above metrics are used to measure the performance of the proposed methods 

and to compare it with the performance of other state-of-the-art methods. 

2.5.2 Datasets 
For this study, two real-world datasets are used in the experiment, namely Filmtrust 

and Epinions. The reason for choosing these two datasets between others (Section 

3.6.1.1) is that both include not only user-item ratings but also explicit trust statements 

being necessary to conduct the experiments. Filmtrust is chosen as a first step of the 

offline performance test and Epinions is chosen to test the performance on a large 

dataset. 
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Table 2-1 Statistics of the two datasets 
 Filmtrust Epinions 
# of Users 1,508 22,164 
# of Items 2,071 296,274 
# of Ratings 35,497 912,373 
# of Trust Links 1,853 355,754 

Filmtrust is a trust-based social site where users can rate and review movies. It was built 

as an experimental platform (Golbeck, 2006b). The dataset used in the experiments was 

crawled by Guo et al. (2013) in June 2011 and contains 35,494 ratings for 2,071 movies 

from 1,508 users. The ratings scale is between 0.5 and 4.0 with step 0.5 while the trust 

statements are bivalent with trust values 1 for expressing that the other user is 

trustworthy and 0 for expressing that the other user is untrustworthy. The trust 

network consists of 1,853 trust statements from 609 users. 

Epinions has been extracted by Tang et al. (2012) from the Epinions.com which is an 

online product review site. Users can rate and/or review products in different 

categories such as movies, books, games etc. but they can also build their own trust 

network by expressing trust on other users. The dataset contains 912,373 ratings for 

296,274 items in various categories from 22,164 users. The ratings scale is integer from 

1 to 5. The trust statements are bivalent with 1 for expressing that the other user is 

trustworthy and -1 for expressing that the other user is untrustworthy. 

2.5.3 Experimental design 
Next, a series of experiments were conducted for testing and evaluating the 

effectiveness of the proposed methods. The empirical study was conducted with the 

two different datasets described previously, aiming to compare the performance of the 

proposed methods with different state-of-the-art trust-based methods. Specifically, the 

experimental evaluation intends to address the following general questions: 

(Q1) How does the TriadicClosure algorithm perform on accuracy compared 

with different state-of-the-art trust-based methods? 

(Q2) What is the impact of the TriadicClosure on coverage? 

(Q3) How does the TriadicClosure algorithm perform on large datasets? 

(Q4) How does the TriadicClosure algorithm perform on accuracy and 

coverage when integrated within other state-of-the-art trust-based 

methods? 

(Q5) What is the impact of propagation on the TriadicClosure? 
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(Q6) How does the JaccardCoefficient algorithm perform on accuracy and 

coverage when implemented within the TriadicClosure algorithm and 

other state-of-the-art trust-based methods? 

(Q7) What is the performance comparison of the two proposed methods on 

different views of users (cold-start, heavy-raters, grey-sheep, 

controversial items, niche items)? 

The experiments can be divided into four conceptual stages. Each stage answers one or 

more of the questions set above.  

Stage 1 TriadicClosure basic evaluation 

This is the initial stage in which the TriadicClosure algorithm is compared with basic 

trust-based approaches. The experiments of this stage try to give an answer to 

questions (Q1), (Q2) and (Q3)  

Stage 2 TriadicClosure total performance 

In this stage, the TriadicClosure algorithm is incorporated into the state-of-the-art 

trust-based approaches. The experiments of this stage try to answer questions (Q4) 

and (Q5). 

Stage 4 JaccardCoefficient performance 

In this stage, the JaccardCoefficient is compared against all the above methods. The 

experiments try to give an answer to question (Q6). 

Stage 5 Performance of TriadicClosure and JaccardCoefficient for different views 

This stage answers the question (Q7) by comparing all the above methods for 

different views of users. 

In order to test the performance of the proposed methods for different views the 

datasets were split, as defined in (Massa and Avesani, 2007): 

 All represents the whole dataset. 

 Cold-start users refer the users who rated less than 5 items. 

 Heavy raters are those who rated more than 10 items.  

 Grey-sheep users rated more than 4 items, and the average difference between 

their average rating and the mean rating of each item is greater than 1. 
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 Controversial Items are those which received ratings with a standard deviation 

greater than 1.5.  

 Niche Items refers to items which received less than 5 ratings. 

The statistics for these views for the two datasets are shown in Table 2-2 and Table 2-3. 

Table 2-2 Statistics for different views in Filmtrust 
 # of Users # of Items # of Ratings 
All 1,508 2,071 35,497 
Cold-start users 281 156 608 
Heavy raters 963 2,034 32,979 
Grey-sheep users 93 214 2,893 
Controversial Items 60 30 73 
Niche Items 382 1,653 3,162 

 

Table 2-3 Statistics for different views in Epinions 
 # of Users # of Items # of Ratings 
All 22,164 296,274 912,373 
Cold-start users 22 63 64 
Heavy raters 20,750 295,173 899,561 
Grey-sheep users 1,535 14,842 31,718 
Controversial Items 10,594 3,149 22,223 
Niche Items 19,983 264,837 372,188 

 

The experiments follow the standard leave-one-out (Section 3.6.1.1.1) as validation 

process. Thus, the true user-item rating is hidden and a predicted value is calculated for 

each method we want to evaluate. This process is iterative until all ratings in the dataset 

are tested.  

2.6 Implementation evaluation  
This final step verifies whether the proposed method solved the problem and to what 

extent (Chapter 7and Chapter 8) and involves three tasks:  

a. Evaluate and compare the performance of the proposed method to other state-

of-the-art methods. 

b. Analyse the evaluation results. 

c. Draw conclusions. 
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2.7 Tools and technologies 
For the experimental study, the LibRec1 Java library for recommender systems was used 

to implement the proposed methods and perform the evaluation. The LibRec library 

implements a suite of state-of-the-art recommendation algorithms as well as the 

traditional methods. In addition, a series of evaluation metrics are implemented 

including diversity-based metrics which are rarely enabled in other libraries. LibRec 

provides a platform for fair comparisons among different algorithms in multiple 

aspects, given the fact that the evaluative performance depends on data characteristic. 

It also provides a high flexibility for expansion with new algorithms. 

Other popular open source recommendation frameworks are available such as Apache 

Mahout2, Duine3, LensKit4, MyMediaLite5, and PREA6. Lee et al. (2012) from their 

detailed comparison, report that Mahout, Duine provide only simple memory-based 

algorithms while recent state-of-the-art algorithms are often not supported. Moreover, 

LensKit provides only a few classic recommendation algorithms. Guibing et al. (2015) 

also provide a comparison between PREA, MyMediaLite and LibRec reporting that the 

first two libraries become less active for further development while regarding the 

evaluation performance of recommender algorithms, PREA only provides predictive 

error-based metrics while MyMediaLite does not provide novel measures beyond 

accuracy. In contrast, LibRec library provides novel measures such as coverage, as well 

as the traditional accuracy-based measures. The researchers finally demonstrate that 

LibRec runs much faster than PREA and MyMediaLite while achieving competitive 

recommendation performance. Hence, for this study, the LibRec framework seemed to 

be the most appropriate choice for implementing the proposed algorithms and perform 

the evaluation experiments comparing with recent state-of-the-art algorithms. 

                                                             
1 http://www.librec.net/index.html 
2 https://mahout.apache.org 
3 http://www.duineframework.org/ 
4 http://lenskit.org/ 
5 http://www.mymedialite.net/ 
6 http://prea.gatech.edu/ 
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Recommender Systems 

From the early beginnings of the Internet, one of the main research challenges was to 

effectively manage and filter all available information. As already mentioned, the aim 

of a recommender system is to help the user cope with the vast amount of information 

which is available on the Internet and, even more, to perform as a supporting tool to 

the decision process. Actually, a recommender system is a tool dealing with the 

information overload by filtering information and, through various techniques, makes 

suggestions for information items being of probable interest to the user. The 

suggestions can be based on the popularity of an item, the purchase history of the user, 

demographic information about the user, or similarities of the current user with other 

users or even with a community of users. 

Initially, recommender systems were based on cognitive science (Rich, 1979) and 

approximation (Powell, 1981), while applied techniques and methodologies of 

information retrieval (Salton, 1989) and algorithms of Data Mining (Ricci et al., 2011). 

In the early 1990s, they became an independent research area by taking advantage of 

user ratings. Since then, the interest for this research area has constantly increased with 

many applications taking advantage of the different existing methods. 

Both information retrieval systems and recommender systems use similar techniques 

for filtering and ranking information, but recommender systems have the fundamental 

difference of taking into account the user’s preferences. On the other hand, information 

filtering and retrieval techniques are mainly based on item description without 

considering user preferences or context. Recently, web search engines, such as Google, 
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have taken advantage of recommendation techniques to filter their results as well as to 

implement advanced search features like user’s location and language. 

Real-life applications of recommender systems exist for various topics, such as e-

commerce, news, dating, jobs citations, websites, recipes, etc. A list of some very 

popular real-life applications is given in Table 3-1, in which two of the best known and 

oldest recommender systems are included (Amazon and Google News). At this point, 

we will consider how these two popular websites produce their recommendations. 

Suppose a user is interested in purchasing a specific book from Amazon. As soon as the 

user searches for the book, Amazon recommends some other books also having similar 

characteristics, such as the topic or the writer and/or books or even other products that 

other users bought together with the specific book. On the other hand, Google uses a 

very different approach to recommend web pages. At the heart of Google’s method is 

the PageRank algorithm (Brin and Page, 1998) which ranks the web pages based on the 

analysis of the hyperlink network of the websites. 

Table 3-1: Real-life recommender systems 
Application/site Topic 
Netflix Movies 
Pandora Music 
Amazon Books and other products 
Facebook Friends 
MovieLens Movies 
StumbleUpon Websites 
Perfectmatch Dating 
CareerBuilder Jobs 
Google News News 
Last.fm music 
eBay Various products 

Another very popular website is Netflix, a movie recommender site which, in October 

2006, announced a competition of $1 million Prize7. This was a challenge to improve 

the accuracy of the company’s prediction algorithm (Cinematch) by more than 10% in 

terms of the root mean square error (RMSE). On September 2009, the BellKor’s 

Pragmatic Chaos team won the grand prize, out of 20,000 registered teams from which 

there were 2,000 submitted prediction sets with a total of 13,000 submissions. The 

Netflix Prize reflects the importance and the economic impact of recommender systems 

on e-commerce. Several studies examine this impact on sales (Fleder and Hosanagar, 

                                                             
7 http://www.netflixprize.com/ 
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2007; Pathak et al., 2010; Sivapalan et al., 2014) and have proved (Pathak et al., 2010) 

that the strength of recommendations has a positive effect on sales as well as the cross-

selling efforts of sellers. 

3.1 How do they work? 
The goal of a recommender system is to suggest new items to a target user. This can be 

achieved by utilising information about items and/or users. Predictions can be made 

based on users with similar tastes or by finding the most popular item. 

The input values for a recommender system are subject to the needs of the algorithm. 

The usual values that can be used are: 

 User data; which can be demographic data (age, gender, education, language), 

location, browsing history, social network, trust relationships, content data 

written by the user (comments, stories, etc). 

 Item data; information about the item, like title-name, alternative names, item 

characteristics like genre, etc. 

 Ratings data; the ratings about the items given by the users. The rating scale is 

usually numerical and can be from 1 to 5 (Likert scale), or from 0 to10 or from 

0 to 1 or even from 1 to 100.  

To examine how a recommender system works, let U={u1,u2,…,um} be the set of users 

with m the number of them and I={ i1 , i2 ,…,in}  the set of items with n  the number of 

available items. Every user u i  with i=1,2, .. . ,m  has rated a list of items I u , i⊆  I . Let fu  

be the utility function (Adomavicius and Tuzhilin, 2005) measuring the usefulness of 

item i  to user u, i.e., fu:U×I→R , where R  is a totally ordered set that, in fact, 

represents the ratings set. Then, for each user u∈U , we want to choose such an item 

i∈I  that maximises the user’s utility. More formally: 

∀u∈U    and i∈I,  i u=max(fu (u,i ))   (Eq. 3 .1) 

The rating ra , j∈R  that the target user ua  has given for an item i j  is a number according 

to the scale being used in the system. This number is usually between 1 and 5 or 0 and 

10 or even between 0 and 1.  
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The task of the recommender system is to make a prediction for an item i j∉Iu , i  that 

the active user ua∈U  has not yet rated. The output of the recommender system can be 

either: 

 Prediction, which refers to the rating prediction pa , j  of a user ua to a specific 

item i j  that has not yet been rated. It is a numerical value, within the scale that 

the recommender system uses. 

 Recommendation, which is a list of N  items of interest for the active user, where 

N≤n . Note that this top-N list refers to items that the active user may like more 

and, of course, has not yet purchased and/or rated. 

 

Figure 3-1 Inputs and output of a recommender system 
To give an example, suppose we have the ratings matrix of Table 3-2, with users in rows 

and items in columns. The value in each cell represents the rating score for a movie 

from each user. Essentially, the ultimate goal for a recommender engine is to predict 

values for the empty cells, viz., ratings for the not-yet-rated movies.  

Consequently, in a typical collaborative filtering system, the input is the ratings matrix 

and its goal is to fill, as much as possible, the empty cells of the matrix according to the 

similarity of ratings between users. 

Table 3-2: An example of user-item ratings matrix 
  Movie 
  Memento Pulp Fiction The Godfather Titanic The Room 

U
se

r 

Alice 1 4 4 3 5 
Bob 4 5 4 1  
John  2 4  3 
Emily 3 5    
Frank  3 3  4 

 

Recommendation 
process 

Items 

Recommended 
item(s) 

Profile and/or  
contextual parameters 



22 
 

3.2 Recommendation approaches 
The two major methods for producing recommendations are the content-based 

filtering technique, which relies on item attributes and/or the historical data of the user, 

and the collaborative filtering technique, which is based on the opinions and 

preferences of other users. In everyday life, we usually seek advice from friends or 

colleagues or someone we trust to recommend us a movie, a book, a restaurant or other 

things of interest. In fact, collaborative filtering recommender systems follow the 

assumption that, if a user has common preferences with other users in the past, they 

are more likely to also like other things that these users liked. Whilst there are hybrid 

techniques combining both of the above, collaborative filtering is the most successful 

and widely-used technique (Ray and Mahanti, 2010). One of the first commercial 

recommender systems, as already mentioned, was Tapestry (Goldberg et al., 1992), 

which was purely based on collaborative filtering. Two years later, in 1994, researchers 

(Resnick et al., 1994) introduced a k-Nearest-Neighbour algorithm. Since then, several 

optimisations of these algorithms or even entirely new approaches have been 

proposed. 

Based on the information filtering techniques that are used to make their 

recommendations, recommender systems can be classified (Nageswara Rao and Talwar 

G., 2008) into the following categories. 

 Content-based filtering systems: recommendations are based on items and 

information that users preferred in the past. 

 Collaborative filtering systems: recommendations are based on items that 

people with similar tastes and preferences liked in the past. 

 Demographic filtering systems: user data such as age, gender, education, etc., 

are considered to form the recommendations. 

 Knowledge-based filtering systems: recommendations are based on specific 

domain knowledge about how a specific item meets the user’s interests. 

 Utility-based recommender systems: suggestions are based on the 

computation of the utility of each object for the user. 

 Community-based filtering systems: preferences of user’s friends are 

considered for item recommendations.  

 Hybrid filtering systems: combination of two or more filtering techniques to 

minimise each one’s deficiencies and/or benefit each one’s advantages. 
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However, the emergence and the wide spread of social networks has given 

opportunities in developing new approaches for recommender systems exploiting, not 

only the comments and tags created by users, but also the relationships, bringing to the 

forefront of the research the Social recommender systems and the Trust-based 

recommender systems. Although both are based on Social Web, the fundamental 

difference is that, while trust-based systems are based on social relations to produce 

suggestions for items, the Social recommender system provides proposals for 

connecting with new friends within the social network. 

As a general rule, recommender systems build and exploit the user model to generate 

recommendations, by modelling the profile that contains information about users’ 

tastes, preferences and needs (Adomavicius and Tuzhilin, 2005). 

In demographic recommender systems, for example, the user model contains 

demographic information like age, gender, education, etc., whereas, in collaborative 

filtering, the user is modelled by his ratings to the items (Ricci et al., 2011). Two methods 

exist for collecting information about the user: 

 Explicit, where the information is provided explicitly by the user through the 

completion of a checking list of interests or by collecting previous ranking 

information given by the user. 

 Implicit, where information is extracted from the user’s browsing history 

through an automated reasoning mechanism. 

The aforementioned approaches and techniques are static, whereas user preferences 

and attributes change over time. Thus, there is a need (Nanas, De Roeck and Vavalis, 

2009) for constant updates of the user profile for producing better recommendations. 

Recently, research has focused on the semantic description of the user model enriching 

user profiles with metadata, moving on from the conventional vector representation of 

the user model. Many approaches describe the user model semantically (Heckmann et 

al., 2005a; Heckmann, et al., 2005b; Felden and Linden, 2007; Kim et al., 2007) some of 

which deal with information interchange between user modelling systems. Some others 

analyse general user models, such as: 

 UserML (Heckmann and Krueger, 2003), a mark-up language for 

communication about partial user models in a ubiquitous computing 



24 
 

environment, where all different kinds of systems work together to satisfy the 

user’s needs and 

 GUMO (Heckmann et al., 2005b) for the uniform interpretation of distributed 

user models in intelligent semantic web enriched environments.  

In a recent study (Zhang, Song and Song, 2007), the user model is based on the semantic 

representation of the user’s activity, taking also into account the structure of visited 

websites. Lately, research in Social Network Analysis (McGrath, 2008) and Natural 

Language Processing (Wilks and Brewster, 2009) has offered a new perspective and 

solutions in the semantic description of user model. Methods based on Social Network 

Analysis model the users through their relationships and their interactions with other 

users. Social Network Analysis is a multidisciplinary research area based on social 

sciences, mathematics, computer science and physics and which attempts to quantify 

the interactions among the users of a social network in order to profile the users and 

the network’s structure by investigating social group dynamics. Specifically, Social 

Network Analysis offers measures for the reputation and the importance of a user in a 

social network, but also provides the way to divide the network into subgroups 

(cliques). The current study is based on Social Network Analysis, exploiting methods to 

predict link connections such as propagation and homophily. 

3.2.1 Similarity measures 
Similarity measures or metrics compute the similarity between two objects. Some of 

the most successful recommendation approaches are based on similarity measures, 

either between users for collaborative filtering or between items for content-based. In 

the first case of collaborative filtering, similarity is computed between two users and is 

based on all rated items by the two users. Likewise, for content-based systems, 

similarity is calculated for items and is usually based on their features. The following 

subsection presents some of the most common similarity metrics, used in 

recommender systems, as referenced also by Ricci et al. (2011). 

The quantified similarity between two objects is usually defined as the inverse of 

distance metrics. Similarity wa,u can be computed by measuring the distance between 

two objects x,y.   
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The simplest measure is the Euclidean distance 
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    (Eq. 3.2) 

where n  is the number of attributes and xk  and yk  are the k t h  attributes of objects x  

and y , respectively. 

Minkowski distance is a generalization of Euclidean Distance 
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where r  is the degree of the distance. When r=1  we get the Manhattan distance 
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   (Eq. 3.4) 

Although these functions work well with numeric values for computing similarity, when 

the attributes are not numerical like the genre of a movie, there is a need for another 

approach to computing similarity. 

When items are not numerical, the angle between the two items should be calculated. 

In cosine based similarity the items or users are represented as vectors and the 

similarity is the cosine of the angle between these vectors. 
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    (Eq. 3.5) 

where x y
 

 is the dot-product of these two vectors and R x , y  is the set of commonly 

rated items by both users x  and y . The result of this function is between -1 for full 

dissimilarity and 1 for full similarity.  

Pearson correlation coefficient (PCC) is another way for computing similarity by 

measuring the linear correlation between two vectors of ratings 
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  (Eq. 3.6) 

where R x , y  is the set of commonly rated items by both users x  and y . The r ̅denotes the 

user’s average rating and reflects the different way that every user considers the rating 

scale. If a user tends to give higher rates than another, the inclusion of the average 

rating for each user normalises the results. Again, the result is between -1 for full 

dissimilarity and 1 for full similarity. However, this method may give misleading results 

when for instance two users may happen to rate a few items identically, but this does 

not imply that they have similar overall preferences. Yet, Pearson Correlation 

Coefficient is one of the most popular similarity methods as it is proved (Breese, 

Heckerman and Kadie, 1998) to perform better than cosine similarity and other 

similarity measures. 

3.3 Content-based recommendations 
Content-based recommender systems have their roots in information filtering and 

retrieval and rely on data about the available items. These data are attributes or 

features which describe an item. For example, a song can be described by attributes like 

the title, the creator, the composer, the singer, the genre, etc. The main idea behind 

this technique is that users tend to like items with similar characteristics. If a user has 

already rated or purchased or liked an item, the system generates recommendations 

for ‘similar items’ by making item-to-item correlation. Thus, the system suggests items 

similar to these that the user liked in the past. In fact, the content-based algorithms 

compare the user’s profile with terms or keywords representing the attributes of items 

to produce recommendations. User profiles can be built, either explicitly or implicitly, 

by gathering historical information from positive reviews, ratings, purchases or even 

searching keywords.  

Both items and user preferences are stored as features vectors. The features can be 

extracted by text processing techniques or by manual labelling using the Tagging 

function of Web 2.0 technologies.  

A popular technique used in content-based recommenders is to find the most 

important words in a document and build the document profile. The importance of 
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words in a document can be calculated based on their frequency in the document. This 

technique is called TF-IDF, which stands for Term Frequency/Inverse Term Frequency 

and has its roots in information retrieval (Salton, 1989). Considering that the length of 

the document may increase the relative document weight, the term frequency is 

normalised by calculating it over the maximum frequency of the other keywords in the 

document The whole procedure to build the profile of a user is presented below, as 

described by Adomavicius and Tuzhilin (2005). 

So the term frequency TF i , j  of keyword ki  in a document d j  is defined as: 

 ,
,

,max
i j

i j
z z j

f
TF

f
   (Eq. 3.7) 

where f i , j  is the frequency of keyword k i  in the text and max zf z ,j is the maximum 

frequency of all the other keywords in the document. 

The second measure that should be calculated for the TF-IDF technique is the inverse 

document frequency which is defined as: 
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   (Eq. 3.8) 

with N  the number of all recommendable documents and n i  the number of documents 

in which the keyword k i  appears 

Finally, the weight w i , j  for keyword ki  in document d j  is calculated as the product of 

the term frequency and the inverse document frequency 

 
, ,i j i j iw T F I D F    (Eq. 3.9) 

The document profile is built from the weights of all the terms and is defined as: 

Content(d j)=(w1 , j ,…,w k , j)  

The next step is to build the user profile. Let ContentBasedProfi le(c)  be the profile 

of a user c  which represents the preference of the user. The profile is a vector, 

containing keywords analysed from the previously rated and seen items. Finally, the 

two vectors, of document and user profiles are compared using a similarity measure 
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and the score being extracted is used to recommend the documents with the higher 

scores. 

In addition to the memory-based approaches that have their roots in information 

retrieval there are also model-based approaches. These methods address the 

recommendation of a document as a classification problem wherein each user is 

associated with a classifier instead of a profile. This means that supervised machine 

learning techniques can be applied, such as Bayesian classifiers (Pazzani and Billsus, 

1997; Mooney, Bennett and Roy, 1998), decision trees (Pazzani and Billsus, 1997), 

clustering, linear regression, support vector machine (SVM) (Wu, Qi and Feng, 2007) 

and artificial neural networks (Park, Seo and Jang, 2005).  

However, as opposed to several studies (Adomavicius and Tuzhilin, 2005; Nageswara 

and Talwar , 2008; Jannach et al., 2010; Ricci et al., 2011; Bhuiyan, 2013; Bobadilla et 

al., 2013), content-based recommender systems suffer some limitations over other 

recommendation techniques. 

 Cold-start problem for new users. Namely, there is no information for the user 

that has not yet rated any item. The system provides recommendation 

according to the user’s preferences. But the user’s profile is not complete until 

there are enough ratings from the user. Hence, the recommendations will not 

be very accurate until the user profile is sufficiently complete. 

 Attribute extraction problem. Some domains cannot exploit this technique as 

they cannot use attributes to describe their items due to limited content 

analysis. The attributes of the items sometimes have to be inserted manually, 

as in multimedia content, which needs considerable human effort. 

 Overspecialisation problem. The system lacks serendipity and cannot 

recommend any item being different to those that the user has previously 

rated. This means that, if a user likes a horror movie, the system will 

recommend only horror movies, although the user may like also action movies. 

 Objectivity problem. The recommendations are not based on qualitative 

information, but only on objective information, since the items are described 

only by their attributes. 

On the other hand, there are, of course, some advantages, making the content-based 

filtering valuable for the recommendation process. 
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 There is no new-item problem. This means that, if a new item is added to the 

system, it is not necessary to be rated or to be popular in order to be in the 

recommending items list. 

 No need of data about other users; therefore, content-based methods do not 

suffer from sparsity problems. 

 Enough explanations are provided by displaying the attributes on which 

recommendations are based. 

 Privacy is preserved, as the recommendations are based only on personal 

information, which is not used for providing recommendations to other users. 

Moreover, the personal profile can be maintained locally for security reasons. 

From all the above advantages and disadvantages of the content-based method, it is 

clear why this method is usually applied as a part of the hybrid systems. Combined with 

other methods, the drawbacks of each method can be eliminated, while, at the same 

time, their strengths can improve the overall recommendation performance. 

3.4 Collaborative Filtering recommendations 
As already mentioned, the first commercial recommender system was Tapestry 

(Goldberg et al., 1992), which also introduced the term ‘collaborative filtering’. The 

system took advantage of newsgroups to recommend documents to a collection of 

users so as to prevent information overflow. 

Recommender systems based on collaborative filtering consider the preferences of a 

multitude of users. The main concept of this technique is that common preferences and 

choices between two or more users in the past tend to be the same in the future. 

Consequently, recommendations are based on the opinions of other users, thus, items 

from different categories/domains can be recommended.  

To produce recommendations, a collaborative filtering system, analyses users’ opinions 

and ratings and, thereafter, predictions are produced through a correlation engine for 

matching user preferences. In the classic user-based approach, the system builds a 

neighbourhood of users with similar tastes, so recommendations can be produced for 

items not necessarily similar to those previously rated by the user, but based on the 

ratings of users belonging in the user’s neighbourhood. The target user is correlated to 

other users through similarity metrics on their profiles which forms a neighbourhood 

consisting of the nearest-neighbour users. Items rated by these nearest-neighbour 
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users can be recommended to the target user. Accordingly, in the item-based approach, 

recommendations are built upon the similarities between items. This approach is based 

on the idea that a user that liked or purchased a specific item is possible to like or 

purchase a similar item in the future. A major difference with the user-based approach 

is that item-based has usually an offline phase for data pre-processing, which results to 

improved computation time in the prediction phase. 

The input for a collaborative filtering recommender is the same as in content-based 

filtering and is a user-item ratings matrix. The typical steps for predicting items to a 

target user are as follows: 

1. Calculate the similarity between users so as to form the neighbourhood 

2. Form the neighbourhood and select a subset on which predictions will be based 

3. Predict a rating for not yet rated items from the active user 

For example, in a movie collaborative-filtering recommender, in order to recommend a 

movie to a target user, ua , the system finds users with similar tastes (peers) and forms 

a neighbourhood of, let’s say, 5-nearest neighbours. Then the system recommends the 

most liked movies by these five neighbours. 

Depending on the technique that they exploit, collaborative filtering algorithms are 

classified into two general classes (Breese, Heckerman and Kadie, 1998) depending on 

the way that the input matrix is utilised:  

 Memory-based: which are heuristics by utilising all the ratings of the user to 

produce a rating prediction. They mainly exploit statistical techniques to find a 

set of users with similar tastes and form the neighbourhood. These methods 

are analysed in Section 3.4.1 

 Model-based: which uses the user’s previous ratings to model the user and then 

makes a prediction. They exploit probabilistic approaches to build the user 

model, such as Bayesian network, clustering or machine learning techniques 

like neural networks and several other techniques. These methods are analysed 

in Section 3.4.2 

Generally, collaborative-filtering approaches have advantages and disadvantages, as 

listed below:  
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Advantages 

 No need for item attributes. Recommendations are not based on content and, 

so, there is no need for the systems to know anything about the items except 

the ratings being received from the users. 

 Improved accuracy of the recommendations over time as the ratings numbers 

increase.  

 Serendipity. Recommendations are not based on item attributes, but on their 

popularity, so, it is more likely for a user to be recommended a novel item that 

could not be expected as this item may be liked by like-minded users. 

 No need of human effort for tagging items with no attributes and no need for 

the user to have any domain knowledge. 

Disadvantages 

 Cold-start problem. When a new item is added or there are not yet any ratings 

for an item, then the item is not included in any recommendation list as it is not 

also included in the user-item ratings matrix. Similarly, if a user has not yet rated 

any item, it is impossible to find users with similar tastes, because this 

calculation is based on existing ratings. 

 Data sparsity problem. In practice, the users rate a small portion of items so 

the user-item ratings matrix is sparse. As a result, it is difficult to find users with 

similar tastes. 

 Unusual user problem (grey-sheep). Sometimes there are users whose 

opinions are not consistent with any group of users. As a result, these users 

rarely receive accurate recommendations. 

 Unique tastes problem. A user having unusual tastes compared to the majority 

of users would be difficult to correlate with other users and find similar users, 

which leads to less accurate recommendations.  

 Scalability problem. Usually, there are millions of users and items, but 

traditional collaborative filtering algorithms are usually implemented as a 

centralised website. The computational complexity slows down the prediction 

for a real-time process. 
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 Critical mass of users. The effectiveness of collaborative filtering algorithms is 

based on the number of users that rated an item. If an item is not rated by an 

adequate number of users, the system may not recommend the item. 

3.4.1 Memory-based collaborative filtering  
Memory-based (heuristics-based) collaborative filtering is based on all the previously 

rated items by the users. In order to make predictions for items not currently rated, 

memory-based collaborative filtering exploits statistical techniques to find correlation 

between users and form a neighbourhood of users by calculating user to user similarity.  

Once the neighbourhood is formed, different algorithms are exploited to predict an 

item or a list of top-N items. Such an algorithm is the weighted sum (Eq. 3.12) where 

the unknown rating pa , i  for a target item i  and target user ua  can be predicted from the 

ratings of the nearest-neighbours (most similar users) of the target user who rated the 

target item.  

The unknown rating pa , i  for an item i  and a target user ua  is usually predicted as an 

aggregate (Adomavicius and Tuzhilin, 2005) of the ratings of the N most similar users 

for the specific item: 
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where Un  is the set of users forming the neighbourhood of target user which rated the 

item i . Three typical approaches (Adomavicius and Tuzhilin, 2005) that use aggregation 

are: 
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The adjusted weighted sum: , , ,( )
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    (Eq. 3.13) 

where k  is a normalisation factor and wa , u  is the similarity measure between users a  

and u  and can be calculated based on one of the functions of Section 3.2.1. The 
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normalisation factor is used for adapting the predicted rating to the rating scale of the 

system and is usually defined as: 
,
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Thus the equation (Eq. 3.12) becomes:
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where UN  is the neighbourhood of target user that has rated the target item, ru , i  is the 

rating of user u  to item i  and wa , u  is the similarity measure between users a  and u . 

Yet this method disregards the personalised way that each user rates. This means that 

some users tend to give higher ratings while others are stricter. To overcome this 

problem, the classic collaborative filtering algorithm includes the mean ratings of users 

a  and u  
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 (Eq. 3.15) 

where UN  is the neighbourhood of the target user (set of users) that has rated the target 

item, ru , i  is the rating of user u  to the item, wa , u  is the similarity measure between 

users a  and u  and ar and r  are the mean ratings of users a  and u  respectively. 

Example 1. Assume a movie recommender system with integer ratings on a scale from 

1 (for fully dislike) and 10 (for fully like). Table 3-3 depicts a cut off from the total ratings 

table. More specifically, the table shows the ratings of five users to six items. An empty 

cell means that the user has not rated the item. The task of the recommender system 

is to predict values for the empty cells. 

Table 3-3 An example of user-item ratings matrix with averages of ratings 
 Item1 Item2 Item3 Item4 Item5 Item6 Average 

Alice 8 6 ? 5 8 6 6.6 
Bob  9  7 8  8 
John 5 7 8  6  7 
Emily 8 6 9 3  8 6.5 
Frank 4 2 7  4 4 4.2 
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Suppose we want to predict the rating that could give Alice to item3. The first step for 

the collaborative filtering recommender is to calculate the similarities between the 

users. Choosing the Pearson Correlation Coefficient (Eq. 3.6), we can calculate the 

similarity e.g. between Alice (A) and Bob (B): 
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In the same way, we can calculate the similarities between all the users (Table 3-4). 

Table 3-4 User-user correlations 
 Alice Bob John Emily Frank 

Alice 1 0.327327 -0.86603 0.953821 0.57735 
Bob 0.327327 1 1 1 -1 
John -0.86603 1 1 0.142857 0.438357 
Emily 0.953821 1 0.142857 1 0.953821 
Frank 0.57735 -1 0.438357 0.953821 1 

As a second step, the recommender forms the neighbourhood of Alice as the set of 

users that rated the item3 that is UN={John, Emily,  Frank}.  Therefore, the rating 

prediction for target user Alice and item3, is calculated as follows: 
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This formula (Eq. 3.15) is the most popular technique for predicting recommendations 

also known as ‘Resnick’s formula’ since it was proposed by Resnick et al. (1994). It is a 

baseline algorithm in collaborative filtering recommender systems and is widely used 

in both academia and industry. 

3.4.2 Model-based collaborative filtering  
Model-based collaborative filtering approaches utilise the collection of ratings to learn 

a model. This model, with its parameters, is then stored and used, instead of the ratings 
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matrix, to produce item predictions. Thus, these techniques have a learning phase 

which may be time-consuming;, however, the prediction phase is faster than that of 

memory-based techniques, as they use only the model to compute the predicted rating 

and not the entire ratings matrix, which is usually too heavy. Various approaches exist 

to model the user and/or the item, based on probabilistic or statistical techniques: 

Bayesian belief networks. A Bayesian network is a directed acyclic graph in which nodes 

represent attributes and arcs represent dependencies. Each item in the network has a 

set of parent items, being the best predictors of its votes. In fact, the model represents 

graphically previous knowledge in a domain. This model is very fast with analogous 

accuracy with nearest neighbours methods (Breese, Heckerman and Kadie, 1998) and 

is more suitable when user preferences change slowly in comparison with the time 

needed for building the model. The great advantage of this approach is that it handles 

incomplete data well while is quite robust to model overfitting (Ricci et al., 2011).  

Clustering. In this method, users are classified into segments, with each segment 

consisting of like-minded users. In one such study Chee, Han and Wang (2001) introduce 

a k-means-like algorithm to partition the users in clusters consisting of similar ones and 

then perform subsequent clustering based on smaller, partitioned databases. Other 

approaches that cluster users with k-means are those of Ungar and Foster (1998), 

Sarwar et al. (2002) and Xue et al. (2005). The main advantage of k-means clustering is 

their ease of implementation. Generally, clustering methods perform better (Sarwar et 

al., 2000; Chee, Han and Wang, 2001; Xue et al., 2005) in terms of scalability than 

common collaborative filtering methods, as their predictions are calculated within a 

smaller (clustered) amount of data. However, the smaller the group partitions of users 

the worse it becomes the quality of the recommendations. 

Decision trees. This method follows the structure of a tree where branches (edges) are 

connected with nodes. Internal nodes represent questions and edges represent the 

answers. The leafs at the end of an edge represent the final decision. Decision trees are 

learned by recursively splitting the training data into subsets based on an attribute 

value until these subsets belong to a single class. Typical examples of decision trees can 

be found in Quinlan (1984), Pazzani et al. (1996) and Pazzani and Billsus (1997). 

Association rule. This is a usual technique for performing shopping basket analysis. A 

common case is to detect items being purchased together. A typical rule may be, ‘A 
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mobile phone case is often (82%) bought along with a screen protector.’ Such a rule 

may contribute in capturing item relationships in large-scale sales transactions. 

Association rules are usually combined with collaborative filtering, when ratings are not 

on a gradual scale, but are binary (‘like’, ‘dislike’). 

Matrix factorisation. Dimensionality reduction techniques are applied for minimising 

the sparsity and scalability problems. These methods extract a set of latent (hidden) 

factors from rating patterns and capture latent relationships between users and items. 

Each user and each item have a K-dimension latent factor vector. One popular approach 

based on matrix factorisation is the Singular Value Decomposition (SVD) with its roots 

in information filtering (Deerwester et al., 1990), but is also extensively applied in 

collaborative filtering (Sarwar et al., 2000; Rennie and Srebro, 2005; Salakhutdinov and 

Mnih, 2007; 2008; Koren, Bell and Volinsky, 2009; Yu et al., 2009). The winner of the 

Netflix Prize was based on matrix factorisation and proved that it is a method very 

valuable to improving recommendations accuracy. However, it is shown (Sarwar et al., 

2000) that, in some cases, the prediction quality was worse than that of memory-based 

techniques. Eventually, the quality of recommendations seems to depend on the right 

choice of the amount of data reduction.  

3.5 Other methods 

3.5.1 Hybrid approaches 
Content-based and collaborative filtering are the two basic methods in recommender 

systems, but, as already pointed out, although each of them has its advantages, they 

also face a number of limitations. Combining these two methods can alleviate some of 

their problems, while, at the same time, can take advantage of their strengths, thus, 

improving recommendation performance. Such systems are called hybrid and one of 

the earliest ones was Fab (Balabanović and Shoham, 1997), which combined content-

based with collaborative filtering approaches to exploit the advantages of both. A 

survey on hybrid recommender systems can be found in Burke (2002), where the 

researcher classifies them in the following categories: 

 Weighted: The predicted rating for an item is computed from the results of all 

the recommendation techniques that participate in the system. The score of 

the various techniques of the system is combined, e.g. in a linear way to 

produce a single recommendation. 
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 Switching: The system uses certain criteria to switch between recommendation 

techniques. The switching criterion is an additional level of parameterisation 

and this introduces more complexity in the system. 

 Mixed: Recommendations from different techniques are presented 

simultaneously when this is practically possible, e.g. a recommended viewing 

of a television programme. These systems do not suffer the new-item problem 

as the combination with the collaborative-filtering technique overcomes the 

specific problem. 

 Feature combination: These systems use information from collaborative-

filtering as additional feature data, associated with each item and produce 

recommendations over this augmented data through content-based 

techniques. Basu et al. (1998) report that this technique improves recall this 

was not also observed for precision. 

 Cascade: This method follows a staged process where one recommendation 

technique refines the results of another one. With this method, poorly-rated 

items, from the second in order technique, are not recommended as the second 

step involves only on refining the recommendations from the technique of the 

first step. 

 Feature augmentation: The result about an item of one technique is 

incorporated as item feature into the processing of another recommendation 

technique. This method improves the performance of the core system and 

makes a significant contribution to the quality of recommendations (Burke, 

2002). 

 Meta-level: In this method when two recommendation techniques are 

combined, the models of the two techniques are combined in a way that the 

entire model of the first technique is used as an input feature for the second 

technique. The advantage of this method is that the model is a compressed 

representation of a user’s interest and this reduces the processing effort for the 

next model compared to that needed when raw rating data has to be 

processed.  

Apart from the combination of content-based and collaborative filtering, there are also 

hybrid systems that combine other techniques like item-based collaborative filtering 

with semantic technologies (Mobasher, Jin and Zhou, 2004; Cantador, Bellogín and 

Castells, 2008), or knowledge-based techniques (Burke, 2000) and other techniques. 
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Additionally, researchers report (Balabanović and Shoham, 1997; Pazzani, 1999; 

Soboroff and Nicholas, 1999; Lucas et al., 2013) that generally hybrid systems provide 

more accurate recommendations than pure methods. 

3.5.2 Community-based 
Traditional recommender systems assume that all the users are independent and 

identically distributed and do not take into account relations between them. Typical 

approaches in recommender systems ignore the connections between the users, 

though in real-life we always turn to our trusted friends for recommendations (Ma,King 

and Lyu, 2011). Moreover, trust in information source plays a key role in making 

decisions and following a recommendation or not. The emergence of social networks 

has afforded opportunities for developing new approaches for recommender systems. 

Recommender systems can take advantage of the existing relationships in the Social 

Web and build a trusted network. Recently, research has turned to the exploitation of 

user connections, such as trust relations, and built the so-called trust-based (also trust-

aware or social-based or community-based) recommender systems, to simulate the 

real-world fact that it is common to turn to our trusted friends for advice and 

recommendations.  

These approaches are based on the adage “Tell me who your friends are, and I will tell 

you who you are” and are grounded in social theory about social influence (Marsden 

and Friedkin, 1993). Community-based recommender systems acquire information 

about the social relations of the users and model users based on their friends’ 

preferences. Recommendations are based on the ratings provided by the user’s friends. 

These systems are, in fact, a kind of collaborative filtering forming the user’s 

neighbourhood on existing social networks. Obviously, these approaches can be 

combined with other collaborative filtering and content-based techniques. 

The adoption of social information in recommender systems is proved (Massa and 

Avesani, 2005; Ray and Mahanti, 2010) to be more effective than typical collaborative 

filtering approaches, thus, several approaches exist in the literature, although more 

research has to be done as these systems suffer from insufficient number of trust 

statements, which leads to sparsity of the trust matrix. Trust-based recommender 

systems are extensively presented in Section 3.6, since the proposed approaches of this 

study are based on trust connections between users. 
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3.6 Evaluating Recommender Systems 
The ultimate goal of a recommender system is to provide qualitative recommendations 

for its users. But how can someone actually measure the ‘quality’ of a 

recommendation? What are the properties of a recommendation that can determine 

its ‘quality’? Various methods exist for evaluating a recommender system, some of 

them having their roots in information retrieval and machine learning research areas. 

Especially for recommender systems, it is crucial to evaluate the system by measuring 

the user satisfaction regarding the recommended items or the effectiveness of the 

recommendation engine by increasing the revenue of an e-commerce platform. A 

recommendation algorithm that claims to produce better results than other algorithms 

must prove it by adopting common measures and techniques during the comparison 

process. In the literature, it is observed that recommendation methods can be 

evaluated either with quantitative measures or with qualitative techniques; however, 

Herlocker et al. (2004) highlight the fact that, despite the numerous and diverse 

published metrics, there is a lack of standardisation, leading to inability of comparing 

evaluation results from different publications, affecting the progress of knowledge in 

recommendation algorithms. However, the majority of researchers (Jannach et al., 

2010) evaluate their systems with a small fraction of the available metrics focusing on 

accuracy (see Section 3.6.2). 

3.6.1 Designing the evaluation experiments 
Evaluation of a recommender system can be carried out by two general experimental 

methods: a) offline, which is the most popular and is, in fact, a simulation of the online 

process, and b) online, in which evaluation is performed on live user interaction 

sessions. Nevertheless, whatever experimental method is followed, it is important to 

stick to some basic guidelines followed similarly in general experimental studies (Shani 

and Gunawardana, 2011): 

 Hypothesis. Forming the hypothesis is the very first basic step before 

performing the experiment. In fact, the experiment should be based on this 

hypothesis, proving its truthfulness or not. So, the measures and the 

experimental methods to be used are fully dependent on what the hypothesis 

indicates to be proved. 
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 Controlling variables. When different algorithms are compared on a certain 

hypothesis, it is crucial that all the controlling variables not being tested remain 

fixed, otherwise conclusions can be biased.  

 Generalisation power. When developing an algorithm for a real application, the 

goal is to generalise the results of the experiments and the conclusions drawn, 

beyond the specific application or context of the dataset used. Thus, it is 

important to experiment with different datasets or applications with diverse 

properties so as to be able to safely generalise the results. 

3.6.1.1 Offline experiments  

This is the most popular method for evaluating recommendation algorithms whereby 

no actual users are involved, but only a simulation of the online process. The 

experiments are conducted with a dataset that is split into a training set and a test set. 

The recommendation algorithm is firstly trained with the training set and then is 

validated with the test set. Using the same dataset, experiments can be conducted with 

various algorithms. In fact, the offline analysis is an opportunity to extensively examine 

the behaviour of a recommendation algorithm compared to other existing methods at 

a very low cost and over a short term. Other advantages of offline experiments are the 

ease to be conducted, not only on various datasets, but also on large datasets, as well 

as to provide reproducible evaluation results when using the same parameters and 

datasets and, moreover, better control by allowing tuning of the system parameters. 

On the other hand, the evaluation in offline experiments is based on predictions for 

items being already rated, so the typical sparsity of the real-world datasets limits the 

item predictions that can be evaluated. Another drawback is that ‘real’ user satisfaction 

cannot be measured with metrics unless the user him/herself provides actual feedback. 

To perform an offline experiment, the dataset must be historical data of user interaction 

from an existing rating system or created from the scratch as synthetic data. 

Synthetic datasets 

Sometimes it is useful to synthesise datasets for evaluating a recommendation 

algorithm when no real-world dataset is available. The advantage of synthetic datasets 

is that parameters of the dataset are fully controlled and this is helpful when there is a 

need for testing the behaviour of an algorithm against one or more properties. 

However, it is very difficult to model the user behaviour and, thus, the synthetic dataset 

can lead to misleading conclusions or may fit better to some algorithms than others and 
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produce biased results. Consequently, synthetic datasets are preferred as an initial step 

before getting a real-world dataset or when evaluation regards measurements of 

computational time or even the effect of a dataset property change on an algorithm. 

As already mentioned (Section 2.5.3) in this study, the proposed methods are initially 

evaluated with synthetic data (Section 6.5.1) in order to form an early conclusion about 

the performance of the proposed methods. The results of this evaluation will indicate 

the impact of the proposed methods on the performance of recommending items. 

Natural or real-world datasets 

The most common practice in recommender system evaluation is the offline 

experiments on a real-world dataset. These datasets are crawled from existing rating 

systems and, after a pre-process, they are sometimes publicly available for research 

purposes. A typical example is the MovieLens8 dataset, one of the most popular among 

the datasets, pioneered by GroupLens9 research lab of the University of Minnesota and 

collected from a non-commercial movie recommendation website also called 

MovieLens10 project. The MovieLens dataset is released in three versions of 100K, 1M 

and 10M ratings. Other popular datasets include: 

 Netflix- a large-scale dataset with movie ratings, released for the Netflix Prize 

competition (Bennett and Lanning, 2007), but no longer publicly available 

following publicity about research to de-anonymise anonymised datasets. 

 Jester-a very dense dataset with only a few items from a joke recommender, 

as also Book-crossing, EachMovie and Douban. However, these datasets do not include 

any social information. Consequently, for evaluating a trust-based recommender 

system, it is obviously necessary to have a dataset with social information, such as trust-

distrust, or friendship relationships. Such datasets are: 

 Epinions- from the online product review site Epinions.com, available in various 

versions (Richardson, Agrawal and Domingos, 2003; Meyffret et al., 2012; Tang 

et al., 2012) and also available as an extended version with distrust statements 

and timestamps. 

 Flixster- available in various versions (Zafarani and Liu, 2009; Jamali, 2010). 

                                                             
8 http://grouplens.org/datasets/movielens/ 
9 http://grouplens.org/ 
10 https://movielens.org/ 
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 Filmtrust- from a trust-based social site, built as an experimental platform 

(Golbeck, 2006b) whereby users can rate and review movies, also building their 

trust network.  

In the current study, the proposed methods are evaluated on two of the above real-

world datasets: Filmtrust and Epinions. These two datasets are described thoroughly in 

Section 2.5.2. 

3.6.1.1.1 Validation process 

In order to evaluate a recommendation algorithm with offline experiments, it is 

necessary, as a first step, to train the algorithm and then validate it. Thus, the dataset 

is split into the training set, which is used as input for building the model, and the test 

set, which is used to validate the algorithm by measuring its performance. The split is 

random and can be of various proportions with the most common being 80/20 for 

training/testing (Ricci et al., 2011). Then, the random sampling is repeated k times to 

ensure that measurements are not biased by some user profiles. Finally, the 

performance results of all the k  learned models are aggregated to produce the overall 

performance of the recommendation algorithm. The process in which the users of the 

dataset are partitioned in k equal non-overlapping sets (folds) is called k-fold cross-

validation. More specifically, in k-fold cross-validation, when the dataset is partitioned 

into k sets, one is used for testing and the remaining k-1 are used for training. 

In the extreme case that k is equal to the total number of user profiles in the dataset, 

the validation process is called leave-one-out. In this method, each rating of the dataset 

is hidden and, then, the predicted value is compared with the real rating. Although 

computationally, this method is quite costly, it allows the algorithm to exploit the 

maximum amount of data for learning.  

As already mentioned (Section 2.5.3), the experiments (Chapter 7) of the current study 

follow the standard leave-one-out as validation process. Thus, the true user-item rating 

is hidden and a predicted value is calculated for each method we want to evaluate. This 

process is iterative until all ratings in the dataset are tested.  

3.6.1.2 Live user experiments 

Online evaluations may be of various forms. A commonly used form is that of user 

studies. It is a popular method in the human-computer interaction research area for 
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evaluating the usability of an information system (Virzi, 1992; Ivory and Hearst, 2001; 

Bowman, Gabbard and Hix, 2002). User studies can be carried out in-lab or virtually. 

Users who participate in the live-experiment are invited to interact with the system. 

Their behaviour can be observed and recorded via cameras, logs and/or questionnaires 

for evaluating any quantitative and/or qualitative characteristic of the system that is of 

interest. This type of experiment, although offering the opportunity for testing well-

defined hypotheses under controlled conditions (Herlocker et al., 2004), can still be very 

expensive to conduct while the number of participants is usually a very small portion 

and not necessarily a representative sample of the population of the real system. 

Additionally, there are considerations about ethical issues and also an increased 

possibility of biased actions of the user who is aware of being observed and recorded. 

A thorough analysis of online evaluation is out of scope here, but can be found in Shani 

and Gunawardana (2011). 

3.6.2 Accuracy metrics 
Recommendations can be either rating predictions or a set of recommendations or an 

ordered list of recommendations. For this reason, since accuracy metrics have to 

measure the quality of the produced recommendations, they are divided into three 

classes, as identified by Herlocker et al. (2004), depending on the form of the 

recommendation: a) predictive accuracy metrics for measuring the quality of rating 

predictions, b) classification accuracy metrics for measuring the quality of a set of 

recommendations and c) rank accuracy metrics for measuring the quality of an ordered 

list of recommendations. 

An older study (Sarwar et al., 1998) classified the accuracy metrics according to the 

method they use, as: a) statistical recommendation accuracy for measuring the 

closeness between the numerical recommendations provided by the system and the 

numerical ratings entered by the user for the same items with representative metrics 

the MAE, RMSE and correlation; and b) decision-support accuracy for measuring how 

effectively recommendations help a user select high-quality items with the 

representative metrics being the reversal rate, the ROC sensitivity (Receiver Operating 

Characteristic curve) and the RPC sensitivity (Precision-Recall Curve). 

Various studies can be found (Herlocker et al., 2004; De Wit, 2005; Shani and 

Gunawardana, 2011) to extensively analyse evaluation methods for recommender 
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systems, but the following sections will focus on the most popular metrics used in 

recommender systems literature. 

3.6.2.1 Predictive Accuracy Metrics 

Prediction accuracy metrics are by far the most frequently used measures (Bobadilla et 

al., 2013) in literature for evaluating a recommendation engine. This is also supported 

by a short survey (Jannach et al., 2010) that revealed the popularity of accuracy metrics, 

since the majority of the surveyed studies adopted these measures for evaluating their 

recommendation methods by conducting offline experiments on historical (real-world) 

datasets. These metrics measure the quality of the ratings predictions by measuring the 

accuracy, aka the percentage, of correctly recommended items. Such metrics are the 

Mean Absolute Error (MAE), the Root Mean Square Error (RMSE) and the normalised 

values of them. 

Mean Absolute Error (MAE)  

Mean Absolute Error (MAE) measures the average deviation of the predicted rating 

values from the actual rating values of all the users and items within a test set. More 

specifically MAE is defined by the equation: 

 
,( , ) ,u u i u ii Test

p r
MAE

Test






  (Eq. 3.16) 

where ru , i  is the real rating while pu , i  is the predicted rating for a pair of user-item u, i  

and |Test| is the size of the testing set. The lower the MAE is, the more accurately the 

recommendation engine predicts user ratings. 

Herlocker et al. (2004) state that besides that the mechanics, of the computing MAE, 

are simple and easy, it is also a well stated statistical method widely used offering the 

chance to test two different systems. However, MAE is less appropriate when the 

granularity of true preference is small. 

Evaluating a system with MAE, produces results within the rating scale of the system. 

Nevertheless, different systems use different rating scales. When comparing two 

systems that use different rating scales the produced MAEs are not directly comparable. 

Consider for example the effect and implication of an error of 1.8 in a system with rating 
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scale [1, 5] and the effect on a system with rating scale [-5, 5]. For addressing this 

deficiency, Goldberg et al. (2001) normalised MAE to the rating scale of each system:  

 
max min

MAE
nMAE

r r



  (Eq. 3.17) 

where rm a x  and rm i n  stand for the highest and lowest rating values of the system 

respectively. The result of nMAE takes values between 0 and 1 and thus they are 

comparable between different application scenarios and contexts while the ranking of 

algorithms remains the same as the ranking given by the MAE.  

Root Mean Square Error (RMSE) 

Root Mean Squared Error (RMSE) is a measure similar to MAE which emphasises large 

errors by squaring each individual error and is defined (Herlocker et al., 2004) as: 
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  (Eq. 3.18) 

where ru , i  is the real rating while pu , i  is the predicted rating for a pair of user-item u,i  

and |Test| is the size of the testing set. 

If the predicted ratings of an algorithm do not deviate very far from the real rating, will 

give lower RMSE values. Lower values of RMSE indicate better accuracy. RMSE was also 

used in Netflix prize (Bennett and Lanning, 2007) competition as the accuracy measure 

which was supposed to be improved by 10%. 

Like MAE, RMSE must be normalised for a comprehensive comparison of systems with 

different rating scales. The normalised RMSE (nRMSE) is defined (Ekstrand, Riedl and 

Konstan, 2007) as: 
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  (Eq. 3.19)  

where rm a x  and rm i n  represent the highest and lowest rating values of the system 

respectively. 
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3.6.2.2 Classification Accuracy Metrics  

When the goal of a recommender is to identify and produce a set of the n most relevant 

items for a user, then the accuracy metric has to measure the usage prediction. 

Classification accuracy metrics measure the frequency of the correct or incorrect 

decisions about whether an item is good. Considering a recommender system, four 

possibilities exist for the usefulness of its predictions for a user, as depicted in Table 3-5. 

Precision and Recall are the two most common metrics with their roots in information 

retrieval. Additional to these two metrics, PRC and ROC curves are also common in the 

literature.  

Table 3-5 Possible results of the usage of a prediction 
 Recommended Not recommended 

Used True-Positive (TP) False-Negative (FN) 

Not used False-Positive (FP) True-Negative (TN) 

 

Precision 

Precision is defined as the ratio of the relevant items recommended to the user’s need. 

In other words, it measures the effectiveness of the recommendation represented by 

the probability that a recommended item is relevant. Given the possibilities of Table 3-5 

precision (blue dashed rectangle) is defined (Ricci et al., 2011) by the following equation 

(Eq. 3.20) as the fraction of the number of the successful recommendations (TP) to the 

total number of recommended items (TP+FP). 

 
TP

precision
TP FP




  (Eq. 3.20) 

Recall 

Recall is defined as the ratio of the actual set of relevant items which have been 

correctly classified as relevant. Given the possibilities of Table 3-5 recall (red dotted 

rectangle) is defined (Ricci et al., 2011) by the equation (Eq. 3.21) as the fraction of the 

number of the successful recommendations (TP) to the total number of useful items 

(TP+FN). 

 
TP

recall
TP FN




  (Eq. 3.21) 
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Precision and Recall combined 

Precision and Recall do not give enough information about accuracy when used 

separately. Moreover, it is a general rule that precision and recall are inversely related; 

increasing the number of recommended items, recall is increased while precision is 

decreased. Therefore, several approaches combine the two above metrics into one 

single metric. One of them is the Fmeasure used for evaluating recommender systems 

(Sarwar et al., 2000) given by the equation (Eq. 3.22). This measure equally weights the 

two metrics and produces results between 0 and 1. 

 
2 precision recall

Fmeasure
precision recall

 



  (Eq. 3.22) 

Another method combining the two metrics is to use the Precision-Recall Curve (Sarwar 

et al., 1998) also called PRC sensitivity, which is a plot depicting the proportion of the 

recommended items being preferred. Similarly, another curve, with its roots in signal 

detection theory, called Receiver Operating Characteristic (ROC) is a curve depicting the 

Recall (sensitivity) against the complement of specificity (FP rate) as described by 

Herlocker et al. (2004) given by (Eq. 3.23)  

  1
FP

FP rate Specificity
FP TN

  


  (Eq. 3.23) 

Although ROC curves are good for evaluating the performance of certain algorithms it 

is, however, difficult to produce clear results when comparing large numbers of 

algorithms. 

3.6.2.3 Rank Accuracy Metrics 

It is common in recommender systems to produce ordered lists of recommended items, 

also known as top-N recommendations. In this case, recommendation algorithms do 

not predict a particular rating for each item, but, rather, they order the items according 

to the user’s preferences. Rank accuracy metrics measure the closeness of these ranks 

to the way that user would order the same items. Such metrics are: a) the Prediction-

Rating correlation, by using Pearson or Spearman rank correlation coefficients; b) the 

half-life utility metric (Breese, Heckerman and Kadie, 1998) measuring the expected 

utility of a rank list to the user based on the observation that users tend to look only at 

highly ranked items; and c) the Normalised Distance-based Performance Measure 
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(NDPM) metric (Balabanović and Shoham, 1997) used to compare two weakly ordered 

lists. Analysing these metrics here is out of scope since the hypothesis of our approach 

refers to the rating prediction accuracy; however, more details on these measures can 

be found in the related literature (Herlocker et al., 2004; Shani and Gunawardana, 

2011). 

3.6.3 Other measures 
Beyond the accuracy metrics, there are also other quality characteristics of a 

recommender system that can be measured. One of the characteristics usually 

mentioned in the literature is coverage, which is the percentage of items for which the 

system can make a prediction. Herlocker et al. (2004) identified two types of coverage, 

prediction coverage and catalogue coverage. Prediction coverage refers to the 

percentage of items for which the system can provide predictions, while catalogue 

coverage is the percentage of available items being ever recommended to users. 

Similarly, Shani and Gunawardana (2011) refer to three types of coverage, specifically, 

’item space coverage’, which is the same as the prediction coverage; ’user space 

coverage’, which is the percentage of users or user interactions for which the system 

can provide recommendations; and ‘cold-start’, which is, in fact, a subproblem of 

coverage and is the performance of the system on new items or users. However, 

coverage is a measure that, much like precision and recall, cannot be considered 

separately. Consider for example the implications of a system that achieves very high 

coverage by providing predictions for all available items and/or users, but against 

accuracy. Therefore, coverage is a measure being always considered in conjunction with 

accuracy. Apart from coverage, Herlocker et al. (2004) also denote some other 

characteristics that can be measured for evaluating a recommender system, 

specifically:  

 Confidence: the system’s trust in its recommendations or predictions reflecting 

how helpful the system is for the users to make more effective decisions. 

 Learning rate: how quickly an algorithm can produce good recommendations.  

 Novelty: whether a recommendation is a novel possibility for a user. 

 Serendipity: how surprising for the user are the successful recommendations 

and can be measured as the amount of relevant information in a 

recommendation being new to the user. 
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Furthermore, Shani and Gunawardana (2011) identified the following as additional 

metrics: 

 Trust: the user’s trust in the system recommendation. 

 Diversity: the opposite of similarity. It is useful when we are interested in 

presenting the user with a diverse set of recommendations. 

 Utility: the value that either the system or the user gains from a 

recommendation. However, diversity and serendipity can be seen also as 

different types of utility functions. 

 Risk: the potential risk for a user of selecting the recommendation. 

 Robustness: the stability of the recommendation in the presence of fake 

information. 

 Adaptivity: when the item collection in the system changes rapidly, or where 

trends in interest over items may shift, it is important for the system to be 

adapted rapidly. 

 Scalability: the system must scale up to real datasets, which usually consist of 

millions of items, without affecting accuracy or coverage. 

Figure 3-2 depicts all the measures presented in this chapter. 

As already mentioned (Section 2.5.3), in the current study the experiments for 

measuring and evaluating the quality of rating predictions of various methods use the 

predictive accuracy metrics, since the proposed methods produce item ratings. 

Moreover, coverage is another measure being used in the experiments, which is also 

considered in conjunction with RMSE, forming a new measurement, the FMeasure, as 

described in Section 2.5.3. 



50 
 

 

Figure 3-2 Evaluation metrics for recommender systems 
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3.7 Conclusion  
As an evolution of various methods from different disciplines, to deal with the 

information overload problem, recommender systems adopt various techniques to 

filter information and produce suggestions for users. This chapter presented the various 

approaches for producing recommendations and analysed the two major methods of 

recommender systems (content-based and collaborative filtering) demonstrating the 

way they work with the basic algorithms, their advantages, but also their limitations 

(Table 3-6). Additionally, this chapter examined the various methods for evaluating 

recommender systems, pointing out the methods that this study uses in Chapter 7 and 

Section 6.5.1. More specifically, this study uses offline experiments for evaluating the 

proposed approaches with both synthetic and real-world datasets with leave-one-out 

validation and predictive accuracy metrics, as described also in Section 2.5. 

Table 3-6 Comparison of content-based and collaborative filtering methods 
 Advantages Disadvantages 

Content-based 

 No new-item problem 
 No need of data about 

other users 
 Enough explanations 
 Privacy preservation 

 Cold-start for new users 
 Attribute extraction 
 Overspecialisation 
 Objectivity 

Collaborative filtering 

 No need for item 
attributes 

 Improved accuracy 
 Serendipity 
 No need of human 

effort 

 Cold-start for new users 
and new items 

 Data sparsity 
 Unusual user (grey-sheep) 
 Unique tastes 
 Scalability 
 Critical mass of users 
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Figure 3-3 Recommendation approaches 
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Trust-based Recommender Systems 

A solution to overcome many of the limitations of traditional recommender systems, 

which will be analysed later in Section 5.1, is to enhance recommender systems with 

trust relationships which already exist in social networks and build the so-called trust-

based or trust-aware recommender systems. While both collaborative and content-

based filtering recommendation approaches are based on similarity measures, either 

between users or between items, respectively, trust-based systems use the weight of a 

trust relationship to measure the similarity between users. Trust relationships are 

weighted and can be expressed in various scales for stating trust or distrust or even 

intermediate degrees of trust. Liu et al. (2004) state that trust is positively related to 

whether an individual will purchase again, revisit a site, recommend the site to others 

and make positive comments about the site. Many of the major problems, which will 

be discussed later in Section 5.1, can be alleviated by incorporating trust in 

recommender systems (Victor, Cornelis and DeCock, 2011), although, in many trust-

based approaches, the cold-start problem recurs, since a new user does not yet have 

connections. The enhancement of trust through existing connections in social networks 

also raises the problem that trust and similarity are not the same, and can be used 

complementary (Ziegler and Golbeck, 2007). Generally, research effort is needed in 

modelling the user for producing more accurate and qualitative recommendations, as 

will be analysed in Chapter 5. 
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4.1 Definition of Trust 
Trust is vital for interpersonal relationships to be built in various fields, as it plays a key 

role in any interaction procedure in human societies. Thus, trust can be found as a 

notion in many disciplines, since it impacts social and network relationships, enables 

cooperation and can increase business revenue by reducing risk costs. 

Trust as a field of research is extensively explored in sociology, social psychology, 

cognitive psychology, economics, political sciences, organisation science and computer 

science, among many others. In social sciences, trust is a factor that impacts human 

decisions and is explored for its structural components. In economics, trust enables 

people to do business with each other, which, in turn, affects the economy of a country 

(Harford, 2010) and is viewed as a calculative or institutional concept. Especially in 

computer science, trust is broadly used in IT security as identity verification and 

authentication for network access control or as a metric for the reliability of a source. 

The term ‘web of trust’ has its origins in authentication, too. Moreover, a source or an 

agent, in an electronic transaction, must be considered as trusted so as to be completed 

safely. Trust and reputation are also important in organisations for doing or extending 

business. In addition, employers’ trustworthiness is a key issue for organisational 

trustworthiness too.  

Wierzbicki (2010) makes a distinction between human trust and computational trust. 

Human trust is studied in psychology, economics, anthropology, sociology, etc., and 

refers to the mental state of humans. On the other hand, computational trust refers to 

trust that can be computed or represented, usually by modelling the human trust, so as 

to be used in trust management systems. The author defines trust management 

systems as decision support systems in which an agent considers a situation and makes 

a decision about the choice of an action “by establishing trust or distrust in another 

agent on whose actions the decision maker’s outcome depends.” 

Although there are many different definitions of the trust concept, according to its 

scientific origin and the application domain, there has not been any agreed generic or 

cross-discipline definition. In fact, most definitions are oriented to the context and the 

research problem of any study and can be found as both a noun, for describing 

personality trait or social structure, and a verb, for describing belief or behavioural 

intention.  
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In social psychology, researchers view trust as a concept participating in situations of 

uncertainty while contributing to relationships. Deutsch (1958) gives one of the first 

definitions in social psychology and defines trust as a behaviour where “an individual 

may be said to have trust in occurrence of an event if he expects its occurrence and his 

expectation leads to behaviour which he perceives to have greater negative 

motivational consequences if the expectation is not confirmed than positive 

motivational consequences if it is confirmed.” 

One of the first probabilistic views of trust is that of Gambetta (1988), where trust is 

defined as “a particular level of the subjective probability with which an agent assesses 

that another agent or group of agents will perform a particular action, both before he 

can monitor such action (or independently of his capacity ever to be able to monitor it) 

and in a context in which it affects his own action.” Similarly, Lehman and Sztompka 

(2001) provide another probabilistic view of trust defining it as “a bet about the future 

contingent actions of others”, while Mayer et al. (1995) focus only on trust as a decision 

and define trust as “the willingness of a party to be vulnerable to the actions of another 

party based on the expectation that the other party will perform a particular action 

important to the trustor, irrespective of the ability to monitor or control that other 

party.” A sociological definition of trust describes how trust operates in society 

(Luhmann, 2000), where trust “is a solution for specific problems of risk… and …an 

effective form of complexity reduction.” 

A widely used definition in literature is that of Mui et al. (2002) defining trust as “a 

subjective expectation an agent has about another’s future behaviour based on the 

history of their encounters.” Another popular definition is that of McKnight and 

Chervany (2001), which refers to “the willingness or intention of a person to depend on 

the other person generally and not in a specific situation, even though they were aware 

of potential problems in their relationship” and identifies four attributes components 

for making a trust decision:  

1. Benevolence: acting in one’s interest aside from an egocentric profit motive  

2. Integrity: fulfilling promises, being moral, telling the truth 

3. Competence: ability to accomplish a specific task 

4. Predictability: the degree to which the trustee’s actions can be forecasted in a 

given situation 
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As another point of view, Jøsang and Lo Presti (2004) refer to trust as the extent to 

which one is willing to depend on somebody in a given situation, while Falcone and 

Castelfranchi (2001) give a socio-cognitive model of trust, aka a model based on the 

cognitive and social nature of trust. 

Especially in computer science, Marsh (1994) introduced trust as a computational 

concept based on Deutsch’s observations of how trust is used. He states that “trust is a 

measurable level of risk, through which an agent X assesses the likelihood that another 

agent Y will successfully perform a particular action, both before X can monitor such 

action and in a context in which it affects its own actions.” Marsh also introduced 

distrust as the negative trust, which was later considered by many researchers (Lewicki, 

Mcallister and Bies, 1998; McKnight and Chervany, 2001; Yuan et al., 2010; Victor, 

Cornelis and DeCock, 2011; O’Doherty, Jouili and Van Roy, 2012).  

However, some researchers (Dokoohaki and Matskin, 2008) tried to converge some of 

the above definitions and give a more generic and context-neutral definition, such that 

“trust is a complex issue, relating to fairness and straightforwardness, honesty and 

sincerity of a person or the service this person might offer.” 

Finally, trust as a relationship is a need coming from the interdependence between 

humans. It is common to seek help for things we are not versed in and we rely on the 

experience of others to estimate whether we will move into an act. Of course, this 

involves an element of risk, which depends, among others, on the estimation of how 

reliable is the other person, aka the degree of trust. Thus, trust represents the 

willingness of the trustor to be vulnerable under conditions of risk and 

interdependence.  

In the current study, we will focus on the computer science aspect of trust and, 

particularly, on how it is used and computed in intelligent systems where trust is 

referred to as a belief: “the trustor believes that the trustee can be trusted for a specific 

goal in a specific context” (Adali, 2013). 

Hence, we define trust as a “relationship between two agents namely the trustor and 

the trustee where the trustor trusts the trustee in a specific context.” For example, Alice 

trusts Bob in fixing her car. The role of context in a trust relationship is of major 

importance, e.g. Bob trusts John as a dentist, but does not trust him as a driver. 
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However, there is an important issue about trust to which we also have to pay attention. 

Trust in a person is different to trust in a person’s recommendation; that is, Bob may 

trust Alice as a cook, but may not trust her for recommending him a restaurant. In the 

first case, trust refers to the ability of an agent to perform an action adequately (trust 

in performance) and, in the second case, trust refers to the ability of the agent to 

recommend other agents to perform an action adequately (trust in recommendation). 

Although this is a very important distinction, for compatibility with the traditional way 

users participate in social networks, both of these ideas are represented as a single 

value, as is the common practice (Golbeck, 2005) in computer science. 

Trust as a concept, is sometimes confused with confidence as these two terms have 

very close meanings in the English dictionary. However, in technical meaning, 

confidence is a factor impacting trust. Although Deutsch (1958) sees “trust as 

confidence”, Luhmann (2000) reports that trust presupposes an element of risk, 

whereas confidence does not. Moreover, Castelfranchi and Falcone (2010) point out 

that confidence is a broader view of trust, distinguishing these two terms as “confidence 

in Y  (a person) that will be able to do an action a  appropriately” and “confidence that 

g  (a specific goal) will be achieved”. In the trust literature, the concepts of trust, 

trustworthiness and trust propensity are also distinguished. On the one hand, 

trustworthiness is the ability, benevolence and integrity of a trustee and, on the other 

hand, trust propensity is a dispositional willingness to rely on others, while trust is the 

intention to accept vulnerability to a trustee based on positive expectations of his or 

her actions (Colquitt, Scott and LePine, 2007). 

Another concept to which trust is closely related is that of reputation. Mui (2002) 

defines reputation as “the perception that an agent has of another’s intentions and 

norms”, while he supports Granovetter's (1985) point of view in which reputation is a 

‘social quantity’ calculated based on actions by a given agent ai  and observations made 

by others in an ‘embedded social network’ in which ai  resides.  

Figure 4-1 A typical trust network 
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Recently, Wierzbicki (2010) gave an abstract definition for reputation as the 

“information about the trustee that is available to the trustor and is derived from the 

history of the trustee's behaviour in some contexts”, which can be represented as a 

probabilistic model. Barber and Kim (2001) define reputation as “the amount of trust 

an agent gives an information source based on previous interactions among them,” 

When an information source delivers trustworthy information, and satisfies the needs 

of other agents, then these agents may increase the reputation of the information 

source. On the contrary, no satisfaction of the other agents may decrease the 

reputation of the information source. In the same way, a user’s reputation clearly 

affects the amount of trust that others have towards them (Mui, 2002). 

When trust as a notion is considered within security systems or Peer-to-Peer (P2P) 

networks, then it is closely related to reputation. Many websites are based on 

reputation, such as Ebay.com and Google, which rank the web pages as a search result, 

based on the PageRank (Brin and Page, 1998), which is a reputation-based algorithm. 

The concept of reputation is often used to measure the global trust of an agent within 

a network and will be analysed later in Section 4.4.2. 

4.2 Computational properties of trust 
Trust as a concept has properties which computational processes exploit to infer trust 

relationships. This section presents the functional properties of trust that 

computational trust models and which are based on for trust dissemination: 

Asymmetry and subjectivity. Trust is typically asymmetric. Such that Alice trusts Bob to 

fix her car, but Bob doesn’t trust Alice to fix his car, while Alice and Bob may fully trust 

each other for recommending a restaurant. Hence, trust, as a rule, is directed and 

asymmetric, although, sometimes, can be symmetric, as it may happen for two parties 

to trust each other. Then, the trust is mutual, although the degree of trust for each 

relationship is not necessarily the same. For example, Alice may trust 10/10 (fully) Bob 

for recommending her a restaurant, but Bob trusts 8/10 (not fully) Alice for 

recommending him a restaurant. Asymmetry occurs due to the fact that people may 

have different perceptions, beliefs or expectations. Two people may have different 

opinions about the same person or group of persons or topics. Consider the Brexit 

referendum where British people divided into two parties for remaining or not in the 

European Union. Thus, trust is also personal and subjective. 
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Propagation. In real life, if we trust a friend, we also tend to trust the friend of our 

friend. For example, if Alice trusts Bob and Bob trusts Frank, then Alice can derive some 

conclusion about the degree of trust she can have about Frank, based on the degree of 

her trust for Bob and the degree of Bob’s trust for Frank. So, in a social network, trust 

information can be propagated and create trust chains. By propagating trust on a social 

network, we can infer more trusted persons and, hence, improve the predictive 

performance of recommender systems by building a bigger trust network. Propagation 

will be discussed in detail in Section 4.3.2. 

No-Transitivity. Generally, trust is not transitive (Sherchan, Nepal and Paris, 2013). 

Suppose Alice trusts Bob and Bob trusts Frank, this does not necessarily imply that Alice 

will trust Frank. Although trust is propagative, as stated before, this does not imply that 

it is also transitive. In the literature, many times transitivity and propagation are 

confused, although the propagative property is really concerned and extensively 

researched as a computational property of trust. 

Composability. When there is not direct trust for an agent and trust information is 

propagated from more than one source, then there is a need to compose all the 

propagated trust information in one trust score. Let's say Alice does not know anything 

about Frank and she receives information from her friends, Bob and Jenny, about 

Frank’s trustworthiness. Alice has to combine the suggestions from her friends to make 

a conclusion about his trustworthiness based on her own degree of trust for each of her 

friends. Of course, information from different sources can be contradictory. The 

mechanism exploiting the composability property is the trust aggregation. 

Dynamicity. Trust is time dependent and can change due to various reasons. Positive 

or negative evidence or experience plays a key role, not only to the initial establishment 

of a trust relationship, but also to the gradual change of the already established 

relationship. For example, Alice trusts Bob 7/10 for recommending her a restaurant, but 

the four last times that Bob recommended her some restaurants eliminated any 

remaining doubts about him and now she trusts him 10/10 for recommending her a 

restaurant. On the other hand, although Bob trusted Frank 9/10 to fix his car, as he had 

a long-time experience of his work, after the last time, when Frank stated that he had 

fixed a problem with the engine, but the car broke down, Bob lost his confidence in 

Frank. Thus, his trust was dramatically decreased and now he does not trust Frank as 

much (just 3/10). In fact, trust degree may decrease or increase due to negative or 
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positive evidence, respectively, and it is commonplace that it is easier to crash than to 

build a trust relationship. 

Context dependency. Trust is context and time dependent (Adali, 2013). A person being 

trustworthy, i.e. as a restaurant recommender, may not be trustworthy enough as a 

movie recommender. Preferences also change over time. Suppose a user searching 

information and recommendations to buy a car. As soon as the purchase is completed, 

the user may not be interested again for information regarding cars for many years 

thereafter. Moreover, information is sometimes location dependent. Think of a person 

travelling across a country and, on the way, is looking for tourist information for every 

new place that he/she visits. Then, a recommendation from a native will have more 

weight than that of a stranger.  

4.3 Trust inference  
One of the main challenges in trust-based approaches is to expand the personal trust 

network of a user by inferring new trust relationships. Trust inference is the mechanism 

via which a trust relation can be established between two nodes not being yet 

connected. This mechanism is implemented through a trust inference algorithm or, in 

other words, a ‘trust metric’, recommending an unknown trust value from one user to 

another. The inference algorithm applies the computational properties of trust on the 

information provided by the existing trust network or on other information that can 

imply relations between users with no use of any trust network information. The 

implicit trust, then, can be calculated from similarity metrics, as in the typical 

recommender systems presented in Section 2.1, that use information from ratings or 

items. Several methods exist for producing recommendations based on implicit trust 

(Yuan et al., 2010; Kim and Kim, 2012; Martín-Vicente, Gil-solla and Ramos-Cabrer, 

2012; Htun and Tar, 2013; Guo et al., 2014), but none of these take advantage of the 

computational properties of trust, such as propagation. Moreover, these methods are 

just variations of the typical recommendation methods, whilst it is demonstrated 

(Golbeck, 2005; Ray and Mahanti, 2010) that incorporating information from trust 

networks provides more accurate recommendations than that from typical 

recommender systems. 
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Figure 4-2 Process to infer trust 

The process that trust metrics follow to infer a new trust relationship between two 

users is depicted in Figure 4-2. The first step is to form the user neighbourhood. When 

the system is based on explicit trust statements, the algorithm reads the trust network 

and selects the trustees of the user. These trustees constitute the user’s 

neighbourhood. The step of propagation is optional, depending on the trust model, and 

its objective is to expand the existing trust network by dissemination of trust. This step 

is based on one of the main computational properties of trust presented in Section 4.2 

and which will be analysed later in Section 4.3.3. The next step of a trust metric is to 

aggregate the trust information being collected from the user’s neighbourhood. 

Usually, new trust relationship can be inferred through the different trust paths which 

have to be aggregated to produce a single outcome. The process of trust aggregation 

will be analysed in Section 4.3.4. Finally, the last step of a trust metric is to calculate the 

trust value of the inferred relationship. Trust weight can be estimated using various 

formulas, as will be presented in Section 4.2. 

4.3.1 The small-world phenomenon 
It was in 1967 when Stanley Milgram, a social psychologist at Harvard, introduced the 

‘Small-World problem;, which was formulated as: “starting with any two people in the 

world, what is the probability that they will know each other?” Moreover, taking into 

account that, although two persons may not know each other directly, they may share 

a mutual acquaintance, he went a step further and refined the above question as “given 

any two people in the world, person X and person Z, how many intermediate 

acquaintance links are needed before X and Z are connected?” With his unique 

experiment, Milgram showed that any two people in the US were separated by 

approximately six degrees and that is why the ‘small-world phenomenon’ is also known 

as ‘six degrees of separation’. The scenario of his experiment involved source individuals 

in Nebraska who had to deliver a letter to a target individual in Massachusetts (a 

Neighbourhood 
selection Propagation Aggregation Trust estimation
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distance of more than 2000km). The source individuals were provided with some basic 

information about the target person and were informed that their task was to reach 

this person not directly, but through intermediates. They were asked to forward a 

packet (initially given to them by the researcher) to an acquaintance whom they knew 

on a first name basis and by which they believed it was more likely to reach the target 

person. The researcher created traceable chains to the target person through his 

experiment and finally proved that an average of five intermediates was needed for the 

source person to reach the target person, which makes a ‘six degrees of separation. 

Many years later, an experiment was conducted (Dodds, Muhamad and Watts, 2003) 

to investigate the ‘small-world phenomenon’ in the Internet era. The experiment then 

was much easier to include persons across the world, since the task (similar to 

Milgram’s) was to reach the target (80 targets instead of the single one of Milgram’s 

experiment) through e-mail. The experiment involved about 60,000 participants and 

approximately 24,000 message chains. The extremely low chain completion rate (only 

384 of 24,163 chains reached their targets) gave a misleading number of four for 

average path length (L=4.05); however, refining the results, they measured the median 

path length as 5 ≤ L ≤ 7, confirming Milgram’s ’six degrees of separation’.  

Research on the dynamics of small-world (Watts and Strogatz, 1998; Watts, 1999) 

indicate that social networks have the same structural properties of small-world 

networks: a) the characteristic path length, which is the shortest path between two 

nodes, and b) the clustering coefficient, which measures the cliquishness of a typical 

neighbourhood (the fraction of edges between neighbours of the node, that actually 

exist, over the maximal number of possible edges). Characteristic path length is a global 

property of a network, while clustering coefficient is a local property. In small-world 

networks, the characteristic path length is small, even in huge networks such as 

Facebook, while the clustering coefficient is high. In other words, in social networks, 

where users form groups and are highly connected, the shortest path between two 

nodes in the network is small. 

Additionally to the above two characteristics, Kleinberg (2000) supported that, in a 

network, an entity can use local information to find short paths, even with limited 

knowledge of the entire network. Additionally, Kleinberg developed a decentralised 

algorithm capable of finding short paths and showed that there is a unique model of 

the ones he developed, in which the algorithm is effective. On the other hand, Watts 
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and Strogatz (1998) demonstrated that small-world networks can be generated by 

randomly rewiring a small number of nodes in a regular network, like a lattice.  

4.3.2 Trust prediction as a link prediction problem  
Trust prediction is a link prediction problem which is a common research problem 

investigated by various researchers (Liben-Nowell and Kleinberg, 2003; Cui, Wang and 

Zhai, 2010; Easley and Kleinberg, 2010; Aiello et al., 2012; Lou et al., 2013; Symeonidis 

and Tiakas, 2014; Ciotti et al., 2016) and refers to the problem of inferring missing links 

in an observed network. It can be found within various application areas, such as 

website link prediction (Zhu, Hong and Hughes, 2002), protein-protein interaction 

prediction (Airoldi et al., 2006), detection of duplicate records in databases 

(Elmagarmid, Ipeirotis and Verykios, 2007), recommender systems (Ziegler and Lausen, 

2004; Avesani and Massa, 2005; Golbeck, 2005; Kuter and Golbeck, 2007; Ma, King and 

Lyu, 2011; Htun and Tar, 2013) etc. The link prediction problem is usually modelled as 

a supervised classification problem (Aggarwal, 2011) and is generally relied on 

measures of similarity based on the available information -features- of the graph. These 

features can be structural, regarding the network topology, or contextual, regarding 

behaviours, activities and characteristics of the nodes. Moreover, Aiello et al. (2012) 

support that a social link prediction can rely only on the topical similarity between users.  

Trust is a social relationship being established when risk between two ties is reduced. 

Since similarity and, therefore, homophily (a notion that will be discussed later in 

Section 6.1), reduces the risk of building associations between people and 

simultaneously increases the possibility to establish connection, it comprises the basic 

factor for building trust. Thus, trust prediction within trust networks is mainly based on 

measuring the similarity between users (Portes and Sensenbrenner, 1993; Banks and 

Carley, 1996), just as in link prediction for social networks. As will be analysed later in 

Section 4.2, most algorithms to infer trust are based on similarities of structural 

characteristics of the trust graph. Although trust prediction can be based also on 

contextual features, it is evidenced (Zolfaghar and Aghaie, 2012) that the performance 

of trust predicators based on structural features outperforms the algorithms based on 

contextual features. Moreover, Shang et al. (2009) claim that structural-based similarity 

produces better results than Pearson Correlation Coefficient when the dataset is sparse. 
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Several structural similarity, also called proximity, indices exist based on graph theory 

and Social Network Analysis, categorised in various ways by researchers, depending on 

the method they use, such as supervised vs. unsupervised methods (Tang et al., 2013), 

or depending on the features, such as the categorisation of Lu and Zhou (2010) in local, 

global and quasi-local indices or that of Hasan and Zaki (2011) who distinguish between 

neighbourhood-based and path-based indices. 

Below are given three of the most popular node similarity indices, known also as 

neighbourhood-based (Hasan and Zaki, 2011). All the three indices are based on the 

intuition that the more common neighbours between two nodes, the higher is the 

similarity between them. So, for two nodes x  and y  in the graph, let Γ(x)  and Γ(y)  

denote the set of neighbours of each node, respectively, the three indices are described 

as follows. 

Common neighbours 

Two nodes x  and y are more likely to have a link if they have many common neighbours.  

 ( , ) ( ) ( )CommonNeighbourssim x y x y     (Eq. 4.1) 

It is the simplest form of similarity between two nodes and is defined as the number of 

the common neighbours. Newman (2001) exploited this measure in the context of 

collaboration networks to verify that there is a correlation between the number of 

common neighbours of two users and the probability of collaborating in the future. 

Jaccard coefficient  

Jaccard coefficient is a very old similarity metric (Jaccard, 1901) defined as:    

 
( ) ( )
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JaccardCoefficient x y
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  (Eq. 4.2) 

In fact, it is a normalised version of common neighbours and it measures the probability 

that a common neighbour of nodes x  and y  would be selected, of a randomly selected 

neighbour that either x  or y  has. 
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Adamic/Adar  

The original Adamic/Adar index (Adamic and Adar, 2003) is a metric for computing the 

similarity between two sites. Liben-Nowell and Kleinberg (2003) customised this index 

to compute the similarity between two nodes as follows: 

 
( ) ( )

1
( , )

log ( )
AdamicAdar

z x y

sim x y
z 





  (Eq. 4.3) 

This index assigns more weight to less-connected neighbours and penalises the high 

degree nodes. 

Liben-Nowell and Kleinberg (2003) investigated several different similarity indices for 

link prediction in social networks and evaluated them for their performance on various 

real datasets. The results of this study indicate that simple indices like Adamic/Adar and 

common neighbours outperform more complex indices which consider longer paths. 

4.3.3 Propagation 
In Social Network Analysis, propagation phenomenon is used to examine how 

information, diseases or rumours and fads spread across a social network. In addition, 

propagation is one of the most common methods to infer trust relationships between 

users not yet connected in a social network. In real life, if we trust a friend, we also tend 

to trust the friend of our friend. For example, if Alice trusts Bob and Bob trusts Frank 

then Alice can derive some conclusion about the degree of trust she can have about 

Frank based on the degree of her trust for Bob and the degree of Bob’s trust for Frank. 

 

 

 

 

However, some authors (Golbeck and Hendler, 2006; Sherchan, Nepal and Paris, 2013) 

state that trust is not perfectly transitive in the mathematical sense, such as if Alice 

highly trusts Bob and Bob highly trusts Frank, it is not necessarily always true that also 

Alice highly trusts Frank. In the literature, many times transitivity and propagation are 

confused; although transitivity may imply propagation, this does not mean that 

Alice trusts Bob Bob trusts Frank 

Alice trusts Frank? 

Figure 4-3 An example of direct propagation 

Alice Bob Frank 
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propagation implies transitivity. Moreover, Bhuiyan (2013) distinguishes between the 

ability to provide recommendations, ‘referral trust’, and the ability to perform an 

action, ‘functional trust’.  

Consequently, the propagative property is really concerned and extensively researched 

(Gray et al., 2003; Guha et al., 2004; Ziegler and Lausen, 2004; Quercia, Hailes and 

Capra, 2007; Kim and Song, 2011; Victor, Cornelis and DeCock, 2011; Chakraborty and 

Karform, 2012; Hamdi et al., 2013) as a computational property of trust. In a social 

network, trust information can be propagated and create trust chains. By propagating 

trust on a social network, we can infer more trusted persons and, hence, improve the 

predictive performance of recommender systems by building a bigger trust network. An 

illustration of the direct propagation mechanism can be seen in Figure 4-3. 

Guha et al. (2004) extensively investigated the trust and distrust propagation 

mechanism and proposed a trust metric combining a ‘basis set’ of atomic propagations. 

Representing with M  a set of beliefs, in other words, the trust matrix, the four atomic 

propagations are operations on this matrix M . 

 Direct Propagation: Trust is propagated along an edge. If A trusts B and B trusts 

X then A trusts also X. The direct propagation means as matrix operation that 

the new matrix contains all paths with the length 2 of the initial belief graph, 

i.e., M2 . 

 Co-Citation: A user trusts those users who are trusted by users providing similar 

trust ratings as him/herself. If A and B trust C, and A trusts X then B will also 

trust X. The matrix operation is MTM . 

 Transpose Trust: if A trusts X then X will start to trust A to some extend. It is 

represented in the belief matrix as MT . 

 Trust Coupling: if A and X trust the same users then trusting A should imply 

trusting also X. The matrix operation is MMT . 

These four atomic propagations are weighted and combined to a single matrix CM,α with 

the weights represented in a vector α = (α1, α2, α3, α4). 

    
, 1 2 3 4

T T TC M M M M M M
M

          (Eq. 4.4) 
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Table 4-1 Atomic propagations according to Guha et al. (2004) 
Atomic Propagation Operator Description Figure 

Direct Propagation  M  AB and Bx then Ax Figure 4-4 (a) 

Co-citation MTM  AC and BC and Ax then Bx Figure 4-4 (b) 

Transpose Trust MT  Ax then xA Figure 4-4 (c) 

Trust Coupling MMT  AB and xB and DA then Dx Figure 4-4 (d) 

 

In another motivating approach (Hang, Wang and Singh, 2009), trust is propagated 

based on three operators, namely aggregation, concatenation and selection, through a 

weighted directed graph while Heß (2007) propagates trust in a multi-layered 

architecture for a document recommendation system, from an author trust network to 

a document reference network. Moreover, the concept of ‘trust decay’ for transitive 

propagation is applied in various algorithms (Gray et al., 2003; Ziegler and Lausen, 2004; 

Golbeck, 2005; Chakraborty and Karform, 2012) where trust decays as the propagation 

level increases. 

  

 

 
(a) Directed propagation 

 

(b) Co-citation 

 

(c) Transpose Trust 

 

(d) Trust Coupling 
Figure 4-4 Atomic Propagation examples 

This transitive propagation of trust is used to infer trust relationships in a trust network 

by inferring trust paths. Two typical approaches that use trust path inference are 

TidalTrust (Golbeck, 2005) and MoleTrust (Massa and Avesani, 2005), which will be 

discussed thoroughly in Sections 4.5.4 and 4.5.5, respectively. The aim of a trust path 

inference algorithm is to link two users not yet directly related by discovering a trust 
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path that may pass through other intermediate linked users. The trust value for the 

inferred trust relationship is calculated by aggregating the trust values of the 

intermediate trust relationships, as described in the next section.  

4.3.4 Aggregation 
A trust inference algorithm, besides the propagation mechanism, must also include an 

aggregation strategy. It is very common in a large network to have multiple paths 

between two nodes and thus the inference of trust between these two nodes needs to 

aggregate the various propagation paths into one trust estimate. For example, suppose 

Alice connects to several trusted friends being connected to Frank and thus there are 

several paths through which Alice can be connected to Frank. Then all these several 

paths have to be combined and aggregated to only one trust estimation. In case there 

is contradictory information about a user, which is not the exception, the aggregation 

is much more difficult. Although the aggregation strategy is of the same significance 

with the propagation mechanism to infer trust, researchers have not given enough 

attention compared to that on propagation. 

There are various mathematical aggregation operators like the arithmetic mean, the 

weighted mean, the median, the minimum, and others. It is also conceivable to combine 

trust from multiple paths with the ‘maximum operator’ where the trust estimate for 

the inferred relationship is the maximum value of all the available trust paths. Consider 

for example the trust network of Figure 4-5, where we want to estimate the trust score 

between users A and x. The three possible paths from A to X are ABCX, 

ADEFX and ADGHFX. To infer the trust relationship between the 

two users, the trust metric has to propagate trust scores through the three possible 

trust paths in the network, calculating a trust estimate for each path and then to 

aggregate all of them into one single value. Supposing that the trust metric calculates 

the propagated trust as the mean of trust values of the path and then using the 

‘maximum’ as aggregation operator, the final trust estimation of user A to user x is: 

1.0 0.6 0.9 0.5 0.8 1.0 0.8 0.5 0.3 0.2 0.4 0.5
, ,  0.83

4 5
=

3
max 
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Figure 4-5 Aggregation example 

However, an aggregation through paths with contradictory trust values could produce 

problematic results. In the trust network of Figure 4-5, for example, we can observe 

that ABCX and ADGHFX are two contradictory trust paths as the 

average trust value for the first path is 0.83 and for the second path is 0.38. In other 

words, A can highly trust X through the users B and C but also A cannot trust X through 

the users D, G, H and F. But since A does not trust enough D, may not also trust D’s 

recommendation for other users and so the path with the low trust degrees can be 

omitted as it is not considered strong enough. In this way, Golbeck's (2005) TidalTrust 

selects the first path as the strongest one through which A can trust X. 

One of the first methods for aggregating multiple opinions in social networks was that 

of Richardson et al. (2003) which calculates the belief of a social network user in a 

statement by finding the paths (leading to the statement) and incorporates a 

concatenation operator for calculating the belief of each path and an aggregation 

operator which combines the beliefs of all the paths. On the other hand, Golbeck's 

(2005) trust metric propagates through the shortest and strongest path which can be 

characterised as a selection rather than a combination (aggregation) of paths.  

Recently, Victor et al. (2011) extensively studied the trust score aggregation problem 

and introduced some families of operators based on Ordered Weighted Averaging 

(OWA-based), and knowledge-enhanced operators (K-OWA, K-IOWA, the knowledge 

awarding averaging trust score operator KAAV and the knowledge-based trust score 

OWA). They moreover, proposed four trust score aggregation strategies: 

 TMAX: maximum trust degree for the lowest possible knowledge level 

 DMAX: maximum distrust degree,  

 KAV: average of the most knowledgeable trust scores 
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 KMAX: maximum trust and distrust degree 

Their experiments demonstrate that the families of the operators they proposed 

produce more accurate results in real-world large datasets which are typically noisy. 

Yet, research regarding the aggregation process in trust inference is still in its infancy 

(Victor, Cornelis and DeCock, 2011) needing to give greater attention to new 

aggregation operators combined with propagation but also to operators preserving 

privacy. 

4.4 Trust metrics 
While propagation and aggregation are the two key factors for building trust 

relationships, trust metrics define the way to measure a relationship in a trust network. 

The main feature of trust-based recommender systems is certainly the trust weight of 

the trust relationship between two users, otherwise known as local trust, or the total 

trustworthiness of a user within a network, also known as global trust. Trust weights 

are statements in trust networks where a user can explicitly state which user(s) they 

trust by rating them directly, or indirectly by rating his/her comments. However, trust 

relationships can be defined also implicitly, by calculating similarity measures between 

users, based on the explicit trust statements of the trust network or by calculating the 

similarity between users independently of any trust statement. Trust metrics are 

measures to infer trust relationships and build new trust networks or expand the 

existing ones; they utilise computational trust properties to compute and infer a new 

trust relationship. 

O’Doherty, Jouili and Van Roy (2012) define “a trust metric from user u  to user v  in a 

social network can be seen as the subjective probability that the trustor, u  will have the 

same preferences and tastes as the trustee v.” In other words, a trust metric is a 

similarity metric between two users in a social network. As already mentioned, (Section 

3.2) traditional recommender systems are based on the similarity between items, 

or/and users to make predictions. In Section 3.2.1, we saw various similarity metrics 

that measure the distance between two objects. In trust-based recommender systems, 

the trust weights between the users in the trust network represent the similarity 

between them. The trust weights can be computed, by the explicit trust statements 

given in the social network or can be inferred through trust metrics. 
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A lot of effort has been put into different disciplines for computing trust and several 

approaches have been proposed. A socio-cognitive model of trust has been built 

(Falcone, Pezzulo and Castelfranchi, 2003) by using Fuzzy Logic to compute the value of 

the trustfulness, starting from belief sources that refer to trust features. Hooijmaijers 

and Stumptner (2007) proposed an ontology integration tool using suggestions for 

dynamically changing trust of a document author, whereas Selvaraj and Anand (2012) 

used historical data in peer-to-peer networks and genetic algorithm. Golbeck et al. 

(2003) built a trust network in the Semantic Web by extending FOAF profiles to include 

trust relationships, while Appleseed (Ziegler and Lausen, 2004) is a local and group trust 

metric for ranking all the nodes in the network. These last two metrics will be discussed 

in detail later in Sections 4.5.4 and 4.5.3, respectively.  

However, the first applications of trust and reputation metrics were used for security 

reasons, discovering trust paths through Public Key Infrastructure (PKI) (Maurer, 1996; 

Zhao and Smith, 2006). PKI is a tool for performing secure transactions by mapping a 

user with a public key. A ‘chain of certificates’ is constructed through certification paths, 

from the first certificate issuer to the target. The procedure is very similar to that of 

discovering trusted neighbours in a trust network. Another popular area in which trust 

metrics were initially used is peer-to-peer (P2P) networks for addressing the problem 

of data quality. In P2P networks, each peer connected in the network can share files 

with other peers. The problem is that every anonymous user can share any file of 

whatever quality with no limitations and no guarantee of the availability of the 

connection. For maintaining quality and security, several approaches (Aberer and 

Despotovic, 2001; Kamvar, Schlosser and Garcia-Molina, 2003; Kim and Song, 2011; 

Selvaraj and Anand, 2012) provide ‘trustworthiness’ for each peer in the network, 

depending on its reliability. The ‘trustworthiness’ is calculated through global trust 

metrics by measuring the reputation of the peer. 

Generally, trust algorithms can be distinguished into two major categories, local or 

global, depending on the trust metric they use. Global trust, otherwise the ‘reputation’ 

of a user, is the universal trust value for that user within the network, while local trust 

defines trustworthiness and refers to the trust value that one user gives to another and 

it represents the user’s subjective opinion of the other user. Generally, local trust 

metrics are preferred in opinion-based applications, while global trust metrics are 

preferred in systems where trust is not dependent on personal opinions, such as peer-



72 
 

to-peer networks and file sharing applications (Roy, Jouili and Skhiri, 2012). Moreover, 

local group trust metrics are suitable for computing neighbourhoods in decentralized 

systems (Ziegler, 2004) while Massa and Avesani (2005) showed that, compared to 

global metrics, the local metric produces more accurate results in case of controversial 

users also retaining good coverage. 

4.4.1 Local trust metrics 
Local trust metrics take into account personal and subjective opinions between users 

and compute different values of trust for each pair of users. It refers to the personalised 

trust relationship between two users and reflects the trustworthiness of a user A to the 

personalised and subjective view of a user B. Thus, trust calculation is personalised for 

each pair of users in the network and it does not take into account any shared opinions 

in the network.  

Local trust metrics are proved (Massa and Avesani, 2005) to be very valuable in the case 

of controversial users. A controversial user is a user for whom the opinions of the other 

users are contradictory. Except for controversial users, local trust metrics provide better 

results in the case of grey-sheep users and users with unique tastes (for details refer to 

Section 3.4) as, in these cases, the global opinion about a user might also be 

controversial. 

Local trust metrics exploit structural information of the trust graph and calculate the 

personalised trust value between the source and target user through a propagation 

mechanism. Consequently, trust can be inferred from local trust metrics only if there 

exists a connection path between the source and the target user and, therefore, it is 

unlikely to infer values for the whole network. Some well-known local trust metrics that 

will be analysed thoroughly next are TidalTrust (Golbeck, 2005), MoleTrust (Massa and 

Avesani, 2005) and Advogato (Levien, 2009). 

4.4.2 Global trust metrics 
Another concept with which trust is closely related is that of reputation. However, 

reputation is often confused with trust. The key distinction is that reputation of an agent 

is a factor affecting his trustworthiness. Trustworthiness is based on previous 

experience with the agent, while reputation is based on measures that this agent (node) 

has within a social network. Mui et al. (2002) state that reputation is the perception 
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that an agent creates through past actions about its intentions and norms. As already 

mentioned, Wierzbicki (2010) defines reputation as the “information about the trustee 

that is available to the trustor and is derived from the history of the trustee's behaviour 

in some contexts”, which can be represented as a probabilistic model. Moreover, Barber 

and Kim (2001) defined reputation as “the amount of trust an agent gives an 

information source based on previous interactions among them.” When an information 

source delivers trustworthy information and satisfies the needs of other agents, then 

these agents may increase the reputation of the information source. On the contrary, 

no satisfaction of the other agents may decrease the reputation of the information 

source. Reputation is widely used in Peer-to-Peer (P2P) networks for preserving security 

within the systems.  

Global trust, otherwise the ‘reputation’ of a user, is the universal trust value for that 

user within the network, while local trust refers to trust value that one user gives to 

another user and it represents the user’s subjective opinion of the other. The main 

objective of global trust metrics is to rank all nodes in the network, rather than inferring 

new trust relationships, by computing and assigning one single trust value (reputation) 

for every node in the system. In other words, the global trust assigned to a user X  is 

exactly the same trust value that a user A  has for user X , as also the trust value that 

another user B  has for user X . The simplest way would be to compute the overall user 

reputation by averaging the trust values received from every user. PageRank (Brin and 

Page, 1998) is one of the most popular global trust metrics for measuring the 

importance of a website. Similarly, Kamvar et al. (2003) proposed the EigenTrust 

algorithm which is a global trust metric for peer-to-peer networks. These two 

algorithms are very widely used in the literature as global metrics.  

4.5 Major algorithms for trust inference  
This section presents the algorithms of the most popular trust-based recommendation 

techniques. All these methods are based on the propagation property of trust to infer 

new trust relationships and are either global or local trust metrics. 

4.5.1 Advogato 
Advogato (Levien, 2009) is a group trust metric for discovering which users in an online 

community are trusted by other users and which are not. In other words, it calculates 

the global reputation of a node within the community by using a network flow model. 
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Specifically, it utilises a social graph representing community users as nodes and their 

relationships as directed edges. The relationship between two users in the community 

is a 4-level certificate assigned, from one user to another, as Observer, Apprentice, 

Journeyer, and Master. These certificates are calculated by the Advogato trust metric 

and determine the trust level of a user within a group of users. 

The input for Advogato is the number n  of members to trust, as well as the trust seed 

s , which is a subset of the entire set of users V . The output is a characteristic function 

that maps each member to a Boolean value, indicating trustworthiness 

  0:2 ( , )V
MTrust V trust false    (Eq. 4.5) 

The Advogato trust metric is computed in three conceptual steps. 

1. Each node in the network is assigned a capacity based upon the shortest-path 

distance from the seed to the user x . The capacity of the seed is given by the 

input parameter n , whereas the capacity of each successive distance level is 

equal to the capacity of the previous level l  divided by the average outdegree 

of trust edges e∈E  extending from l .  

1. The graph is transformed into a graph with extra edges from each node to a 

special ‘supersink’ node.  

2. A maximum network flow is computed for the transformed graph. Each node 

having flow across its corresponding edge to the supersink is accepted by the 

trust metric. 

 

Figure 4-6 The three conceptual steps in Advogato trust graph conversion 
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The algorithm shown below converts the existing graph into a new graph where 

capacities are assigned to edges. Each node x is split into two nodes, x−  and x+ . For a 

node x with capacity CA , an edge is added from x−  to x+  with capacity CA −1 . For each 

edge from x− , x+  in the original graph, an infinite capacity edge from x− , x+  is added to 

the new graph. Finally, from each node x , a unit capacity edge is added from x−  to the 

supersink node. 

Advogato trust metric is designed as ‘attack resistant’ by identifying the ‘bad’ nodes in 

the network excluding them from the network. Although the metric determines which 

users are trusted, the main drawback of the method is that it does not provide any 

ranking of trusted users so it is more applicable in P2P networks and not in a trust-based 

recommender system where the trust rank plays a key role. 

 

Algorithm 1 Advogato trust graph conversion (Levien, 2009) 
 function transform (G = (A, E, CA)) { 
  E’ =∅, A’ =∅; 
  for all x ∈ A do  
   add node x+ to A’; 
   add node x− to A’; 
   if CA(x) ≥ 1 then  
    add edge (x−, x+) to E’;  
    CE’ (x−, x+) =CA(x)−1; 
    for all (x, y) ∈ E do  
     add edge (x+, x−) to E’; 
     CE’ (x+, x−) =∞;  
    end do 
    add edge (x−, supersink) to E’; 
    CE’ (x−, supersink) =1; 
   end if 
  end do  
 return G’ = (A’, E’, CE’); 
 } 
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4.5.2 EigenTrust 
EigenTrust (Kamvar, Schlosser and Garcia-Molina, 2003) is another global trust metric 

designed for decreasing inauthentic files in peer-to-peer networks. In fact, it is a 

variation of the PageRank algorithm (Brin and Page, 1998) used by Google for ranking 

web pages.  

Through the algorithm, a peer in the network is connected through a trust link with 

another peer based on its historical performance. The local trust values are aggregated 

and after normalisation they are propagated. All the local trust values in the network 

are represented in a matrix C  and through a number of iterations, a new globally-

accepted trust value t  is computed for each peer. Specifically, this trust value is a 

measure of performance for the peer and thus it is fundamentally different from the 

trustworthiness of a user in a social trust-network which is mainly based on personal 

information and not on performance criteria. 

4.5.3 Appleseed 
Like Advogato, Appleseed (Ziegler and Lausen, 2004) is a group trust metric propagating 

energy from a node to other nodes based on the link weight. However, instead of using 

maximum network flow, the basic intuition of Appleseed is motivated by spreading 

activation theory found in neuroscience and cognitive psychology and it refers to the 

“retrieval from long-term memory in which activation subdivides among paths 

emanating from an activated mental representation” (Nolen-Hoeksema, Fredrickson 

and Loftus, 2009). 

Similar to Advogato, the output is an assignment function of trust with domain V . 

However, Appleseed, given a network and a source, returns a ranking of all the nodes 

in the network (allows rankings of agents with respect to trust degree). In contrast to 

Algorithm 2 Basic EigenTrust algorithm (Kamvar, Schlosser 
and Garcia-Molina, 2003) 
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Advogato, Appleseed uses transitive trust propagation. Source node s  is activated 

through an injection of energy in0. The energy is then fully propagated to other nodes 

along edges. The higher the strength of the edge (link weight) between two nodes, the 

higher the energy is propagated through these nodes. Yet, in order to avoid endless 

energy flow, a threshold T  specifies the minimum energy for a node to receive for not 

becoming ‘dry’. The algorithm also introduces the ‘trust decay’ by incorporating a 

spreading factor d . 

Authors also discuss about distrust and backward propagation still one of the main 

advantages of their method is that nodes are accessed only when reached by energy 

flow and thus reduce the computational complexity. 

 

Algorithm 3 Appleseed trust metric (Ziegler and Lausen, 2004) 

function TrustA   {
0

0( , [0,1], , )cds V Tin        
 in0(s)=in0; 
 trust0(s)=0; 
 i=0; 
 V0={s}; 
 repeat 
  i = i+1; 
  Vi = Vi-1; 
  ∀ x∈ Vi-1: ini(x)=0; 
  for all x ∈ Vi-1 do 
   trusti(x) = trusti-1(x)+(1-d) ∙ ini-1(d); 
   for all (x,u) ∈ E do 
    if u∉Vi then 
     Vi= Vi ⋃ {u}; 
     trusti(u)= 0; 
     ini(u)=0; 
     add edge(u,s); 
     W(u,s)=1; 
    end if 
    w =W(x, u) / ∑(x,u’)∈E W(x, u’); 
    ini(u)=ini(u)+d·ini−1(x) · w; 
   end do 
  end do 
  m = maxy∈Vi {trusti (y)−trusti−1(y)}; 
 until m ≤ Tc 
 return trust: {(x, trusti (x)) | x ∈ Vi}; 
} 
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4.5.4 TidalTrust 
TidalTrust (Golbeck, 2005) is a modified breadth-first search algorithm infering trust 

through propagation and exploited in an experimental platform for recommending 

movies called FilmTrust (Golbeck, 2006b). The algorithm was also exploited in TrustMail 

(Golbeck and Hendler, 2004) which is not just a spam filter but a layer ranking email 

priority depending on the trustworthiness (trust value given manually by the recipient) 

of the sender. Golbeck et al. (2003) also introduce an ontology extending FOAF 

vocabulary for modelling trust relationship between users. FOAF stands for friend-of-a-

friend, aiming to enrich with machine-readable content (through ontology), user 

profiles containing personal information, preferences, activities and relations to other 

people and objects.  

Specifically, the TidalTrust algorithm uses the explicit trust values provided by the users 

of the network, for estimating unknown trust values between users, not yet being 

connected. Trust is inferred by the TidalTrust algorithm taking into account not only the 

shortest but also the strongest paths from the source user a  to the sink user u . The 

unknown trust value between the source user a  and the sink u  is calculated as the 

weighted average of the trust scores attributed to u by the neighbours of a  (users 

trusted by a) and is given by the following formula: 
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  (Eq. 4.6) 

The pseudocode presented in Algorithm 4 below, describes the steps followed in the 

algorithm. The source node begins a search for the sink. It polls each of its neighbours 

to obtain their rating of the sink. If the neighbour has a direct rating of the sink, that 

value is returned. If the neighbour does not have a direct rating for the sink, it queries 

all of its neighbours for their ratings, computes the weighted average, and returns the 

result. This process is repeated for each neighbour. Any available path at the minimum 

depth is recorded, and for each one of these shortest paths, is computed the aggregated 

trust values between the source’s neighbours and the sink users weighted by the direct 

trust values between the source and its neighbours. Essentially, the nodes perform a 

breadth-first search from the source to the sink, and then inferred values are passed 

back to the source.  
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To limit the size of the search TidalTrust adopts the ‘shortest path’ practice since 

Golbeck (2006a) has demonstrated that it leads to a lower error. However, limiting the 

depth can lead to fewer nodes that can be reachable. The same study, confirms that 

using nodes with higher trust ratings (‘strongest paths’) leads to lower error. Strongest 

paths are incorporated into the algorithm by establishing a minimum trust threshold 

above or at which connections are taken into account. This threshold is not a fixed value 

but is defined as a variable, max , representing the largest trust value, that can be used 

as a minimum threshold, such that a path can be found from source to sink. 

As a final task to predict the ‘Recommended Rating’ p a , i  for an active user a  and movie 

i  the formula (Eq. 3.14) is modified to incorporate not only the explicit but also the 

inferred trust values of the users who have rated the film (the raters). More specifically, 

the trust-based weighted mean given by the formula (Eq. 4.7) is the baseline for 

including trust values in the process of computing the predicted rating. It is the 

weighted mean (Eq. 3.14) with trust weights for expressing the similarity weights i.e. 

wa , u=ta ,u  . Golbeck in two studies (Golbeck, 2005, 2006b) used this algorithm to 

compute the unknown rating pa , i  for target item i  and active user a  
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 (Eq. 4.7) 

where RT  represents the neighbours of user a  (the set of users that rated i ) and for 

whom the trust value t a , u  is greater than or equal to a threshold θ>0 .  

To give an example of how the TidalTrust algorithm works, we can consider the trust 

network illustrated in Figure 4-7 where nodes represent users and arrows represent the 

Figure 4-7 An example of direct trust network 
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trust relationships between users. Each trust relationship is directed and weighted with 

the values depicting the trust weight of the relationship on a scale between 0 for full 

distrust and 10 for full trust.  

Given the above trust network (Figure 4-7) suppose we want to calculate, through the 

TidalTrust algorithm, the inferred trust value between the source user B and the sink G. 

Three possible paths are available from B to G: i) the BCFG, ii) the BDFG 

and the iii) BDEFG. As we can observe also, in the above network, users 

(nodes) A, B, H are in depth level 1, whereas C and D are in depth level 2 for users A and 

B. Notice that user E is in depth level 2 for user H. However, for users C and D, node H 

is in depth level 3. 

The algorithm initially starts to find the neighbours of B for next level, thus depth level 

2, These neighbours are C and D. Similarly, the neighbours for depth level 3 are F and E. 

Finally, the user G can be reached directly from user F or through one more level from 

user E. But the ‘shortest path’ factor indicates that the best way is to reach the user G 

directly from user F and not through the user E. Now the factor of ‘strongest path’ 

indicates that the path DE will not be accessed as the minimum threshold for trust 

weight is set to 3 (max=3) and so the best path is DFG. Thus, the inferred trust 

value tB , G  can be calculated applying the (Eq. 4.6) as: 

, ,
, , , , , ,

,
, , ,

5 9

5 9
B

B

B u u G
u TN B C C G B D D G C G D G

B G
B u B C D G

u TN

t t
t t t t t t

t
t t t

 

 

   
  

 




 

, ,
,

,

9 4
4

9
C F F G

C G
C F

t t
t

t


    ,  , ,

,
,

6 4
4

6
D F F G

D G
D F

t t
t

t


    

,

5 4 9 4
4

5 9B Gt
  

 


 

So the inferred trust value is tB , G=4  . From the above example, we can see that the 

trust values tC , G  and tD , G  were also inferred between users C, G and D, G respectively. 

In the same way, more trust values can be inferred from the existing trust paths 

between other users and thus expand the trust network. 
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The next step for the TidalTrust recommender system is to predict ‘recommended 

ratings’. So, considering the above trust network and the ratings Table 4-2, we would 

like to predict what rating would give user B for Movie2 applying the (Eq. 4.7) 

Table 4-2 A sample user/item ratings table 
User/item Movie1 Movie2 Movie3 

A 9 6  
B 5 ? 9 
C 7  2 
D 5 8 7 
E 8   
F   8 
G  5  
H   6 

The neighbourhood of user B consisting of the users which rated Movie2 and are also 

connected with user B, either directly through explicit trust ratings or implicitly through 

inferred trust values. In Table 4-2 we can see that users A, D, G have rated Movie2 while 

B is connected with just the two of them. Specifically, B is explicitly connected with D 

(Figure 4-7) and implicitly with G, as inferred from the previous steps of the algorithm. 

Consequently, the predicted rating of user V to Movie2 is calculated as follows: 
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This way the system can predict values for recommending movies to other users. 

Although the specific table and trust network are a small sample, we can nevertheless 

notice that there is a user for which no recommendations can be produced. More 

precisely, user G does not trust any other user, and so, no predictions can be made 

applying the (Eq. 4.7). This problem reflects the real-world datasets which are usually 

sparse and of course, it depicts the cold-start problem for a user, not on ratings but on 

building trust network. 

Golbeck (2006b) claims that the accuracy of the recommended ratings produced by 

TidalTrust outperforms the predictions produced by both simple average and common 

collaborative filtering algorithms. However, the most interesting part is that TidalTrust 

produces significantly more accurate recommendations for grey-sheep users, and more 

specifically, for users who have different opinion for a specific item compared to the 

average opinion. 
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Algorithm 4 TidalTrust (Golbeck, 2005; Victor, Cornelis and DeCock, 2011) 
 for each user u do  
 PathStrength[u] = −1, PathStrength[a]=1; 
 maxDepth =∞, depth=1, add a to queue  
 while queue not empty and depth ≤ maxDepth do  
  x=queue.dequeue, push x on stack 
  if x and u are not adjacent then 
   for each user i adjacent to x do 
    add i to next_level_queue if i is not yet visited 
    if next_level_queue contains i then 
     strength = min(PathStrength[x], tx,i) 
     PathStrength[i] = max(PathStrength[i], strength) 
    end if 
   end for 
  else 
   maxDepth = depth, strength = PathStrength[x] 
   PathStrength[u] = max(PathStrength[u], strength) 
  end if 
  if queue is empty then 
   queue = next_level_queue, next_level_queue=new_queue, depth++ 
  end if 
 end while  
 
 for each user u do trust to sink[u] = −1  
 while maxDepth!=MAX and stack is not empty do  
  v=stack.pop  
  if maxDepth =∞ then ta,u = 0 
  if v is adjacent to u then  
   trust to sink[v] = tv,u 
  else 
   numerator=denominator=0 
   for each user i adjacent to v do 
    if tv,i ≥ PathStrength[u] and trust to sink[i]! = −1 then 
     numerator+ = tv,i ∗ trust to sink[i], denumerator+ = tv,i 
    end if 
   end for 
   if denumerator > 0 then 
    trust to sink[v] = numerator/denumerator 
   end if 
  end if 
 end while  
 ta,u = trust to sink[a]   
 if trust to sink[a] = −1 then ta,u = 0 
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4.5.5 MoleTrust 
Similar to TidalTrust, researchers (Avesani and Massa, 2005; Massa and Avesani, 2005) 

proposed the MoleTrust algorithm which also incorporates explicit trust statements to 

propagate and infer trust. However, MoleTrust, instead of applying the breadth-first 

search method of TidalTrust it uses depth-first search method to infer trust. Another 

difference between the two algorithms also is that while TidalTrust is based on the 

weighted mean formula, on the contrary, MoleTrust is based on the classic collaborative 

filtering as shown in (Eq. 4.8). 
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 (Eq. 4.8) 

In fact, this technique replaces the PCC similarity, in the Resnick’s formula (Eq. 3.15) of 

collaborative filtering, with the trust value between the two users. In that way. The 

MoleTrust algorithm incorporates the weighted average of (Eq. 4.6) trust metric in the 

recommendation process producing trust-based collaborative filtering 

recommendations. The formula for estimating the trust value between the two users is 

very similar to TidalTrust but MoleTrust uses the horizon  parameter as a threshold of 

the distance that trust can be propagated. The horizon parameter indicates the 

maximum-depth that trust will be propagated but here, the parameter is a fixed value, 

instead of the shortest and strongest path incorporated by TidalTrust. The horizon  

parameter can lead to less satisfactory results, as low values may decrease the 

possibilities for a user to find neighbours, on the contrary, high values can increase the 

possibility of incorporating noisy or undesirable information from users that should not 

be influential such as users in long distance. However, in contrast to TidalTrust, 

MoleTrust performs additionally a backward exploration for finding trust paths. 

Algorithm 5 presents the pseudocode of MoleTrust for target user a , horizon d  and 

trust threshold α; The algorithm can be conceptually divided into phases. The first step 

is to remove cycles in the graph, by ordering users based on distance from source user 

and keeping only trust edges going from users at distance n  to users at distance n+1 . 

The result is a modified directed acyclic graph. Thus, the algorithm becomes more time-

efficient as each user has to be visited no more than once to compute the trust value of 

the inferred relationship. The second step is a simple graph walk over the modified trust 

network, starting from source user a . Initially, the trust scores of users at distance 
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(depth) 1 are computed, thus, the explicit trust scores of the neighbours of user a  are 

obtained. Then the trust scores of users in depth 2 are calculated according to the 

weighted-average formula of (Eq. 4.6). The predicted trust score of a user is the average 

of all the accepted incoming trust edge values, weighted by the trust score of the user 

who has issued the trust statement. Not all the trust edges are accepted since for each 

distance, MoleTrust discards any edge to users with a trust score less than the trust 

threshold α since these users are considered as not trustworthy. Trust scores are 

predicted for users in each depth until the maximum depth d . 

The experimental results show that the improvement of accuracy comparing with 

collaborative filtering algorithms remains similar, however, the coverage is improved 

by 20% when trust is propagated and moreover coverage is significantly improved 

especially for cold-start users. Massa and Avesani (2005) also proved that their 

approach outperforms global trust metrics in prediction accuracy for controversial users 

(users being trusted by one group and distrusted by another) while retaining a good 

coverage. 

Algorithm 5 MoleTrust for target user a, horizon d and trust threshold α 
(Avesani and Massa, 2005; Victor, Cornelis and DeCock, 2011) 
Step 1:  
 dist=0 
 users[dist] = a  
 add a to modified_trust_network 
 while dist < d do 
  dist++ 
  users[dist]=users adjacent to users[dist−1] and not yet visited 
  for each user b from users[dist] do 
   add b to modified_trust_network 
   add all edges from users[dist−1] to b to modified_trust_network  
  end for 
 end while 
Step 2: 
 dist = 1 
 ta,a = 1 
 ∀u∈ users[1]: ta,u = trust statement issued by a  
 while dist < d do 
  dist++ 
  for each user u in users[dist] do 
   predecessors=users v for whom tv,u ≥ α in modified_trust_network  
   ta,u = ∑v∈predecessors ta,v · tv,u /∑v∈predecessors ta,v  
  end for  
 end while 
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4.6 Conclusion  
This chapter provided an extensive presentation of the trust-based recommender 

systems, including definitions and the computational properties of trust, while special 

focus was given to trust metrics. Current research, focuses on the computer science 

aspect of trust, and particularly on how it is used and computed, based on the definition 

of trust as a “relationship between two agents namely the trustor and the trustee where 

the trustor trusts the trustee in a specific context.” 

Several studies (Golbeck, 2005; Massa and Avesani, 2005; Wan and Chen, 2011; 

O’Doherty, Jouili and Van Roy, 2012; Victor et al., 2013; Ziegler and Golbeck, 2015) 

demonstrate that the use of trust can significantly improve both the coverage and the 

accuracy of recommendations, especially with sparse datasets, which is the usual case. 

Moreover, trust can significantly improve recommendations accuracy when item 

ratings are more extreme and show disagreement between users. Section 4.2 examined 

all the major methods for inferring trust. A summary table of all these methods can be 

found below (Table 4-3). The analysis of these methods to infer trust, revealed their 

limitations. More specifically, although the accuracy of the recommended ratings with 

TidalTrust and MoleTrust has been proved to outperform some baseline recommender 

system algorithms, it is, however, strongly affected by the density of the trust network. 

Especially for users with no trusted neighbours or even with not at least moderately 

trusted neighbours, it is impossible to find any trust path with the specific algorithms. 

The investigation of the trust inference mechanism and the survey of the existing trust 

metrics is the necessary preparatory step for getting all the in-depth knowledge to fulfil 

the aim of this study. 

Table 4-3 Major algorithms for trust inference 
Algorithm Approach Propagation Trust metric 
Advogato 
(Levien, 2009) 

Maximum network 
flow 

Shortest path 
and capacity 

Group 

EigenTrust (Kamvar, 
Schlosser and Garcia-
Molina, 2003) 

Similar to PageRank  Global 

Appleseed (Ziegler and 
Lausen, 2004) i 

Spreading activation Energy 
propagation 

Group 

TidalTrust (Golbeck, 
2005) 

Breadth-first search  Shortest + 
strongest path  

Local 

MoleTrust (Massa and 
Avesani, 2007) 

Depth-first search 
Collaborative+trust  
 

Shortest with 
horizon+ 
strongest with 
threshold 

Local 
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The need for a new system 

5.1 Limitations of current systems 
Several recommendation approaches have been introduced in the commercial and 

research area. One of the constant pursuits of researchers is to find out how to 

recommend the ‘best choice for the user’. The reason for the constant research effort 

in this area is that, except for the constant need for improving the performance of the 

system, there is a need also to overcome certain limitations that face the existing 

systems: 

Data sparsity. This is a problem encountered in all the aforementioned approaches and 

refers to the user ratings matrix, which is typically sparse, as most users do not usually 

rate most items. This leads to the formation of small neighbourhoods and poor 

recommendations. Methods dealing with this problem are the Default Voting (Breese, 

Heckerman and Kadie, 1998), the Singular Value Decomposition (Sarwar et al., 2000; 

Rennie and Srebro, 2005; Salakhutdinov and Mnih, 2007, 2008; Koren, Bell and Volinsky, 

2009; Yu et al., 2009) and other methods (Wang, Vries and Reinders, 2006). Moreover, 

as previously stated (Section 3.5.2), trust-based recommender systems suffer from 

insufficient number of trust statements, which leads to sparsity of the trust matrix. 

Cold-start problem. This is related to data sparsity as it is encountered when a new user 

or a user with low activity does not provide enough knowledge about his/her 

preferences to the system. Similarly, a new item in collaborative filtering needs a kick 

start rating to be included in an algorithm. A possible solution could be to suggest the 
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user to rate a minimum number of items so as to receive more accurate 

recommendations. But this means human effort and users are often not willing to spend 

time on a new system that has not yet offered them any service. However, techniques 

like hybrid and knowledge-based (Ricci et al., 2011) recommender systems deal better 

with the cold-start problem. 

Lack of transparency. Another basic drawback of recommender systems is the lack or 

absence of explanations. If there is not enough explanation of the way 

recommendations emerged, the user does not trust the source enough. Ray and 

Mahanti (2010) argue that the possibility of people accepting recommendations made 

by trusted friends is higher than that of accepting recommendations made by strangers. 

Hence, trust-based recommender systems provide a solution to this problem by 

providing recommendation from trusted neighbours, especially when the trust 

relationship is stated explicitly. 

Grey-sheep. Most of the recommendation approaches use similarity measures 

between users to provide their recommendations; however, there exist users being not 

similar to others and their preferences are not consistently similar or dissimilar with any 

group of users. As a result, it is difficult to fit these users in any neighbourhood, group 

or cluster. Dealing with this user is a great challenge for researchers who have proposed 

a number of approaches (Cantador, Bellogín and Castells, 2008; Lucas et al., 2013; 

Ghazanfar and Prügell-Bennett, 2014). Furthermore, from the statistical point of view, 

as the number of users increases in the system, the chance of finding other similar 

users, increases respectively and so recommendations can be more accurate in large-

scale systems. Trust-based recommender systems, and especially those calculating 

trust, based on local trust metrics provide significantly more accurate 

recommendations for these users, as Golbeck (2006b) showed. 

Synonymy and polysemy. Another challenge for recommender systems is when items, 

although similar, may have different names, that is, synonymy. Respectively, polysemy 

is the multiple meaning for one word, which means that items described by the same 

word does not imply that they are always similar. As a result, similar items could be 

ignored due to synonymy, while wrong items could be considered as relevant while they 

are not. Semantics are necessary to be implanted to deal with this problem. Two 

methods which can deal with synonymy and polysemy problems are the Latent 
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Semantic Indexing (Deerwester et al., 1990) and semantic analysis (Ricci et al., 2011) 

with lexicons and ontologies for interpreting the meaning of words. 

Change of preferences. Most collaborative filtering approaches assume that user 

preferences are stable and consistent over time, although, in real life, preferences can 

change over time, even during the day. Consider a user being interested in buying a 

mobile phone, but simultaneously also searching to buy a present for a friend. Thus, 

user profile has to be constantly adapted so as for the system to maintain a satisfactory 

level of performance (Nanas, De Roeck and Vavalis, 2009).  

Security and Privacy. One of the drawbacks of recommender systems is that they are 

prone to malicious attacks, fraud and shilling attacks. Especially, common collaborative-

filtered recommender systems are prone to malicious attacks by copying, for example, 

a user’s rating profile for gaining similarity. A typical example of this is fake profiles, and 

the so-called ‘shilling attack’ where a user can intentionally highly rate specific items 

and low rate other competitive products, for reasons such as ‘fun or profit’ (Lam and 

Riedl, 2004). These pseudo-ratings to particular products can significantly bias the 

recommendations and affect the trustworthiness of the system. Several studies deal 

with shilling attacks and propose various solutions (Lam and Riedl, 2004; O’Mahony and 

Hurley, 2004; Chirita, Nejdl and Zamfir, 2005; Mobasher et al., 2005; Zhang, 2009). 

Security has to deal also with privacy and ownership of data. In order to build user 

profiles, a recommender system requires the users to register personal information 

and, sometimes, their preferences. Of course, most of the recommender systems 

maintain also purchase and search historical data. Moreover, social-based 

recommenders maintain information about users regarding their relationships, 

friendships and opinions about other users. All this sensitive information has to be kept 

secured and hidden to malicious attacks. In case of abuse by the provider or leak by a 

hacker, users will lose their confidence in the system and this means that they will leave 

or at least they will no longer provide their opinions or other information to the system. 

Users expect the systems to protect their privacy and prevent any leak of their personal 

information and habits. In the decision-making process, one of the critical components 

for considering and accepting a recommendation or not is the trustworthiness of the 

source. As it is crucial for a system to be trustworthy, privacy preservation gave rise to 

research(Canny, 2002; Polat and Du, 2003; Zhan et al., 2010; Jeckmans et al., 2013) to 

deal with this issue, but there remains yet a lot to be done in this specific area. 
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However, it is common in real life to seek advice for topics we are not expert in or have 

no experience of. Friends can be a valuable information source, but the Internet can 

also play an important role in information seeking. Nowadays, with the explosive 

growth of Web 2.0 technologies, the two sources, friends, and the Internet, are 

combined in services called Social Networks. Recommender systems taking advantage 

of these technologies are the so-called social recommender systems, exploiting not only 

opinions and ratings about items, but also the relationships between users. The 

emergence of Web 2.0 and the ability of the user to express himself/herself and be 

heard all over the world changed not only the way of communication, but also business 

and marketing. The expression of personal opinion is “more likely to be believed by 

today's sceptical consumer than advertisements or professional input” (Smith, Menon 

and Sivakumar, 2005). Social networks are characterised by relations between ’friends’ 

or ‘followers’ with similar interests. As O’Connor (2008) points out, “consumers are no 

longer dependent on website owners to publish the information they seek, as they can 

increasingly rely on unfiltered, dynamic and topical information provided by their own 

peers.” For example, in a usual shopping day, just as a friend’s opinion counts more than 

the seller’s, in the same way, word-of-mouth “is perceived as being more vivid, easier 

to use and more trustworthy than marketer-provided information.” 

Hence, research in recommender systems has turned to the exploitation of trust 

relationships to improve predictions, as discussed in the previous chapter. Golbeck 

(2006b) proposed Filmtrust, which is a movie recommender system based on FOAF 

vocabulary for creating a social network of trust with trust values given by the users. 

Massa and Avesani (2004) computed similarity between users using trust metrics based 

on trust networks. In another study (Bedi, Kaur and Marwaha, 2007), trust-based 

recommendations are enhanced with ontologies for creating annotated content for the 

Semantic Web. In a recent study (Mehta and Banati, 2012), shuffled frog leaping 

algorithm was applied for clustering the users’ different social contexts. Generally, 

trust-based systems are proved (Ray and Mahanti, 2010) to overcome known 

limitations, such as frauds and attacks and lack of transparency, while they demonstrate 

better accuracy than traditional recommender systems in grey-sheep users and data 

sparsity by increasing coverage. 
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5.2 Classification of trust models 
Various approaches exist in the literature for modelling trust, but, here, we concentrate 

on trust models for recommender systems and classify them based on the technique 

they use. Another classification of trust-based recommender system is that of Victor, 

Cornelis and DeCock (2011) who adopt a classification of probabilistic versus gradual 

approaches while examining which of the trust/distrust concepts are represented. In 

the former, trust is computed as the probability of trusting someone or not, while, in 

the latter, trust is gradually expressed, as in everyday life, using a scale to represent the 

degree of trust in another user. But this is a very general classification and does not 

examine in depth which technique it is based on. 

Here trust models are classified into five major categories based on the techniques they 

use: (i) statistical technique, (ii) heuristics-based, (iii) graph-based, (iv) semantic-based 

and (v) fuzzy logic. In some of them, we distinguish their subcategories. 

As shown in Table 5-1, statistical techniques are very popular, within which probabilistic 

techniques have the majority of variants. Probabilistic techniques are also very popular 

in predicting user ratings in traditional collaborative filtering recommender systems. 

However, graph-based trust models introduce a new philosophy and treat the concept 

of trust as a relationship between users within a social network. The technique is 

consistent with everyday social interactions and exploits the properties of the existing 

web-based social networks through Social Network Analysis, for discovering similarities 

between users. 

5.3 Comparison of Graph-Based Recommendation Models 
Essentially, a trust network is a social network which can be represented as a directed 

graph in which nodes are the users and edges are the trust relationships. When trust 

weights follow a gradual scale, then this graph is a labelled as a directed graph with the 

degree of trust as labels. Therefore, graph theory and propagation property of trust can 

be exploited to infer not only existing trust relationships, but also to cluster users and 

create groups of users with common preferences for improving the performance of 

recommender systems; however, trust models exploiting graph theory are in infancy. 

Hence, it is meaningful to study recommender systems based on graph theory and 

identify possible gaps and improvements. Consequently, these models were examined 
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for the way that trust is computed and propagated, the network perspective of the trust 

metrics and also the trust establishment. 

Table 5-1 Classification of trust models 
Statistical techniques  Heuristics-based solutions 

 Probabilistic techniques 
○ Bayesian systems  

(Mui, Mohtashemi and 
Halberstadt, 2002)  
(Jøsang and Lo Presti, 
2004)  

○ Belief models  
(Falcone, Pezzulo and 
Castelfranchi, 2003)  
(Barber and Kim, 2001)  
(Guha et al., 2004)  

■ Dempster-Shafer theory  
(Yu and Singh, 2002)  

■ Subjective logic  
(Jøsang, 2001)  
(Jøsang, Hayward and Pope, 
2006)  

○ Markov Models  
(Fouss et al., 2007)  
(Dong and Frossard, 2012)  
(ElSalamouny, Sassone and 
Nielsen, 2010)  
(Song, Phoha and Xu, 2004)  

 Machine learning 
○ Artificial Neural Networks  

(Bedi and Kaur, 2006)  
○ Bayesian classifiers  

(Hooijmaijers and Stumptner, 
2007)  
(Guanfeng et al., 2010)  
(Patel et al., 2005)  
(Guanfeng, Yan and Orgun, 
2009)  

○ Decision trees  
(Zolfaghar and Aghaie, 2012)  

 

 Genetic algorithms  
(Selvaraj and Anand, 2012)  

 Ant colony  
(Bedi and Sharma, 2012)  

Graph-based 

(Golbeck, 2005)  
(Golbeck, 2006b) 
(Golbeck 2006) 
(Zhang, Bai and Gao, 2009)  
(Walter, Battiston and 
Schweitzer, 2008)  
(Li et al., 2012)  
(Yang, Steck and Liu, 2012)  
(Victor, Cornelis and 
DeCock, 2011)  
(Ziegler and Lausen, 2004)  
(Golbeck and Hendler, 2006)  

Semantic-based 
(Golbeck, 2006a)  
(Heath, Motta and Petre, 
2007)  
(Kim and Kwon, 2007)  
(Oufaida and Nouali, 2009)  
(Gao, 2010)  
(Martín-Vicente, Gil-solla 
and Ramos-Cabrer, 2012)  
(Golbeck, Parsia and 
Hendler, 2003)  
(Bedi, Kaur and Marwaha, 
2007)  

Fuzzy logic  
(Aberer et al., 2006)  
(Bedi and Kaur, 2006)  
(Capuruço and Capretz, 
2012)  
(Chen et al., 2005)  
(Li and Kao, 2009)  
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5.3.1 Comparison criteria 
Accordingly, the literature about graph-based recommender systems can be 

categorised based on three major categories regarding (i) propagation, (ii) network 

perspective and (iii) trust establishment. 

Propagation 

As mentioned before, propagation is a property of trust that benefits the process of 

predicting the trust score through known trust paths. Direct trust relations in a user’s 

trust network build a path through which new indirect connections can be established 

with other users, not known. There are various strategies for computing trust 

propagation. A very common one is the random walk approach, which assigns a 

transition probability to each edge by walking from one node to another. It is a method 

used also in PageRank (Brin and Page, 1998) and EigenTrust (Kamvar, Schlosser and 

Garcia-Molina, 2003) for computing the global trust of a node. Appleseed (Ziegler and 

Lausen, 2004) is another method that propagates by spreading ‘trust energy’ based on 

the strength of the edge. A graph-based popular method is that of Golbeck’s TidalTrust 

(Golbeck, 2005) wherein propagation is based not only on shortest path, but also on 

strongest path. An extension of TidalTrust is the MoleTrust (Massa and Avesani, 2007), 

which uses a fixed parameter, horizon, as maximum path length and a trust threshold 

for participating in the process.  

Network perspective: Global versus Local trust 

As already mentioned, trust can be inferred through global or local trust measures. 

Local trust is the subjective measure of a user for the trustworthiness of another user. 

In other words, it is the degree of a trust relationship between two users being stated 

explicitly. Global trust, on the other hand, is the average opinion of the whole 

community about the trustworthiness of a user. Namely, it is the reputation that a user 

has in the network. In trust- based recommender systems literature, local trust metric 

is generally preferred (Bedi and Kaur, 2006; Bedi, Kaur and Marwaha, 2007; Heß, 2007; 

Massa and Avesani, 2009; Zarghami et al., 2009; Victor, Cornelis and DeCock, 2011; 

Charif, Anne and Azim, 2012; Mehta and Banati, 2012), although there are systems 

adopting both local and global trust (Andersen et al., 2008; Hang and Singh, 2010; Yang, 

Steck and Liu, 2012). 
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Trust establishment 

Trust establishment can be based on explicit or implicit trust networks. Explicit 

networks are built with explicit trust statements, whereas implicit are inferred from 

user behaviours. Implicit trust relationships can be computed through user similarity 

and other trust metrics.  

Explicit and implicit trust can be either bivalent or expressed on a gradual scale. Several 

studies (Golbeck, 2005; Heß, 2007; Andersen et al., 2008; Massa and Avesani, 2009; 

Victor, Cornelis and DeCock, 2011; Charif, Anne and Azim, 2012) use explicit trust; 

however, several other (Bedi and Kaur, 2006; Bedi, Kaur and Marwaha, 2007; Zarghami 

et al., 2009; Bedi and Sharma, 2012; Mehta and Banati, 2012; Yang, Steck and Liu, 2012) 

infer trust relationships to build the implicit trust.  

Table 5-2 Comparison of main literature in graph-based trust recommender 
systems. 

 Algorithm 
approach 

Propagation Network 
perspective 

Trust 
establishment 

(Golbeck, 
2005) 

TidalTrust 
(breadth-first 
search) 

Direct 
propagation 
Shortest path 
+ strongest 
path 

Local explicit 

(Massa and 
Avesani, 
2007) 

MoleTrust 
Collaborative+trust 

Direct 
propagation 
Shortest path 
with horizon+ 
strongest 
path with 
threshold 

Local explicit 

(Victor, 
Cornelis and 
DeCock, 
2011)  

EnsebleTrust 
trust as a weight 
PCC+trust 

Direct 
propagation 

Local explicit 

(Heß, 2007)  Multilayer network 
trust network+ 
document 
reference network 

Propagation 
through 
layers 

Local explicit 

(Hang and 
Singh, 2010)  

Graph similarity Graph 
propagation 

Local + 
global 

explicit 

Table 5-2 illustrates briefly the main literature which uses graph models in their trust-

based recommender systems based on the categorisation criteria defined previously in 

this section. It becomes immediately apparent that the focus of these models is in 

computing trust values through propagation by exploiting various techniques in the 
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trust network based on graph theory. In all these models, trust networks are explicit, 

whereas, in the majority of these, trust is computed through local metrics. The reason 

for this is that, as already discussed (Section 4.4.1), local trust metrics provide more 

accurate recommendations (Massa and Avesani 2005) especially for cold-start users or 

when dealing with controversial items and users also retaining good coverage. Except 

for controversial users, local trust metrics provide better results in the case of grey-

sheep users and users with unique tastes as, in these cases, the global opinion about a 

user might be also controversial. Moreover, they are more resistant against attacks due 

to relationships explicitly stated, although in global trust, fake user profiles can impact 

the reputation of a user. 

Another issue observed in Table 5-2, is that, although propagation is extensively 

addressed in all the examined models, in all studies that trust is inferred through local 

metrics it is based on the direct propagation of the atomic propagations (Section 4.3.3). 

However, as will be analysed later (Section 6.1), the homophily phenomenon on which 

the propagative property of trust is based, indicates that not only “the friend of my 

friend is also my friend” but also that “if two persons, not yet connected, have a common 

friend, then there is an increased possibility for these two persons to become friends,” 

This kind of relation corresponds to the co-citation of the atomic propagations, which 

is not considered in any of the examined approaches. While Guha et al. (2004) proposed 

a trust metric combining a ‘basis set’ of atomic propagations, including co-citation, in 

fact, the way that co-citation is exploited does not address the above definition. 

All the above indicate a gap in the literature, leading to the need of designing a new 

method of propagating trust, based on ‘common friends’ (homophily phenomenon) and 

incorporating it into a trust-based recommender system. 

5.4 Conclusion 
This chapter presented the limitations of the current systems, leading to the need for a 

new system. Summarising, the major limitations of the current approaches, ‘lack of 

transparency’, ‘grey-sheep’, ‘synonymy and polysemy’ and ‘security and privacy’ can be 

alleviated with trust-based approaches. However, ‘data sparsity’ is the major limitation 

characterising all the current systems, which affects not only the item-ratings matrix, 

but also the trust matrix of the trust-based systems. This leads also to the ‘cold-start’ 

problem’ which is another typical limitation of the current systems. Furthermore, the 
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examination and comparison of the main literature in graph-based models shows that 

current approaches propagate trust based purely on the direct propagation strategy of 

the atomic propagation. However, the homophily phenomenon on which propagation 

is based is not fully addressed by the direct propagation. In final consideration, it is 

apparent that there is a need for a new approach that fully exploits the propagative 

property of trust, as defined by the homophily phenomenon, considering not only ‘the 

friend of my friend’ to propagate trust but also the ‘common friends’ intuition and, 

furthermore, addressing the data sparsity problem in recommender systems. The next 

chapter introduces such a novel approach based on the homophily phenomenon by 

exploiting structural information of the trust graph to infer and calculate the trust value. 
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A novel method to infer trust 

One of the fundamental issues for a successful recommender system, as highlighted in 

Section 3.2.1, is the calculation of similarity between users, for a collaborative filtering 

system or between items, for a content-based system. In trust-based systems, the 

weight of a trust relationship is used for measuring the similarity between users. 

Additionally, trust metrics calculate the similarity between users while computing and 

inferring new trust relationships. Similarity, thus, constitutes the basis for providing 

recommendations and/or inferring trust. In collaborative filtering and trust-based 

recommender systems, the user-to-user similarity is usually computed based on the 

ratings matrix. Similarity measures compute the correlation between users, comparing 

the rating values of the common rated items and the score is used as an input to a 

recommendation algorithm or to a trust inference algorithm in order to produce implicit 

trust values for a trust network. Additionally, in social networks, similarity is a basic 

measure leading to link association between users, but also impacts information 

diffusion (De Choudhury et al., 2010) due to the social diffusion that exists between 

connected members. The association of similar users in a social network is the effect of 

the ‘homophily phenomenon’, which will be discussed in Section 6.1. 

Similarity in social networks can be captured from information provided by the graph 

structure, such as the number of common neighbours or the number of short paths 

between users or other contextual information regarding the nodes. Graph similarity 

measures try to answer the question: “given a node which other nodes are similar to 

this node?” by manipulating any available information given in the network. The 
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procedure of link prediction is mainly based on graph similarity measures, as analysed 

in Section 4.3.2.  

6.1 The homophily phenomenon 
Homophily is a concept observed and launched as a term in sociology (Homans, 1951; 

Lazarsfeld and Merton, 1954; Laumann, 1966) referring to the tendency of humans in a 

social environment to form more associations with similar parties than with dissimilar 

ones. “Similarity breeds connection” claim McPherson et al. (2001) and give attribution 

of the old proverb “birds of a feather flock together”, as being the heart of the 

homophily concept, to Lazarsfeld and Merton (1954) who, in turn, attributed the phrase 

to Burton (1621). Similarly, Burton acknowledged the classic Western philosophers 

Aristoteles and Plato who argued that “people love those who are like themselves” and 

“similarity begets friendship”, respectively.  

The homophily phenomenon affects a range of social relationships, varying from 

friendships, marriages and partnerships to organisational memberships and 

information exchange. McPherson et al. (2001) also state that homophily implies that 

social distance translates to network distance, but also implies that social entities with 

high degrees tend to be localised in social space and obey certain fundamental 

dynamics following social forms. Lazarsfeld and Merton (1954) distinguished two types 

of homophily:  

 status homophily, in which similarity is based on informal, formal or ascribed 

status, including the major sociodemographic dimensions (race, ethnicity, sex, 

age) and acquired characteristics (religion, education, occupation, behaviour 

patterns), and 

 value homophily, which is based on values, attitudes and beliefs, including the 

wide variety of internal states presumed to shape our orientation towards 

future behaviour. 

Community in a social network can occur by choice, due to similarities (status 

homophily) between ties or/and social influence (the tendency of people to follow the 

behaviour of their friends or their social group) since individuals may become more 

similar over time by influencing each other. Likewise, McPherson and Smith-Lovin 

(1987) identified ‘choice homophily’ and ‘induced homophily’ as the two mechanisms 

for the origin of homophily. In fact, homophily is a self-reinforcing phenomenon 
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affecting not only the structure of the social network of a person, but also the 

information diffusion within the network through the social influence mechanism. 

Additionally, homophily is identified as a factor affecting information diffusion in social 

media (De Choudhury et al., 2010), the diffusion of ideas, behaviours and new 

technologies (Anagnostopoulos, Kumar and Mahdian, 2008), the group composition in 

enterprises (Ruef et al., 2003) and many other communication and social behaviours 

including even health-related issues (Christakis and Fowler, 2007; 2008; Centola, 2010; 

Rosenquist et al., 2010). 

6.2 Triadic closure 
The mechanism of propagating trust is based on the homophily effect in social 

networks. As described earlier, homophily is the principle according to which people 

tend to associate with others, all having something in common (McPherson, Smith-

Lovin and Cook, 2001) and, thus, forming homogeneous personal networks. Algorithms 

based on propagation to infer trust, as discussed thoroughly in Section 4.2, exploit the 

direct propagation from all the atomic propagations analysed by Guha et al. (2004). In 

fact, these studies infer trust based on the intuition that “the friend of my friend is also 

my friend.” However, the homophily principle implies also that “if two persons, not yet 

connected, have a common friend, then there is an increased possibility for these two 

persons to become friends.” In other words, this kind of relation corresponds to the co-

citation of the atomic propagations described in Section 4.3.3. Additionally, 

propagation, as exploited in TidalTrust (Golbeck, 2005) and MoleTrust (Massa and 

Avesani, 2005), can be applied only in directed networks (Figure 6-1). This way, the 

concept of homophily is not fully exploited in these two algorithms, since two persons 

that might have a common friend will not be associated. The co-citation property of 

atomic propagation, as part of the homophily phenomenon, is also known as ‘triadic 

closure’ in social networks. 

Rapoport (1953) introduced the notion of triadic closure, purely based on the 

homophily phenomenon, stating that two strangers who possess a mutual friend will 

tend to become friends in the future. The term ‘triadic closure’ derives from the 

observation that, in a social network graph, this phenomenon can be perceived as triads 

tending to close up. Triadic closure is the special case of the cyclic closure, originating 

from the notion of transitivity (Rapoport, 1953), with cycles of length 3. The link 



99 
 

formation process through triadic closure has the advantage of not depending on the 

features of the nodes involved in the process. 

In applying the triadic closure effect in an undirected social network (Figure 6-1(a)), new 

relationships are formed, closing any triads in the social network. More specifically, we 

can see that links are formed between nodes sharing a common friend, i.e. A and B have 

a common friend D and, thus, they tend to be connected. In the same way, B and C tend 

to be connected as they share a common friend E. The final network formed after the 

triadic closure effect is illustrated in Figure 6-1(b). 

 

(a) 

 

(b) 

Figure 6-1 The triadic closure effect in an undirected network 

In Social Network Analysis, triadic closure is observed as one of the most frequent 

processes of link formation. Thus, triadic closure mechanism has motivated the creation 

of metrics for measuring its prevalence. One of these metrics is the clustering 

coefficient (Watts and Strogatz, 1998; Newmann, 2003), defined as the probability of 

two randomly selected friends of a specific node being friends with each other. In other 

words, it is the fraction of pairs of friends connected to each other by edges in the social 

network graph or, alternatively, it is the number closed of triples in the social network 

graph. More formally, according to Newmann (2003), the clustering coefficient is 

defined as: 

 
3 n

C 



  (Eq. 6.1) 

where n Δ  is the number of triangles in the graph and T  is the number of connected 

triples of nodes. In effect, C  measures the fraction of triples having their third edge 

filled in, to complete the triangle. As discussed in Section 4.3.1, the clustering coefficient 

is a local property of networks, while, in small-world networks, it is high, indicating that 

users form groups highly connected. 
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Kossinets and Watts (2009) observed that roughly 60% of all the new connections in a 

social network are formed via triadic closure. However, the establishment of new links 

in the social network is a rather dynamic phenomenon that can take place at any time 

with no restrictions. Consequently, exploiting the phenomenon on a static snapshot of 

the social network can contribute to the prediction of social links taking place in the 

future. 

6.3 Inferring trust with triadic closure 
Whilst triadic closure is a natural mechanism to make new connections in a social 

network, it is also a dynamic phenomenon, as mentioned above. In particular, Bianconi 

et al. (2014) found that communities emerge naturally via triadic closure, especially 

when the network is very sparse. Nevertheless, it is plausible to incorporate this 

mechanism into a trust-based recommender system, by predicting trust links on a static 

snapshot of the trust network. This intuition is at the basis of the method proposed and 

analysed in this section. 

By exploiting the triadic closure property of social networks, a new method is proposed 

to infer new trust relationships in a trust network. Specifically, the proposed model 

relies on the intuition that “if two people in a social network have a friend in common, 

then there is an increased possibility that they will become friends themselves too.”.  

To illustrate this, suppose we have a directed graph representing a trust network of 

Figure 6-2(a) where A, B, C, D, E, F and G are the nodes, indicating the users, and arrows 

represent the trust relationships between users.  

Applying the triadic closure principle on this trust network, we can infer new trust 

relationships. Therefore, since A and B trust D, then there is an increased possibility that 

A trusts B and B trusts A. In other words, A and B share a common trusted party and, 

thus, there is a tendency to trust each other. Similarly, since D, E and G trust F, then 

there is an increased possibility that D and E trust each other, D and G trust each other 

and E and G trust each other. In this case, we have three users sharing a common 

trusted party. It can be considered as three different cases of two users, sharing a 

common trustee. It can also be compared with a real life case of a meeting of four 

people where three of them are complete strangers, while they are all familiar with the 

fourth person. After the meeting, there is an increased possibility that these three 

persons will communicate with each other again. 
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The resulting network, after applying the triadic closure effect on the trust network of 

Figure 6-2(a), is illustrated in Figure 6-2(b). Notice that the new relationships 

represented by the red dashed lines are mutual, as indicated by the two-headed arrows.  

 
(a) 

 
(b) 

Figure 6-2 The triadic closure effect on a directed trust network  

The algorithm to infer trust relationships is called TriadicClosure and is briefly outlined 

below. 

 

The TriadicClosure algorithm takes as input the existing trust network and checks the 

neighbourhood (trust network) of a pair of users. If the two users are not already 

connected and the intersection of these two neighbourhoods is greater than zero (if 

these two users share at least one neighbour), then each one of these users is added to 

the trust network of the other user, viz. they are mutually trusted. This step is repeated 

until the whole trust network is examined. Finally, the algorithm outputs the expanded 

trust network consisting of the trust networks of all the users. 

A 

B 

C 

D 

E 

F 

G 

A 

B 

C 

D 

E 

F 

G 

Algorithm 6 TriadicClosure  
Input: trust network  
Output: expanded trust network 
Begin 
for each pair of users a, b in the trust network not adjacent 
 Set Ta= T'a =trust network of user a 
 Set Tb= trust network of user b 
 if |Ta ∩ Tb|>0 
  T'a.Add(b) 
  ADD b to T'b 
 end if 
end for 
return the new trust network 
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6.4 Calculating trust with JaccardCoefficient 
In the previous section, we examined how the TriadicClosure algorithm infers new trust 

relationships in an existing trust network. However, these trust relationships, although 

directed, are not weighted. In real-world social and trust networks, relationships can be 

found as directed or undirected and the former can be found either as weighted or 

unweighted. In the TriadicClosure approach, as we saw in the example (Figure 6-2) of 

the previous section, the relationships of the trust network must be directed. The 

algorithm can infer trust relationships based on the direction of the relationships. In 

binary trust networks, trust weight is either 1, indicating full trust, or 0, indicating no 

trust. Additionally, there are trust networks with gradual trust weights of various scales, 

but not being the usual case. 

Hence, after inferring the new trust network, the next step could be to give a weight to 

the inferred relationships. As mentioned, TidalTrust and MoleTrust use the weighted 

average (Eq. 4.6) to calculate the unknown trust value. Consequently, one possible 

solution would be to use the weighted mean for calculating the unknown trust value of 

the relationships inferred from the TriadicClosure algorithm. In the experimental study 

(Section 7.1), the TriadicClosure inference, combined with the weighted average for 

calculating trust, will be one of the compared methods. 

However, the weighted mean algorithm is meaningless in binary trust networks where 

trust weights are not gradual, since the calculated trust value would be always equal to 

1. Therefore, a new method is proposed to calculate the unknown trust value of an 

inferred trust relationship. The proposed method is called JaccardCoefficient and it is a 

modified version of the Jaccard coefficient similarity (Eq. 4.2). Specifically, the trust 

weight of an inferred trust relationship between an active user a  and a target user u  is 

defined as the ratio of the number of common neighbours of the two users over the 

number of the total neighbours of the two users and is given by the formula: 

 ,
a u

a u
a u

T T
t

T T





  (Eq. 6.2) 

where Ta  is the trust network (neighbourhood) of the active user a  and Tu  is the trust 

network of the target user u  with a∉Tu  and u∉Ta , meaning that the two users are not 

yet connected within the initial trust network. The calculated trust weight can take 
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values between 0 and 1. Thus, the specific method can be used to infer trust values for 

trust relationships on a continuous scale. 

 

6.5 Incorporating TriadicClosure in the recommendation 
process 

 As already highlighted, typical recommender systems suffer from sparsity of the ratings 

matrix, but also suffer from the cold-start problem for new users or new items. 

Incorporating trust in recommender systems alleviates this problem by providing rating 

predictions based on the trust network of each user. Although these methods 

significantly improve prediction accuracy and ratings coverage (Avesani and Massa, 

2005), let us consider that real-world trust networks follow the power law distribution, 

meaning that most users have a small neighbourhood and few users have a large trust 

network. The sparsity of the trust matrix affects the number of the recommendations 

that can be produced. Increasing the neighbourhood of users, in other words expanding 

their trust network, can increase the rating coverage and, thus, the number of the 

produced recommendations. 

Algorithm 7 JaccardCoefficient trust weight calculation  
Input: trust network  
Output: updated trust network with new trust values 
Begin 
for each pair of users a, b in the trust network not adjacent 
 if |Ta ∩ Tb|>0 

  ,
a b

a b
a b

T T
t

T T





 

 end if  
end for 
return the updated trust network 

Figure 6-3 Incorporating TriadicClosure in the recommendation process 
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Prediction of triads tending to close in a trust network and, thus, expanding an existing 

trust network, can be exploited in a trust-based recommender. Incorporating the 

TriadicClosure algorithm in the recommendation process is the proposed method to 

increase not only user coverage, but also rating coverage in a recommender system. 

The whole recommendation process is illustrated in Figure 6-3. The first step, taking as 

input the existing trust network, is to infer the new relationships and extract the 

expanded trust network. In this step, the trust value for the predicted relationship can 

be calculated by various methods, such as the weighted average (Eq. 4.6) or the 

JaccardCoefficient (Eq. 6.2). The next step is similar to the methods presented in Section 

4.2 where the trust metrics are incorporated into recommendation algorithms. 

Therefore, for predicting a recommended rating pa , i  for an active user a  and an item i , 

any of the two formulas (Eq. 3.14) and (Eq. 3.15) can be used. As stated, these two 

formulas were modified to be used in TidalTrust (Eq. 4.7) and MoleTrust (Eq. 4.8), 

respectively. 

6.5.1 An example with synthetic data 
The current section exemplifies the whole process described in the previous section, 

step-by-step. Assuming there is recommender system with eight items, denoted as i j , 

where j∈[1,8]  and seven users, denoted as u k  where k∈[1,7] . Each user u k  can rate 

items i j  with integer valued ratings r k j ∈[1,5] . The user-item ratings matrix is depicted 

in Table 6-1. Additionally, users can declare their trust to other users forming their own 

neighbourhood. The total trust network is depicted in Figure 6-4 with user-user 

(adjacency) matrix represented in Table 6-2. Note that the trust network in this example 

is binary, hence, value 1 indicates the directed trust.  

Suppose now that we want to predict a rating value p2 , 3  for item i3  for an active user 

u2 ,  as indicated with the question mark in Table 6-1. From the ratings matrix, we can 

observe that the specific item has been rated by users u1  and u7 . However, these two 

users do not belong to the neighbourhood of user u2  as they are not directly connected.  

Following the process as depicted above in Figure 6-3, the first step of this would be to 

expand the existing trust network of the user by predicting new connections. Thus, as 

described previously, the user-user matrix is initially processed to produce the 

expanded trust network. Consequently, the system identifies that u2  has two 

neighbours directly connected to the user, which forms the trust network Tuk  of the 
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user, thus Tu2={u4 ,  u5 } . Choosing to infer trust relationship through propagation, we 

can observe (blue arrows in Figure 6-5(a) and blue-bold values in Table 6-3) that only 

three relationships can be inferred: u1u5  ,  u2u6  ,  u3u6 .  Accordingly, we can 

note that, even with the propagation strategy, user u2  would connect only with u 6  who 

has not also provided any rating for item i 3  and, thus, no prediction can be made for 

this item.  

On the other hand, by exploiting the TriadicClosure algorithm, the trust network of user 

u2  is expanded, as illustrated with red arrows in Figure 6-5(a) and thus Tu2={u1 ,  u3 ,  

u4 ,  u5 ,  u7} . The result of applying the TriadicClosure algorithm on all users of Table 

6-2 is the trust matrix of Table 6-3 with the inferred relationships highlighted. Initially, 

the trust weight can be set to 1 following the binary mode of the original trust network. 

Nevertheless, if we want to estimate the trust value of the new trust relationships, we 

can use any similarity or trust metric. By applying the JaccardCoefficient metric (Eq. 6.2) 

proposed in Section 6.4, we can calculate the trust value of the inferred relationships, 

resulting in Table 6-4. Note that this metric could also be applied on the relationships 

inferred through propagation. 

 

Figure 6-4 Example trust network  

Table 6-1 User-item ratings matrix 
 i1 i2 i3 i4 i5 i6 i7 i8 
u1 3    4 5     4   
u2     ?            
u3   3     5       
u4 3 2  5 5     1 
u5   4   5     4   
u6   2            
u7   3  3 5  3 5 2 

 
  

u1 

u2 

u3 

u4 

u5 

u6 

u7 
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Table 6-2 User-user (adjacency) matrix of the trust network of Figure 6-4 
 u1 u2 u3 u4 u5 u6 u7 

u1    1    

u2    1 1   

u3     1   

u4      1  

u5      1  

u6        

u7      1  

Table 6-3 Updated user-user trust matrix with inferred trust relationships 
  u1 u2 u3 u4 u5 u6 u7 

u1   1   1   1 1 
u2 1   1 1 1 1 1 
u3   1     1 1   
u4         1 1  
u5       1   1 1 
u6              
u7       1 1 1   

Table 6-4 Trust matrix with JaccardCoefficient values of the inferred 
relationships 

  u1 u2 u3 u4 u5 u6 u7 
u1   0.5   1    1  
u2 0.5   0.5 1 1  0.5 
u3   0.5     1    
u4         1 1   
u5       1   1 1 
u6              
u7       1 1 1   

 

   

(a) (b) 

Figure 6-5 Updated trust network of Figure 6-4 after TriadicClosure and 
propagation 
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After the inference of the new relationships, the trust matrix of the expanded network 

(Table 6-4) and the user-item ratings matrix, as depicted in Table 6-1, are the inputs of 

the algorithm to predict a rating value for item i3  for the active user u2 . In this example, 

we can use the trust-based weighted mean (Eq. 4.7) to calculate the unknown rating 

p2 , 3  : 

2, ,3

2,3
2,

T

T

u u
u R

u
u R

t r

p
t









 

where RT  represents the trusted users by u2  that have also rated i3  thus, RT={u1 ,  u 7}.  

Consequently, p2 , 3  is calculated as: 

2, ,3
2,1 1,3 2,7 7,3

2,3
2, 2,1 2,7

0.5 * 4 1*3
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The procedure continues until all the items rated by trusted users, either directly or 

through triadic closure, are covered. Note that, with the propagation method, only 

three new relationships are inferred, with common trustee the user u6 . We can observe 

also that u6  has provided rating for only one item, i2 .  This signifies that, in the particular 

case of our example, predictions from any inferred relationships through propagation 

could be made only for i2 . Comparing the inference through the TriadicClosure method 

with the propagation we can observe that the TriadicClosure could increase not only 

user coverage, but also rating coverage. In the next chapter, a series of experiments 

with real-world data verifies this observation and, moreover, proves that the 

TriadicClosure also increases accuracy. 

6.6 Conclusion 
Homophily states that people tend to associate with those having something in 

common and is a phenomenon affecting social relationships at various levels. Based on 

this phenomenon, triadic closure is a fundamental mechanism of link formation in social 

networks which can be perceived as triads tending to close up. About 60% of all the new 

connections in a social network are formed via triadic closure (Kossinets and Watts, 

2009).  
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Based on this mechanism, a novel method is proposed to infer trust relationships in 

trust networks. The proposed method is called TriadicClosure and is based on the 

intuition that “if two people in a social network have a friend in common, then there is 

an increased possibility that they will become friends themselves too.” In addition, a 

novel method to calculate the trust weight of a trust relationship is proposed based on 

the Jaccard Coefficient similarity metric exploited on the trust network. Both methods 

and their algorithms are thoroughly described along with the way to incorporate the 

proposed methods in the recommendation process. Finally, both methods were 

evaluated with synthetic data to prove their validity. As a next step, there is a need to 

further evaluate the two methods with a real-world dataset and compare their 

performance with other state-of-the-art methods. 
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Experimental evaluation 

This chapter presents a series of experiments conducted for testing and evaluating the 

effectiveness of the proposed methods discussed in the previous chapter. The empirical 

study was conducted with two different datasets (Filmtrust and Epinions), aiming to 

compare the performance of the proposed methods with different state-of-the-art 

trust-based methods. Recall that the experimental evaluation intends to address the 

specific questions set in Section 2.5.3. 

7.1 Experimental design 
The experiments are divided into four conceptual stages as described in Section 2.5.3. 

Stage 1 TriadicClosure basic evaluation, in which the TriadicClosure algorithm 

is compared with basic trust-based approaches. 

Stage 2  TriadicClosure total performance, in which the TriadicClosure 

algorithm is incorporated into the state-of-the-art trust-based 

approaches. 

Stage 4  JaccardCoefficient performance, in which the JaccardCoefficient 

method is compared against all the above methods.  

Stage 5  Performance of TriadicClosure and JaccardCoefficient for different 

views, where all the above methods are compared for different views 

(as defined in Section 2.5.3) of users. 

The state-of-the-art trust-based approaches with which TriadicClosure and 

JaccardCoefficient will be compared with, are the TidalTrust and MoleTrust as described 
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earlier in Sections 4.5.4 and 4.5.5 respectively. Specifically, the methods used in the 

experiment are defined as: 

 TT is the TidalTrust algorithm (Eq. 4.7)  

o TTx is the TidalTrust implemented for propagation length x, where 

x={1,2,3,4} 

 MT is the MoleTrust algorithm (Eq. 4.8) 

o MTx is the MoleTrust implemented for propagation length x, where 

x={1,2,3,4} 

 TC is the TriadicClosure method as described in algorithm 6 

o TC CF is the TriadicClosure implemented for collaborative filtering (CF) 

as in (Eq. 4.8)  

o TC WM is the TriadicClosure implemented for weighted mean (WM) as 

in (Eq. 4.7) 

 MTx+TC is the combined TriadicClosure with MoleTrust for propagation length 

x, where x={1,2,3,4} 

 TTx+TC is the combined TriadicClosure with TidalTrust for propagation length 

x, where x={1,2,3,4} 

 JC is the JaccardCoefficient method as described in algorithm 7. 

 METHODx+JC is the incorporation of JaccardCoefficient into one of the stand-

alone METHODs (MT or TT) or the combined METHODs with the TriadicClosure 

(MT+TC or TT+TC) for propagation length x. 

 

7.2 Evaluation results and analysis 
The current section presents the evaluation results of all the experiments conducted as 

described in Section 7.1 which are divided into four stages: 

Stage 1 TriadicClosure basic evaluation 

This is the initial stage, in which the experiments intend to answer the questions: 

(Q1) How does the TriadicClosure algorithm perform on accuracy compared 

with different state-of-the-art trust-based methods? 

(Q2) What is the impact of the TriadicClosure on coverage? 

(Q3) How does the TriadicClosure algorithm perform on large datasets? 
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Initially, the TriadicClosure was implemented in two versions: i) TriadicClosure with 

weighted mean (TC-WM) and ii) TriadicClosure with collaborative filtering (TC-CF). The 

results of the experiments on the Filmtrust dataset (Table 7-1) showed that in terms of 

accuracy, the TC-CF presents the best performance of all the other compared methods. 

Recall that lower values of RMSE and MAE indicate better accuracy. Notice, that TC-WM 

compared with TidalTrust (TT) performs better in terms of accuracy but this is not the 

case when compared with MoleTrust (MT). The reason is that incorporating 

collaborative filtering in trust-based systems, may increase the accuracy, as one can 

notice from the comparison of accuracy performance also between TT and MT (recall 

that MT incorporates CF). The results of the experiments on the Epinions dataset (Table 

7-2) on the other hand show that not only the TC-CF but also the TC-WM increases the 

accuracy compared with the TT and MT algorithms. This means that on large datasets, 

the positive impact of the TriadicClosure on accuracy is greater than the impact of 

incorporating the CF algorithm. 

In terms of coverage, we can observe that on Filmtrust the ratings coverage (RC) and 

the user coverage (UC) are improved with TriadicClosure at about 34.50%. Moreover, 

on Epinions, the improvement of coverage is remarkable with an increase of 578.52% 

for RC and 107.93% for UC. Finally, the percentage improvement of the overall 

performance (FMeasure) with the implementation of TriadicClosure is about 18% for 

the first propagation length for both datasets. 

Table 7-1 First-step evaluation results on Filmtrust dataset 

Algorithm RMSE MAE RC UC FMeasure 
TT 1.133 0.852 21.20 32.23 1.387 
MT  1.004 0.758 21.15 31.03 1.447 
TC-WM 1.048 0.800 28.53 33.69 1.439 
TC-CF 0.943 0.716 28.47 32.23 1.489 

 

Table 7-2 First-step evaluation results on Epinions dataset 

Algorithm RMSE MAE RC UC FMeasure 
TT 1.370 0.969 4.47 30.26 1.146 
MT 1.306 0.949 4.47 30.26 1.171 
TC-WM 1.214 0.891 30.33 62.92 1.362 
TC-CF 1.171 0.869 30.32 62.91 1.382 
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Figure 7-1 Accuracy performance 

Figure 7-2 Coverage performance  

 

Stage 2 TriadicClosure total performance 

The experiments of this stage, intend to answer the questions: 

(Q4) How does the TriadicClosure algorithm perform on accuracy and 

coverage, when integrated within other state-of-the-art trust-based 

methods? 

(Q5) What is the impact of propagation on the TriadicClosure?  

In this stage, TT and MT are implemented for different propagation lengths and 

specifically for lengths 1, 2, 3, 4. Additionally, TC is integrated with TT and MT for the 

same propagation lengths. The results of the experiments on the Filmtrust dataset 

(Table 7-3) show that the best performance is achieved when TriadicClosure is 

combined with MoleTrust for propagation length 4 (MT4+TC). Similar to the 

observations of the experimental results of stage 1, we can notice that the integration 
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of TriadicClosure to TidalTrust outperforms the original version of TidalTrust but does 

not outperform the original version of MoleTrust. However, when the dataset is large 

and sparse, like the Epinions, the results (Table 7-4) indicate that TriadicClosure has a 

positive impact on the performance improvement.  

Regarding coverage (RC and UC), the results on both the datasets showed that 

TriadicClosure is steadily improving coverage as the propagation length increases, 

nevertheless the percentage improvement compared to the original methods is 

minimal when propagation length is greater than 3 (Table 7-5).  

The evaluation results of this stage of experiments show that the integration of 

TriadicClosure with other state-of-the-art trust-based methods can improve their 

performance, yet, the percentage improvement tends to zero when propagation length 

is greater than 3. 

Table 7-3 Evaluation results for different propagation lengths on Filmtrust 
dataset 

Algorithm RMSE MAE RC UC FMeasure 
TT1 1.133 0.852 21.2 32.23 1.387 
TT2 1.046 0.795 27.96 33.82 1.439 
TT3 1.013 0.771 30.37 33.95 1.458 
TT4 0.999 0.762 31.32 33.95 1.465 
MT1  1.004 0.758 21.15 31.03 1.447 
MT2  0.940 0.713 27.89 32.23 1.489 
MT3  0.912 0.692 30.31 32.29 1.506 
MT4  0.904 0.686 31.36 32.29 1.511 
TT1+TC 1.048 0.800 28.53 33.69 1.439 
TT2+TC 1.036 0.790 29.17 34.02 1.445 
TT3+TC 1.009 0.769 30.95 34.15 1.460 
TT4+TC 0.998 0.762 31.82 34.15 1.467 
MT1 +TC 0.943 0.716 28.47 32.23 1.489 
MT2 +TC 0.933 0.708 29.11 32.43 1.494 
MT3 +TC 0.910 0.691 30.89 32.49 1.507 
MT4 +TC 0.903 0.686 31.86 32.49 1.512 
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Table 7-4 Evaluation results for different propagation lengths on Epinions 
dataset 

Algorithm RMSE MAE RC UC FMeasure 
TT1 1.370 0.969 4.47 30.26 1.146 
TT2 1.249 0.914 25.83 61.58 1.340 
TT3 1.156 0.861 44.23 67.2 1.400 
TT4 1.121 0.841 50.87 67.79 1.419 
MT1  1.306 0.949 4.47 30.26 1.171 
MT2  1.202 0.890 25.84 61.63 1.362 
MT3  1.120 0.836 44.27 67.24 1.417 
MT4  1.089 0.816 50.93 67.84 1.435 
TT1+TC 1.214 0.891 30.33 62.92 1.362 
TT2+TC 1.209 0.889 32.35 64.37 1.366 
TT3+TC 1.154 0.860 44.83 67.84 1.401 
TT4+TC 1.121 0.841 51.07 68.37 1.419 
MT1 +TC 1.171 0.869 30.32 62.91 1.382 
MT2 +TC 1.166 0.866 32.35 64.37 1.387 
MT3 +TC 1.118 0.835 44.85 67.83 1.418 
MT4 +TC 1.089 0.816 51.12 68.38 1.435 

 

Table 7-5 Impact of TriadicClosure on TidalTrust and MoleTrust 
Filmtrust  % improvement 

Algorithm combination Propagation RMSE FMeasure RC UC 

TC on TT 

1 7.47 3.75 34.58 4.53 
2 0.94 0.43 4.33 0.59 
3 0.36 0.17 1.91 0.59 
4 0.15 0.09 1.60 0.59 

TC on MT 

1 6.13 2.91 34.61 3.87 
2 0.79 0.35 4.37 0.62 
3 0.18 0.10 1.91 0.62 
4 0.10 0.07 1.59 0.62 

Epinions      

TC on TT 

1 11.41 18.80 578.52 107.93 
2 3.23 1.97 25.24 4.53 
3 0.20 0.10 1.36 0.95 
4 -0.02 0.00 0.39 0.86 

TC on MT 

1 10.34 18.08 578.30 107.90 
2 2.99 1.80 25.19 4.45 
3 0.19 0.09 1.31 0.88 
4 -0.01 0.00 0.37 0.80 
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Stage 3 JaccardCoefficient performance 

In this stage the experiments intend to answer the question: 

(Q6) How does the JaccardCoefficient algorithm perform on accuracy and 

coverage, when implemented within TriadicClosure algorithm and 

other state-of-the-art trust-based methods? 

Evaluation results from the previous stage showed that when propagation length is 

greater than 3 there is no significant improvement of the performance for none of the 

methods examined while the cost of calculation is substantially large. Hence, it would 

be pointless to compare any improvement on performance for propagation length 

greater than 3. Thus, the experiments from now on (for stage 3 and stage 4) will 

examine the performance of the algorithms for propagation lengths 1, 2 and 3. 

In this stage, the JaccardCoefficient algorithm is incorporated in all the examined 

methods and specifically the TidalTrust (TT) the MoleTrust (MT) and the TriadicClosure 

(TC) combined with the other two methods (TT+TC and MT+TC) for different 

propagation lengths. 

Comparing the performance of the JaccardCoefficient on Filmtrust dataset (Table 7-6) 

incorporated in the examined methods, with the performance of the original methods 

(Table 7-3), we can observe that the proposed method does not improve the 

performance of any method except in the case of propagation length 1 for the original 

methods of TidalTrust and MoleTrust (TT1 and MT1). Particularly when 

JaccardCoefficient is combined with TriadicClosure the performance is much worse 

than that of the original method. The same observations arise from the experiments on 

the Epinions dataset (Table 7-7). This can be explained due to the fact that in both 

datasets the trust statements are binary, however, the inferred weight of a relationship 

with JaccardCoefficient is gradual with a value between 0 and 1. Hence, the predicted 

trust weight (a value between 0 and 1) is always compared to a larger value of trust 

weight which is always 1. Moreover, in a large dataset such as the Epinions, the 

predicted trust weight takes really small values since the denominator (Ta ∪Tu ) of the 

formula (Eq. 6.2) can take large values. Finally, the proposed method of 

JaccardCoefficient for calculating the weight of the inferred trust relationships seems 

to worsen the performance compared to the weighted average (Eq. 4.6) which in trust 
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networks with binary trust weights produces also binary results, in other words, 1s for 

the inferred relationships.  

Table 7-6 Performance of JaccardCoefficient combined with other methods on 
Filmtrust dataset 

Algorithm RMSE MAE RC UC FMeasure 
Filmtrust 

TT1+JC 1.088 0.814 9.23 11.07 1.349 
TT2+JC 1.008 0.762 12.15 11.41 1.409 
TT3+JC 1.000 0.757 12.27 11.41 1.413 
TT1+TC+JC 1.074 0.816 28.53 33.69 1.427 
TT2+TC+JC 1.063 0.806 29.17 34.02 1.432 
TT3+TC+JC 1.026 0.780 30.95 34.15 1.452 
MT1+JC 1.002 0.750 9.23 11.07 1.386 
MT2+JC 0.940 0.707 12.11 11.41 1.439 
MT3+JC 0.937 0.706 12.22 11.41 1.441 
MT1+TC+JC 0.960 0.728 28.47 32.23 1.481 
MT2+TC+JC 0.950 0.720 29.11 32.43 1.486 
MT3+TC+JC 0.924 0.701 30.88 32.49 1.501 

 

Table 7-7 Performance of JaccardCoefficient combined with other methods on 
Epinions dataset 

Algorithm RMSE MAE RC UC FMeasure 
Epinions 

TT1+JC 1.365 0.967 3.72 23.10 1.120 
TT2+JC 1.267 0.923 18.68 44.05 1.318 
TT3+JC 1.178 0.873 43.37 66.17 1.388 
TT1+TC+JC 1.243 0.907 29.20 62.38 1.347 
TT2+TC+JC 1.279 0.928 31.42 64.06 1.331 
TT3+TC+JC 1.179 0.873 44.54 67.80 1.389 
MT1+JC 1.300 0.945 3.69 22.78 1.142 
MT2+JC 1.215 0.897 17.26 41.45 1.338 
MT3+JC 1.185 0.878 21.99 43.58 1.364 
MT1+TC+JC 1.195 0.884 29.20 62.38 1.369 
MT2+TC+JC 1.226 0.904 31.42 64.05 1.357 
MT3+TC+JC 1.139 0.848 44.54 67.79 1.408 
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Table 7-8 Impact of JaccardCoefficient on all algorithms 
Filmtrust  % improvement 

Algorithm combination Propagation RMSE FMeasure RC UC 

JC on TT 
1 3.93 -2.69 -56.47 -65.64 
2 3.62 -2.07 -56.55 -66.27 
3 1.25 -3.03 -59.60 -66.41 

JC on TT+TC 
1 -2.42 -0.84 0.00 0.00 
2 -2.62 -0.89 0.00 0.00 
3 -1.64 -0.54 0.00 0.00 

JC on MT 
1 0.26 -4.15 -56.37 -64.32 
2 0.01 -3.36 -56.59 -64.61 
3 -2.77 -4.29 -59.70 -64.68 

JC on MT+TC 
1 -1.79 -0.54 0.00 0.00 
2 -1.90 -0.56 0.00 0.00 
3 -1.54 -0.44 -0.03 0.00 

Epinions   

JC on TT 
1 0.427 -2.334 -16.775 -23.665 
2 -1.463 -1.617 -27.671 -28.471 
3 -1.945 -0.809 -1.958 -1.524 

JC on TT+TC 
1 -2.370 -1.095 -3.727 -0.853 
2 -5.846 -2.539 -2.852 -0.484 
3 -2.191 -0.884 -0.659 -0.053 

JC on MT 
1 0.468 -2.496 -17.395 -24.724 
2 -1.099 -1.742 -33.222 -32.753 
3 -5.852 -3.764 -50.320 -35.185 

JC on MT+TC 
1 -2.092 -0.932 -3.690 -0.853 
2 -5.130 -2.127 -2.821 -0.477 
3 -1.904 -0.737 -0.659 -0.053 

 

 

Stage 4 Performance of TriadicClosure and JaccardCoefficient for different views 

The final stage intends to answer the last question: 

(Q7) What is the performance comparison of the two proposed methods on 

different views of users? 

In this stage, the two proposed methods are examined for their performance on 

different views. Each dataset is split according to Massa and Avesani (2007) to views in 

order to examine the performance of the proposed algorithms for cold-start (who rated 
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less than 5 items), heavy raters (who rated more than 10 items), grey-sheep users (who 

rated more than 4 items, and the average difference between their average rating and 

the mean rating of each item is greater than 1), controversial items (which received 

ratings with standard deviation greater than 1.5) and niche items (which received less 

than 5 ratings). The statistics of these views for each dataset are shown in Table 2-2 and 

Table 2-3. The results of the experiments for each view showed that for: 

Cold-start users Table 7-9 and Table 7-10 

The impact of TC on TT and MT for cold-start users is positive for both datasets. 

However, we can observe that for Epinions when propagation level is 2 

although the coverage is improved, the RMSE is increased causing the 

FMeasure to decrease. This may be caused by the fact that the Epinions dataset 

of the experiments contain only 22 cold-start users since it is a dataset crawled 

from Tang et al. (2012) not to include too many cold-start users. 

Examining the behavior of JC, we can observe that the impact is mainly negative 

to all algorithms. However, there are some cases such as when JC is integrated 

into the combined MT+TC and TT+TC methods, which seem to improve the 

performance when propagation length is 1. The main problem is detected on 

the large decrease in the ratings and user coverage, when JC is exploited, 

causing the FMeasure also to decrease although the RMSE shows 

improvement. Generally, the behavior of JC for cold-start users does not 

produce stable results while it can be mostly observed that it does not improve 

the overall performance of any of the algorithms. 

Heavy raters Table 7-11 and Table 7-12 

The impact of TC on TT and MT for heavy raters is positive for both datasets. 

Especially for Epinions, the overall performance is increased with the ratings 

and user coverage to show dramatic improvement. However, we can observe 

that for Filmtrust, when propagation level is 2, although the RMSE is improved, 

the coverage is decreased causing also the FMeasure to decrease.  

Regarding JC we can observe that again the impact is mainly negative to almost 

all algorithms except when JC is integrated with MT+TC where all the 

performance measures for all propagation lengths is increased but only for 
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Filmtrust. Again, the behavior of JC for heavy raters does not produce stable 

results but we can mostly observe that it does not improve the overall 

performance of the majority of algorithms. 

Grey-sheep users Table 7-13 and Table 7-14 

The results for grey-sheep users are very similar to that of heavy raters for both 

proposed algorithms (TC and JC) and both datasets. In other words, the impact 

of TC is positive on TT and MT for both datasets and all the propagation lengths. 

Regarding JC, we can observe again that the impact is mostly negative to all 

algorithms.  

Controversial items Table 7-15 and Table 7-16 

For controversial items, the results show that TC has a positive impact only on 

TT and MT for propagation length 1 and only on Epinions. In all the other cases 

(algorithms and propagation lengths) does not show any positive impact.  

Similar to grey-sheep users and heavy raters, the impact of JC is mainly negative 

to all algorithms. 

Niche items Table 7-17 and Table 7-18 

For niche items, we can observe that TC shows a positive impact on TT and MT 

for both datasets and all propagation lengths. Especially on Epinions, the 

algorithm demonstrates extremely good results with coverage increased over 

1000% and FMeasure increased over 100% for the first propagation length. 

Again, similar to the other views, the impact of JC is generally negative to all 

algorithms 

Concluding, the TriadicClosure algorithm shows improvement on the performance of 

all views, compared to the original methods of TidalTrust and MoleTrust. On the other 

hand, JaccardCoefficient does not give stable results, with the majority of them being 

negative for the performance of all the algorithms. 
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Table 7-9 Performance of all methods for cold-start users on the two datasets 
Algorithm RMSE MAE RC UC FMeasure RMSE MAE RC UC FMeasure 

 Cold-start users 
 Filmtrust Epinions 

TT1 1.199 0.853 17.11 20.28 1.345 0.922 0.700 7.81 18.18 1.401 
TT2 1.201 0.880 23.19 24.91 1.359 0.897 0.734 31.25 45.45 1.514 
TT3 1.146 0.819 23.85 25.62 1.386 1.127 0.764 56.25 63.64 1.419 
TT1+TC 1.171 0.861 23.52 24.56 1.373 0.914 0.624 42.19 50.00 1.515 
TT2+TC 1.155 0.854 24.51 25.62 1.383 0.981 0.701 43.75 50.00 1.484 
TT3+TC 1.126 0.813 25.00 26.33 1.397 1.149 0.800 56.25 63.64 1.408 
TT1+JC 1.088 0.814 9.23 11.07 1.349 0.936 0.646 6.25 13.64 1.365 
TT2+JC 1.008 0.762 12.15 11.41 1.409 0.742 0.591 23.44 31.82 1.574 
TT3+JC 1.155 0.876 5.76 4.98 1.266 1.156 0.771 56.25 63.64 1.404 
TT1+TC+JC 1.074 0.816 28.53 33.69 1.427 0.915 0.609 42.19 50.00 1.515 
TT2+TC+JC 1.063 0.806 29.17 34.02 1.432 1.048 0.740 43.75 50.00 1.452 
TT3+TC+JC 1.127 0.816 25.00 26.33 1.396 1.156 0.771 56.25 63.64 1.404 
MT1 1.210 0.889 14.14 13.88 1.329 1.037 0.722 7.81 18.18 1.353 
MT2 1.255 0.923 19.24 16.37 1.325 1.046 0.693 29.69 40.91 1.441 
MT3 1.246 0.900 19.74 16.73 1.331 1.268 0.815 51.56 50.00 1.348 
MT1+TC 1.195 0.862 19.90 16.73 1.355 1.196 0.766 40.63 45.45 1.378 
MT2+TC 1.220 0.893 20.56 17.08 1.344 1.194 0.804 42.19 45.45 1.380 
MT3+TC 1.223 0.896 20.89 17.44 1.344 1.284 0.832 51.56 50.00 1.341 
MT1+JC 1.002 0.750 9.23 11.07 1.386 1.045 0.652 6.25 13.64 1.321 
MT2+JC 0.940 0.707 12.11 11.41 1.439 0.729 0.419 20.31 22.73 1.572 
MT3+JC 1.074 0.781 5.76 4.98 1.298 0.750 0.487 25.00 27.27 1.574 
MT1+TC+JC 0.960 0.728 28.47 32.23 1.481 1.211 0.748 40.63 45.45 1.371 
MT2+TC+JC 0.950 0.720 29.11 32.43 1.486 1.227 0.830 42.19 45.45 1.364 
MT3+TC+JC 1.226 0.901 20.89 17.44 1.342 1.272 0.815 51.56 50.00 1.346 
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Table 7-10 Impact of TC and JC on all methods for cold-start users 
Filmtrust  % improvement 

Algorithm combination Propagation RMSE FMeasure RC UC 

TC on TT 
1 2.38 2.08 37.50 21.05 
2 3.84 1.76 5.67 2.86 
3 1.74 0.81 4.83 2.78 

TC on MT 
1 1.32 1.94 40.70 20.51 
2 2.77 1.45 6.84 4.35 
3 1.81 0.98 5.83 4.26 

JC on TT 
1 4.33 -10.20 -76.92 -82.46 
2 3.67 -6.86 -75.18 -80.00 
3 -0.80 -8.63 -75.86 -80.56 

JC on TT+TC 
1 1.84 0.74 0.00 0.00 
2 0.86 0.34 0.00 0.00 
3 -0.10 -0.04 0.00 0.00 

JC on MT 
1 24.07 -3.03 -72.09 -74.36 
2 15.24 -1.74 -70.09 -69.57 
3 13.76 -2.46 -70.83 -70.21 

JC on MT+TC 
1 0.03 0.01 0.00 0.00 
2 -1.31 -0.56 0.00 0.00 
3 -0.25 -0.11 0.00 0.00 

Epinions   

TC on TT 
1 0.88 8.16 440.00 175.00 
2 -9.40 -1.99 40.00 10.00 
3 -1.96 -0.76 0.00 0.00 

TC on MT 
1 -15.34 1.85 420.00 150.00 
2 -14.14 -4.23 42.11 11.11 
3 -1.24 -0.57 0.00 0.00 

JC on TT 
1 -1.56 -2.60 -20.00 -25.00 
2 17.23 3.97 -25.00 -30.00 
3 -2.62 -1.01 0.00 0.00 

JC on TT+TC 
1 -0.12 -0.04 0.00 0.00 
2 -6.83 -2.18 0.00 0.00 
3 -0.64 -0.26 0.00 0.00 

JC on MT 
1 -0.86 -2.38 -20.00 -25.00 
2 30.27 9.08 -31.58 -44.44 
3 40.82 16.73 -51.52 -45.45 

JC on MT+TC 
1 -1.28 -0.54 0.00 0.00 
2 -2.80 -1.17 0.00 0.00 
3 0.91 0.43 0.00 0.00 
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Table 7-11 Performance of all methods for heavy raters on the two datasets 
Algorithm RMSE MAE RC UC FMeasure RMSE MAE RC UC FMeasure 

 Heavy raters 
 Filmtrust Epinions 

TT1 1.135 0.854 21.53 36.24 1.386 1.368 0.968 4.47 30.73 1.147 
TT2 1.048 0.797 28.25 37.18 1.438 1.248 0.913 25.77 61.84 1.340 
TT3 1.014 0.772 30.75 37.18 1.457 1.156 0.861 44.13 67.25 1.399 
TT1+TC 1.048 0.800 28.85 36.97 1.439 1.214 0.891 30.25 63.14 1.362 
TT2+TC 1.037 0.790 29.42 37.18 1.445 1.208 0.889 32.27 64.59 1.366 
TT3+TC 1.011 0.770 31.27 37.18 1.460 1.154 0.860 44.73 67.90 1.401 
TT1+JC 1.091 0.816 9.55 13.91 1.352 1.362 0.964 3.72 23.49 1.121 
TT2+JC 1.014 0.765 12.57 14.02 1.409 1.267 0.922 18.65 44.27 1.318 
TT3+JC 1.005 0.760 12.69 14.02 1.414 1.179 0.873 44.43 67.87 1.388 
TT1+TC+JC 1.075 0.818 28.85 36.97 1.426 1.243 0.907 29.12 62.59 1.347 
TT2+TC+JC 1.066 0.809 29.42 37.18 1.431 1.279 0.928 31.34 64.27 1.332 
TT3+TC+JC 1.028 0.781 31.27 37.18 1.451 1.179 0.873 44.43 67.87 1.388 
MT1 1.000 0.756 21.53 36.24 1.450 1.303 0.948 4.47 30.73 1.172 
MT2 0.935 0.711 28.25 37.18 1.492 1.201 0.889 25.79 61.88 1.363 
MT3 0.907 0.689 30.76 37.18 1.509 1.119 0.836 44.16 67.31 1.418 
MT1+TC 0.938 0.713 28.85 36.97 1.492 1.170 0.869 30.25 63.13 1.383 
MT2+TC 0.927 0.704 29.42 37.18 1.497 1.165 0.866 32.27 64.59 1.387 
MT3+TC 0.905 0.688 31.28 37.18 1.510 1.117 0.834 44.73 67.90 1.419 
MT1+JC 1.003 0.750 9.55 13.91 1.390 1.296 0.943 3.70 23.16 1.143 
MT2+JC 0.943 0.710 12.52 14.02 1.441 1.214 0.896 17.23 41.69 1.339 
MT3+JC 0.939 0.708 12.64 14.02 1.443 1.184 0.878 21.95 43.77 1.364 
MT1+TC+JC 0.955 0.726 28.85 36.97 1.483 1.194 0.884 29.13 62.59 1.370 
MT2+TC+JC 0.945 0.717 29.42 37.18 1.489 1.225 0.903 31.35 64.27 1.357 
MT3+TC+JC 0.920 0.699 31.27 37.18 1.503 1.138 0.848 44.43 67.87 1.408 
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Table 7-12 Impact of TC and JC on all methods for heavy raters 
Filmtrust  % improvement 

Algorithm combination Propagation RMSE FMeasure RC UC 

TC on TT 
1 7.61 3.79 33.99 2.01 
2 1.03 0.46 4.14 0.00 
3 0.35 0.16 1.70 0.00 

TC on MT 
1 3.85 -2.52 -55.63 -61.60 
2 3.29 -2.01 -55.51 -62.29 
3 0.89 -2.98 -58.72 -62.29 

JC on TT 
1 -2.55 -0.88 0.00 0.00 
2 -2.78 -0.95 0.00 0.00 
3 -1.73 -0.57 0.00 0.00 

JC on TT+TC 
1 -0.32 -4.15 -55.63 -61.60 
2 -0.80 -3.43 -55.67 -62.29 
3 -3.57 -4.35 -58.92 -62.29 

JC on MT 
1 -1.89 -0.56 0.00 0.00 
2 -2.01 -0.59 0.00 0.00 
3 -1.66 -0.48 -0.03 0.00 

JC on MT+TC 
1 6.21 2.89 33.99 2.01 
2 0.89 0.37 4.14 0.00 
3 0.18 0.09 1.70 0.00 

Epinions   

TC on TT 
1 11.28 18.72 577.05 105.47 
2 3.18 1.94 25.21 4.45 
3 0.19 0.10 1.36 0.96 

TC on MT 
1 10.25 18.03 576.96 105.46 
2 2.96 1.78 25.14 4.37 
3 0.18 0.09 1.29 0.88 

JC on TT 
1 0.49 -2.29 -16.66 -23.56 
2 -1.48 -1.62 -27.64 -28.41 
3 -2.00 -0.79 0.69 0.91 

JC on TT+TC 
1 -2.37 -1.09 -3.75 -0.86 
2 -5.85 -2.54 -2.87 -0.49 
3 -2.20 -0.89 -0.66 -0.05 

JC on MT 
1 0.55 -2.45 -17.28 -24.62 
2 -1.10 -1.74 -33.17 -32.63 
3 -5.85 -3.76 -50.28 -34.96 

JC on MT+TC 
1 -2.09 -0.93 -3.71 -0.86 
2 -5.14 -2.13 -2.84 -0.49 
3 -1.91 -0.74 -0.66 -0.05 
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Table 7-13 Performance of all methods for grey-sheep users on the two datasets 
Algorithm RMSE MAE RC UC FMeasure RMSE MAE RC UC FMeasure 

 Grey-sheep users 
 Filmtrust Epinions 

TT1 1.515 1.228 19.94 34.41 1.205 1.852 1.420 6.03 33.42 0.986 
TT2 1.497 1.243 24.82 34.41 1.221 1.683 1.326 37.18 62.93 1.141 
TT3 1.515 1.269 26.13 34.41 1.214 1.613 1.296 57.29 67.17 1.181 
TT1+TC 1.453 1.195 25.96 34.41 1.243 1.652 1.306 42.11 64.43 1.158 
TT2+TC 1.470 1.224 26.58 34.41 1.236 1.649 1.306 44.72 65.67 1.160 
TT3+TC 1.502 1.262 27.31 34.41 1.221 1.612 1.294 57.89 68.14 1.182 
TT1+JC 1.517 1.247 2.80 6.45 1.016 1.864 1.439 4.66 25.34 0.958 
TT2+JC 1.463 1.228 4.36 6.45 1.107 1.700 1.332 26.56 45.99 1.126 
TT3+JC 1.460 1.226 4.42 6.45 1.111 1.629 1.303 57.73 68.08 1.173 
TT1+TC+JC 1.476 1.212 25.96 34.41 1.232 1.675 1.315 41.07 63.84 1.146 
TT2+TC+JC 1.509 1.257 26.58 34.41 1.217 1.714 1.335 43.93 65.34 1.128 
TT3+TC+JC 1.521 1.278 27.31 34.41 1.212 1.629 1.303 57.73 68.08 1.173 
MT1 1.200 0.956 19.94 34.41 1.353 1.755 1.404 6.03 33.42 1.027 
MT2 1.193 0.970 24.82 34.41 1.365 1.607 1.309 37.28 63.06 1.178 
MT3 1.188 0.977 26.13 34.41 1.369 1.545 1.282 57.45 67.36 1.214 
MT1+TC 1.179 0.953 25.96 34.41 1.373 1.577 1.290 42.11 64.43 1.194 
MT2+TC 1.175 0.956 26.58 34.41 1.376 1.576 1.291 44.72 65.67 1.196 
MT3+TC 1.182 0.968 27.31 34.41 1.374 1.544 1.280 57.88 68.14 1.215 
MT1+JC 1.251 1.010 2.80 6.45 1.104 1.770 1.425 4.61 25.08 0.995 
MT2+JC 1.247 1.036 4.08 6.45 1.178 1.611 1.305 24.24 43.58 1.166 
MT3+JC 1.246 1.044 4.15 6.45 1.181 1.591 1.296 30.52 45.15 1.181 
MT1+TC+JC 1.185 0.958 25.96 34.41 1.370 1.597 1.297 41.07 63.84 1.184 
MT2+TC+JC 1.190 0.967 26.58 34.41 1.369 1.633 1.321 43.95 65.34 1.168 
MT3+TC+JC 1.193 0.977 27.31 34.41 1.368 1.558 1.287 57.73 68.08 1.208 
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Table 7-14 Impact of TC and JC on all methods for grey-sheep users 
Filmtrust  % improvement 

Algorithm combination Propagation RMSE FMeasure RC UC 

TC on TT 
1 4.05 3.13 30.16 0.00 
2 1.84 1.24 7.10 0.00 
3 0.87 0.62 4.50 0.00 

TC on MT 
1 1.70 1.51 30.16 0.00 
2 1.48 0.80 7.10 0.00 
3 0.50 0.32 4.50 0.00 

JC on TT 
1 -0.16 -15.68 -85.96 -81.25 
2 2.29 -9.28 -82.45 -81.25 
3 3.60 -8.51 -83.07 -81.25 

JC on TT+TC 
1 -1.52 -0.85 0.00 0.00 
2 -2.67 -1.51 0.00 0.00 
3 -1.29 -0.76 0.00 0.00 

JC on MT 
1 -4.29 -18.41 -85.96 -81.25 
2 -4.48 -13.70 -83.57 -81.25 
3 -4.88 -13.74 -84.13 -81.25 

JC on MT+TC 
1 -0.45 -0.18 0.00 0.00 
2 -1.25 -0.51 0.00 0.00 
3 -0.92 -0.38 0.00 0.00 

Epinions   

TC on TT 
1 10.80 17.40 598.12 92.79 
2 2.01 1.70 20.26 4.35 
3 0.09 0.07 1.04 1.45 

TC on MT 
1 10.16 16.31 598.12 92.79 
2 1.89 1.52 19.93 4.13 
3 0.08 0.06 0.76 1.16 

JC on TT 
1 -0.67 -2.86 -22.74 -24.17 
2 -1.04 -1.35 -28.57 -26.92 
3 -0.96 -0.64 0.78 1.36 

JC on TT+TC 
1 -1.44 -1.03 -2.47 -0.91 
2 -3.98 -2.78 -1.76 -0.50 
3 -1.06 -0.71 -0.26 -0.10 

JC on MT 
1 -0.84 -3.13 -23.52 -24.95 
2 -0.28 -1.03 -34.99 -30.89 
3 -2.94 -2.72 -46.87 -32.98 

JC on MT+TC 
1 -1.28 -0.86 -2.47 -0.91 
2 -3.59 -2.33 -1.71 -0.50 
3 -0.88 -0.55 -0.26 -0.10 
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Table 7-15 Performance of all methods for controversial items on the two datasets 
Algorithm RMSE MAE RC UC FMeasure RMSE MAE RC UC FMeasure 

 Controversial items 
 Filmtrust Epinions 

TT1 2.725 2.350 13.70 15.00 0.623 2.084 1.667 6.25 10.01 0.890 
TT2 2.816 2.429 19.18 20.00 0.583 2.016 1.655 31.92 39.84 0.977 
TT3 2.607 2.176 23.29 23.33 0.686 2.068 1.737 55.16 59.52 0.958 
TT1+TC 2.922 2.615 17.81 20.00 0.531 2.036 1.685 37.35 44.16 0.969 
TT2+TC 2.816 2.429 19.18 20.00 0.583 2.045 1.697 39.92 46.56 0.966 
TT3+TC 2.607 2.176 23.29 23.33 0.686 2.072 1.742 56.01 60.25 0.956 
TT1+JC 3.246 3.214 9.59 10.00 0.370 2.059 1.652 5.06 7.97 0.886 
TT2+JC 3.304 3.278 12.33 13.33 0.343 2.033 1.657 22.77 28.54 0.963 
TT3+JC 3.304 3.278 12.33 13.33 0.343 2.106 1.754 55.62 60.05 0.939 
TT1+TC+JC 2.922 2.615 17.81 20.00 0.531 2.064 1.694 35.92 43.01 0.955 
TT2+TC+JC 2.816 2.429 19.18 20.00 0.583 2.128 1.738 38.75 45.68 0.925 
TT3+TC+JC 2.567 2.103 23.29 23.33 0.705 2.106 1.754 55.62 60.05 0.939 
MT1 2.238 1.938 13.70 15.00 0.854 2.006 1.619 6.25 10.01 0.923 
MT2 2.458 2.169 19.18 20.00 0.756 1.931 1.593 31.93 39.87 1.018 
MT3 2.306 1.980 23.29 23.33 0.832 1.953 1.638 55.20 59.58 1.014 
MT1+TC 2.536 2.261 17.81 20.00 0.717 1.935 1.603 37.35 44.16 1.018 
MT2+TC 2.458 2.169 19.18 20.00 0.756 1.943 1.615 39.92 46.56 1.015 
MT3+TC 2.306 1.980 23.29 23.33 0.832 1.956 1.641 56.01 60.25 1.013 
MT1+JC 2.667 2.637 9.59 10.00 0.644 1.986 1.608 4.98 7.83 0.915 
MT2+JC 2.816 2.779 12.33 13.33 0.578 1.936 1.584 20.98 26.22 1.007 
MT3+JC 2.816 2.779 12.33 13.33 0.578 1.959 1.614 26.85 31.53 1.001 
MT1+TC+JC 2.536 2.261 17.81 20.00 0.717 1.963 1.614 35.94 43.01 1.004 
MT2+TC+JC 2.458 2.169 19.18 20.00 0.756 2.020 1.657 38.77 45.69 0.977 
MT3+TC+JC 2.260 1.920 23.29 23.33 0.854 1.986 1.653 55.62 60.05 0.998 
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Table 7-16 Impact of TC and JC on all methods for controversial items 
Filmtrust  % improvement 

Algorithm combination Propagation RMSE FMeasure RC UC 

TC on TT 
1 -7.24 -14.79 30.00 33.33 
2 0.00 0.00 0.00 0.00 
3 0.00 0.00 0.00 0.00 

TC on MT 
1 -13.32 -15.98 30.00 33.33 
2 0.00 0.00 0.00 0.00 
3 0.00 0.00 0.00 0.00 

JC on TT 
1 -19.12 -40.65 -30.00 -33.33 
2 -17.34 -41.15 -35.71 -33.33 
3 -26.76 -50.01 -47.06 -42.86 

JC on TT+TC 
1 0.00 0.00 0.00 0.00 
2 0.00 0.00 0.00 0.00 
3 1.50 2.76 0.00 0.00 

JC on MT 
1 -19.18 -24.56 -30.00 -33.33 
2 -14.57 -23.51 -35.71 -33.33 
3 -22.14 -30.52 -47.06 -42.86 

JC on MT+TC 
1 0.00 0.00 0.00 0.00 
2 0.00 0.00 0.00 0.00 
3 1.97 2.63 0.00 0.00 

Epinions   

TC on TT 
1 2.28 8.91 497.98 341.32 
2 -1.46 -1.16 25.07 16.87 
3 -0.19 -0.19 1.54 1.22 

TC on MT 
1 3.53 10.30 497.98 341.32 
2 -0.63 -0.26 25.01 16.79 
3 -0.14 -0.12 1.48 1.12 

JC on TT 
1 1.19 -0.48 -18.95 -20.38 
2 -0.86 -1.46 -28.65 -28.38 
3 -1.85 -1.95 0.82 0.89 

JC on TT+TC 
1 -1.37 -1.45 -3.83 -2.61 
2 -4.04 -4.21 -2.93 -1.91 
3 -1.65 -1.77 -0.71 -0.33 

JC on MT 
1 1.01 -0.94 -20.24 -21.79 
2 -0.26 -1.06 -34.29 -34.23 
3 -0.31 -1.24 -51.35 -47.08 

JC on MT+TC 
1 -1.43 -1.38 -3.76 -2.59 
2 -3.97 -3.74 -2.87 -1.89 
3 -1.54 -1.46 -0.71 -0.33 
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Table 7-17 Performance of all methods for niche items on the two datasets 
Algorithm RMSE MAE RC UC FMeasure RMSE MAE RC UC FMeasure 

 Niche items 
 Filmtrust Epinions 

TT1 1.366 1.031 14.04 19.63 1.258 1.108 0.722 0.53 2.30 0.612 
TT2 1.342 1.011 19.35 26.44 1.285 1.250 0.850 4.17 19.92 1.181 
TT3 1.278 0.962 25.36 31.94 1.325 1.263 0.870 14.93 47.37 1.308 
TT1+TC 1.331 1.002 20.11 27.49 1.292 1.256 0.859 6.46 26.41 1.240 
TT2+TC 1.323 0.994 20.52 28.53 1.296 1.259 0.861 7.21 28.75 1.252 
TT3+TC 1.270 0.954 25.96 32.72 1.330 1.263 0.870 15.64 48.25 1.311 
TT1+JC 1.357 1.040 10.44 12.57 1.243 1.086 0.706 0.46 1.94 0.562 
TT2+JC 1.374 1.048 13.76 16.49 1.253 1.231 0.833 2.89 13.67 1.117 
TT3+JC 1.364 1.040 14.14 17.02 1.259 1.280 0.878 15.14 47.81 1.302 
TT1+TC+JC 1.339 1.006 20.11 27.49 1.288 1.260 0.860 5.83 24.90 1.226 
TT2+TC+JC 1.331 0.998 20.52 28.53 1.293 1.266 0.863 6.60 27.40 1.239 
TT3+TC+JC 1.274 0.954 25.96 32.72 1.328 1.280 0.878 15.14 47.81 1.302 
MT1 1.189 0.908 14.01 19.37 1.338 1.033 0.728 0.53 2.30 0.618 
MT2 1.214 0.920 19.23 25.39 1.344 1.182 0.853 4.17 19.94 1.206 
MT3 1.174 0.895 25.21 30.63 1.374 1.187 0.857 14.94 47.43 1.343 
MT1+TC 1.206 0.913 20.05 26.96 1.350 1.182 0.854 6.45 26.41 1.270 
MT2+TC 1.198 0.907 20.40 27.49 1.354 1.185 0.856 7.21 28.75 1.283 
MT3+TC 1.172 0.891 25.81 31.41 1.376 1.187 0.857 15.64 48.25 1.346 
MT1+JC 1.122 0.870 10.44 12.57 1.346 1.016 0.720 0.46 1.93 0.567 
MT2+JC 1.191 0.917 13.63 15.97 1.336 1.164 0.839 2.72 12.58 1.125 
MT3+JC 1.185 0.912 14.04 16.75 1.340 1.173 0.847 4.46 18.26 1.220 
MT1+TC+JC 1.214 0.919 20.05 26.96 1.346 1.186 0.856 5.84 24.90 1.256 
MT2+TC+JC 1.207 0.912 20.40 27.49 1.350 1.190 0.859 6.62 27.40 1.270 
MT3+TC+JC 1.176 0.894 25.81 31.41 1.375 1.201 0.866 15.14 47.81 1.337 
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Table 7-18 Impact of TC and JC on all methods for niche items 
Filmtrust  % improvement 

Algorithm combination Propagation RMSE FMeasure RC UC 

TC on TT 
1 2.55 2.67 43.24 40.00 
2 1.41 0.88 6.05 7.92 
3 0.63 0.35 2.37 2.46 

TC on MT 
1 -1.36 0.89 43.12 39.19 
2 1.25 0.73 6.09 8.25 
3 0.19 0.14 2.38 2.56 

JC on TT 
1 0.65 -1.21 -25.68 -36.00 
2 -2.37 -2.46 -28.92 -37.62 
3 -6.73 -4.99 -44.26 -46.72 

JC on TT+TC 
1 -0.57 -0.27 0.00 0.00 
2 -0.60 -0.29 0.00 0.00 
3 -0.28 -0.13 0.00 0.00 

JC on MT 
1 5.65 0.59 -25.51 -35.14 
2 1.86 -0.66 -29.11 -37.11 
3 -0.90 -2.47 -44.29 -45.30 

JC on MT+TC 
1 -0.66 -0.27 0.00 0.00 
2 -0.71 -0.29 0.00 0.00 
3 -0.31 -0.12 0.00 0.00 

Epinions   

TC on TT 
1 -13.40 102.73 1117.89 1047.39 
2 -0.72 6.02 72.84 44.37 
3 0.02 0.21 4.71 1.87 

TC on MT 
1 -14.44 105.42 1116.27 1047.39 
2 -0.24 6.38 72.79 44.19 
3 0.00 0.20 4.66 1.73 

JC on TT 
1 1.97 -8.08 -13.63 -15.65 
2 1.50 -5.41 -30.83 -31.36 
3 -1.30 -0.51 1.37 0.94 

JC on TT+TC 
1 -0.33 -1.16 -9.69 -5.74 
2 -0.53 -1.01 -8.46 -4.72 
3 -1.32 -0.72 -3.19 -0.91 

JC on MT 
1 1.68 -8.36 -13.84 -16.09 
2 1.49 -6.67 -34.72 -36.94 
3 1.23 -9.16 -70.17 -61.50 

JC on MT+TC 
1 -0.30 -1.12 -9.39 -5.74 
2 -0.49 -0.98 -8.23 -4.72 
3 -1.18 -0.62 -3.19 -0.91 
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7.3 Summary and conclusion 
This chapter presented and analysed the results of the experimental evaluation 

conducted for the proposed methods (TriadicClosure and JaccardCoefficient). Initially, 

the TriadicClosure algorithm was compared with basic trust-based approaches and then 

it was incorporated into these approaches to measure their performance. Then, the 

JaccardCoefficient method was compared against all the above methods and, finally, the 

performance of both the proposed methods was evaluated for different views of 

datasets. 

The results of all these experiments indicate that, in large and sparse datasets, the 

positive impact of TriadicClosure in coverage is impressive, reaching an improvement of 

578% in RC, while the positive impact of the TriadicClosure on accuracy is greater than 

the impact of incorporating the Collaborative Filtering algorithm. Generally, the 

TriadicClosure algorithm outperforms the other methods when propagation level is 1, 

while, combined with the other methods (MoleTrust and TidalTrust), for all propagation 

lengths it produces better results compared with the results of each original method. 

Moreover, the results show that the integration of TriadicClosure with other state-of-

the-art trust-based methods can improve their performance, while the percentage 

improvement tends to zero when propagation length is greater than 3. 

Concluding, the TriadicClosure algorithm shows improvement on the performance of all 

views, compared to the original methods of TidalTrust and MoleTrust. However, the 

percentage improvement of the performance of the combined methods over the 

performance of the original methods is decreasing as the propagation level increases. 

Moreover, as the propagation level increases, it is computationally more expensive, 

especially for large trust networks. This means that the TriadicClosure as stand-alone or 

combined with the MoleTrust with propagation level 2 are the methods giving the best 

performances with the lower computational expense. 

Regarding the JaccardCoefficient method for calculating the weight of the inferred trust 

relationships, the results, although not stable, in the majority showed that its impact on 

the performance is negative. A possible explanation for these results is that the weights 

of the trust networks of the datasets used in the experiments are binary.  



131 
 

 

  

Discussion, future work and 

conclusions 

8.1 Discussion 
To deal with the information overload problem, recommender systems adopt various 

techniques to filter information and produce suggestions for users. However, current 

approaches face limitations such as ‘lack of transparency’, ‘grey-sheep’, ‘synonymy and 

polysemy’ and ‘security and privacy’. With the advent of social networks, a new approach 

has been born, the so-called trust-based recommender systems, which exploit the 

relationships between users built in the social networks to produce more trustworthy 

recommendations than these from unknown users. Research on trust-based 

recommender systems, as discussed in Chapter 4, has demonstrated (Victor, Cornelis 

and DeCock, 2011) that the use of trust can significantly improve both the coverage and 

the accuracy of recommendations, especially with sparse datasets. Moreover, trust can 

significantly improve recommendations accuracy when item ratings are more extreme 

and show disagreement between users. However, the analysis of the major methods to 

infer trust in Chapter 5 revealed their limitations. More specifically, although the 

accuracy of the recommended ratings with trust-based approaches, such as TidalTrust 

(Golbeck, 2005) and MoleTrust (Massa and Avesani, 2005), has been proved to 

outperform some baseline recommender system algorithms, it is, however, strongly 

affected by the density of the trust network. Especially for users with no trusted 
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neighbours or even with not at least moderately trusted neighbours, it is impossible to 

find any trust path with the specific algorithms.  

Consequently, data sparsity is the major limitation characterising all the current systems, 

which affects not only the item-ratings matrix, but also the trust-ratings matrix of the 

trust-based systems. Furthermore, the examination and comparison of the main 

literature in graph-based models showed that current approaches propagate trust, 

based purely on the direct propagation strategy of the atomic propagation. However, 

the homophily phenomenon, on which propagation is based, is not fully addressed by 

the direct propagation. This revealed the need to fully exploit the propagative property 

of trust, as defined by the homophily phenomenon, by considering not only ‘the friend 

of my friend’ to propagate trust, but also the ‘common friends’ intuition. Thus, a novel 

method was proposed to infer trust, filling this gap.  

More specifically, homophily is a phenomenon affecting social relationships at various 

levels, stating that people tend to associate with those having something in common. 

Based on this phenomenon, triadic closure is a fundamental mechanism of link formation 

in social networks, reaching about 60% of all the new connections formed in a social 

network (Kossinets and Watts, 2009). Additionally, Bianconi et al. (2014) found that 

communities emerge naturally via triadic closure, especially when the network is very 

sparse. 

This mechanism is the basis for the novel method, called triadic closure, proposed in this 

study, to infer trust relationships in trust networks. In addition, a novel method to 

calculate the trust weight of a trust relationship is proposed based on the Jaccard 

Coefficient similarity metric exploited in the trust network. Both methods and their 

algorithms were thoroughly described in Chapter 6 along with the way to incorporate 

them in the recommendation process. Initially, both methods were evaluated with 

synthetic data to prove their validity and, then, a thorough experimental evaluation was 

conducted with real-world datasets in order to compare their performance with other 

state-of-the-art methods. 

The results of the experiments showed that triadic closure outperforms other state-of-

the-art trust-based methods with a substantial improvement on coverage. Incorporated 

in other methods, the triadic closure algorithm showed improvement on the 

performance, compared to the original methods. However, the percentage 
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improvement was decreasing as the propagation level was increasing while the 

computational expense was increasing, especially for large trust networks. Thus, it is 

concluded that triadic closure, either as stand-alone or combined with the MoleTrust 

with propagation level 2, gives the best performances with lower computational 

expense. The experiments for different views of the real-world datasets indicated that 

triadic closure also produced particularly good results regarding accuracy for heavy-

raters and grey-sheep users, but the best improvement in performance was achieved for 

cold-start users and items. 

From the results of the experimental evaluation, it is apparent that the triadic closure 

method addresses various limitations of typical recommendation methods. More 

specifically the triadic closure method outperformed other well-known methods in 

regards to the cold-start problem, either for users or for items. Moreover, in grey-sheep 

users, the algorithm performed well, since it improved the accuracy and coverage 

compared to the other methods. But, most of all, the method contributed to the 

alleviation of data sparsity by substantially improving ratings and user coverage since the 

method expands the existing trust network, filling the sparse trust matrix with values.  

The fact that the best percentage improvement for the triadic closure algorithm 

combined with direct propagation is achieved when the propagation level is 1 and 2 can 

be explained as follows: triadic closure is applied on explicit trust statements and, thus, 

triads close only for existing trust links and not for inferred. In other words, the triadic 

closure algorithm complements the inference of direct propagation and cannot be 

applied on the inferred relations of level 2. After the initial inference of the trust links 

with the triadic closure, no more links can be inferred by the algorithm. Then, the 

percentage improvement for different levels depends totally on the combined method. 

Since it is becoming too time-consuming and, thus, computationally too expensive, to 

calculate the inferred relations for propagation more than 2, while there is no significant 

improvement in the performance, it is concluded that the triadic closure algorithm 

combined with a direct propagation of level 2 can provide the best performance in terms 

of accuracy and coverage. 

The triadic closure method actually is a novel trust metric to infer trust relationships 

based on a fundamental mechanism of link formation within social networks. Recently, 

Gao et al. (2016) introduced a novel trust metric based on collective semiring methods 
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to address the sparsity of trust connections. However, the method was not 

experimentally compared with other state-of-the-art trust-based methods.  

Several other trust-based approaches exist in the recent literature that model trust for 

recommendations, such as that of Mei et al. (2017) who built a trustee-influence based 

trust model wherein a trustee’s activeness or trustworthiness is used to determine trust 

relationships. Moreover, Liu, Cao and Yu (2016) supported that users are influenced by 

public opinion and modelled the conformity phenomenon in online rating sites using 

three influence factors in order to understand the user behaviours and to improve the 

rating prediction accuracy. This method could prove valuable incorporated in the triadic 

closure method for combining local and global trust.  

Recently, Rafailidis and Crestani, (2017) introduced a weighting strategy to balance the 

influences of ‘friends and foes’ selections by building two intermediate trust/distrust-

preference user latent spaces to capture the correlations of users’ preferences with 

friends’ trust and foes’ distrust degrees, accordingly. Previously, Rafailidis, (2016) 

modelled the trust and distrust relationships into signed graphs, and then generated 

clusters to incorporate them into a matrix factorisation framework. The method 

produced lower prediction errors for different levels of sparsity compared with other 

matrix factorisation methods. However, it did not deal with the sparsity of the trust-

rating matrix. 

Azadjalal, Moradi and Abdollahpouri, (2014) used the Pareto dominance concept to 

identify trust value between trusted users and active user. However, their experimental 

results showed that coverage was not increased compared with the other methods. 

Similarly, Ma, King and Lyu (2011) focused mainly on accuracy of recommendations and 

did not take into account coverage, either for ratings or for users.  

Consider also that machine learning models, although popular within the research 

community, lack interpretability and do not provide enough explanations for their 

recommendations. However, explanations have been shown to improve the 

transparency of a recommender system by justifying recommendations, and this, in turn, 

can enhance the user’s trust in the recommendations (Abdollahi, 2017). However, trust-

based approaches can provide transparency, especially when the inferred relationships 

are resulting from the explicit personal network and, thus, the triadic closure method 

can contribute to explanations. 
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As a trust metric, triadic closure can also be combined with other methods to improve 

recommendation accuracy. Combination with content-based approaches could provide 

satisfactory results or combined with co-occurrence algorithms could give a possible 

solution to the context-dependency of trust. 

Besides, it is very easy to adopt and incorporate the triadic closure algorithm into existing 

trust-based systems. The algorithm is based just on existing trust networks and can run 

offline in order not to affect the time calculation of the recommendation. So, this could 

improve the performance of a trust-based recommender system and, finally, the 

effectiveness of the system. 

Finally, the triadic closure method not only outperforms the classic trust metrics, but 

also, compared to other recent methods, provides proof that it can contribute to the 

sparsity problem of user-item and user-user ratings. Considering also that the 

improvement of accuracy in recommendations is due to the prediction of user 

connections that would connect in the majority anyway, based on the triadic closure 

mechanism, the method can be proved as durable, as the links are formed based on this 

mechanism.  

Regarding the Jaccard Coefficient, the results of the experiments were not stable and 

mainly showed that its impact on the performance was negative. A possible explanation 

for these results is that the weights of the trust networks of the datasets used in the 

experiments are binary. Thus, the comparison of the gradual weights produced by the 

Jaccard Coefficient method, which are values lower than 1, were always compared to 

the values of the datasets, which are always 1s. In other words, the produced values 

were always lower than the compared original values, which may lead to misleading 

results regarding accuracy. Similarly to the current study, Guo, Zhang and Thalmann 

(2014) proposed an approach to solve the cold-start and sparsity problems. Specifically, 

ratings of a user’s trusted neighbours were merged to complement and represent the 

preferences of the user and to find other users with similar preferences. Furthermore, a 

confidence-aware similarity measure between users was introduced, which included a 

parameter very similar to the Jaccard Coefficient method. Thus, combining this 

confidence-aware similarity measure with the triadic closure method may alleviate the 

limitation of the Jaccard Coefficient and produce more stable results. 



136 
 

Considering the experimental evaluation of Jaccard Coefficient that didn’t manage to 

prove any improvement on accuracy due to the lack of gradual trust weights in the 

datasets, it revealed a strong limitation of current evaluation methodologies for the 

trust-based recommender systems. The majority of research studies dealing with trust 

metrics for recommender systems evaluate their approaches based on two datasets 

(Filmtrust and Epinions), since these two datasets contain both user-item and user-user 

ratings. Although, initially, the Filmtrust dataset was released with gradual trust weights, 

currently, this dataset is not available, but only with bivalent trust values. Since this 

limitation affects the evaluation of methods, like the Jaccard Coefficient, it is apparent 

that there is a need for producing real-world datasets with gradual ratings for both user-

item and user-user matrices. Moreover, the Filmtrust dataset was crawled from an 

experimental platform for the needs of a project (Golbeck, 2006b) and, for this reason, 

the cold-start users and items are minimal and, additionally, the ratings may include a 

bias due to real-world social connection of the users participated in the project. 

Another serious limitation that current trust-based methods face is that of privacy 

preservation. Several studies exist for preserving privacy, based on ratings perturbation, 

also called randomisation (Polat and Du, 2003; Polatidis et al., 2017), anonymisation 

methods (Casino et al., 2015; Zigomitros, Papageorgiou and Patsakis, 2016) and 

cryptographic methods (Backes et al., 2010). The balance between transparency, 

security and privacy preservation when expanding trust networks to increase accuracy 

still remains a challenge. 

Returning to the evaluation method used in this study, one alternative would be to use 

live user experiments for validation instead of offline. However, as already stated, the 

offline method is a less expensive and not time-consuming with reproducible results and 

the chance to compare with the same data and same conditions other methods. 

Moreover, with offline experiments, the algorithms could be tested for their 

performance on large datasets. Although live-experiments could evaluate user 

performance, satisfaction, participation and the usability of the interface, this approach 

has a number of limitations, such as small portion of users, not necessarily representative 

sample, it is expensive and may produce misleading results from biased actions. 
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Finally, the aim of this study, as initially set in Section 1.2, was achieved while all the 

research questions set in Section 1.5 have been addressed: 

RQ1. How can the accuracy of recommender systems be improved? Is it possible to 

utilise trust data to improve accuracy? 

The literature review of Chapter 3 revealed that the ultimate goal of almost every 

new approach in the research area of recommender systems is to improve the 

accuracy of recommendations. Moreover, the literature review of Chapter 4 

proved that the utilisation of trust statements expressed between users within a 

social network can significantly improve the accuracy of recommendations. 

Additionally, the experiments of Section 7.2 proved that the triadic closure 

method, which utilises existing trust statements between users, can significantly 

improve recommendation accuracy. 

RQ2. How can the sparsity in the item and trust ratings matrices be dealt with ? 

One of the limitations that face typical recommender systems, as discussed in 

Section 5.1, is the sparsity of the item-ratings matrix. This can be alleviated with 

the adoption of trust statements between users, as described in Section 4.4. 

However, trust-based recommender systems also suffer from sparsity of the trust-

ratings matrix. An approach to deal with this problem is to expand a trust network 

by inferring new trust relationships. Approaches that deal with this problem are 

the trust metrics, which are thoroughly described in Sections 4.4 and 4.2. 

Moreover, the triadic closure method deals with the sparsity of both matrices, 

since the experiments of Section 7.2 showed that the method can substantially 

improve the coverage for both item and trust ratings. 

RQ3. How can we expand an existing trust network? 

Based on the computational properties of trust described in Section 4.2 and the 

small-world phenomenon in Section 4.3.1, trust can be inferred in order to expand 

an existing trust network. Various methods exist that expand existing trust 

networks, as described in Sections 4.4 and 4.2. A novel method also is proposed, 

called the triadic closure, in Section 6.3 based on the homophily phenomenon and, 

specifically, on the triadic closure mechanism governing the social networks. 
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RQ4. Is there any new way of utilising existing trust data to expand the trust network? 

Can we predict the new connections from knowledge of the existing trust 

network? 

Since trust between two users can be seen as a link between them in a social 

network, trust prediction can be seen as a link-prediction problem, as described in 

Section 4.3.2. Additionally, propagation is a popular method to infer trust from 

existing trust data. As described in Section 4.3.3, taking into account existing trust 

statements, new relationships can be inferred through the propagating property 

of trust. However, the homophily phenomenon on which propagation is based is 

not fully exploited by the existing state-of-the-art methods. For this reason, a 

novel method, the triadic closure, was proposed in Chapter 6 that utilises the 

knowledge of the existing trust data to expand the trust network based on the 

triadic closure mechanism for links. The novel method exploits the triadic closure 

mechanism that governs the link formation in a social network on the existing trust 

relationships in order to predict new trust relationships. 

RQ5. Can we predict topical similarity from the trust network? 

Taking advantage of the trust statements in an existing trust network, a novel 

method was proposed in Section 6.4, the Jaccard Coefficient, to predict the weight 

of trust relationships. Based on the Jaccard Coefficient similarity measure, the 

method predicts topical similarity, taking into account structural information of 

the trust network. The experimental evaluation of the method in Section 7.2 with 

real-world datasets didn’t produce stable results, while, in the majority, the impact 

on the performance in terms of accuracy and coverage was negative. Although 

further investigation is needed with real-world datasets with non-binary trust 

statements, the answer for this question that emerged from the experiments is 

that in fact we cannot predict topical similarity from the structure of a trust 

network. 

RQ6. What is the impact of expanding a trust network in the accuracy of recommender 

systems? 

In Section 4.2, various state-of-the-art methods were presented that expand the 

trust network through propagation, in order to improve the accuracy of 

recommender systems. Moreover, the experimental evaluation (Section 7.2) of 

the triadic closure and the other state-of-the-art methods proved that not only 
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the accuracy of recommender systems, but also the ratings coverage, can 

substantially be improved by inferring new trust relationships in an existing trust 

network. 

8.2 Future work 
The current study can be proved valuable to researchers and practitioners since it 

provides the procedures to be applicable in the field of bibliographic recommendations. 

Recently, Ciotti et al. (2016) found that homophily governs the creation of links in citation 

networks. Citation networks represent the relationships between researchers or papers 

constructed by the citations of academic papers. Citation networks have been widely 

used to study the evolution of science and investigate the dynamics regarding knowledge 

flows and sharing between papers and authors. Applying the triadic closure method, 

proposed in this study, can contribute to the scientific community for recommending 

academic papers to researchers closely related to their interests. Except the old papers 

missed by the researcher, the system also can recommend new papers currently 

published, which otherwise could not be found easily, since are not yet cited and do not 

have an impact factor on which current systems are based.  

Moreover, scientific communities can also be constructed though triadic closure based 

on the co-citation and co-authorship data and, in conjunction with content analysis of 

the publications, can extract scientific trends and serendipity in recommendations. Thus, 

a possible extension of the proposed method would be to combine it with content-based 

algorithms. Furthermore, the combination with an algorithm finding co-occurrences 

would follow the recent trend implemented by Google, which identifies the similarity 

between two pages not only by the links, but also by frequency of occurrence and close 

proximity of similar keywords existing in the two pages. Co-occurrence algorithms also 

can be used to deal with the context-dependency property of trust. Context is a concept 

usually not considered in trust-based recommender systems, either for simplicity 

reasons (Golbeck, 2005) or because the system is context specific. However, as discussed 

in Section 4.2, trust is context-dependent and should be considered in the 

recommendation process. Consequently, a future direction would be to consider context 

within the triadic closure algorithm so as to produce context-oriented trust links. 

Distrust is another concept that should also be considered and examined and which is 

usually examined separately (Lewicki, Mcallister and Bies, 1998; Guha et al., 2004; Ziegler 
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and Lausen, 2005; Victor, Cornelis and DeCock, 2011; Fang, Guo and Zhang, 2015; Tang, 

2015) since its properties differ considerably from the properties of trust. Accordingly, 

as a first step, there is a need to extensively research the prediction of distrust links in 

order to examine the impact of the triadic closure in distrust prediction. 

Additionally, as already mentioned, research regarding the aggregation process in trust 

inference is still in its infancy (Victor, Cornelis and DeCock, 2011) needing to give greater 

attention to new aggregation operators combined with propagation, but also to 

operators preserving privacy. 

Finally, future work should also be done regarding the Jaccard Coefficient method. More 

specifically, experiments on datasets with gradual trust weights should be conducted in 

order to further examine the behaviour of the algorithm on recommender systems with 

gradual trust weights. 

8.3 Conclusions 
Generally, recommender systems as services can be found from a simple search in a 

search engine to a product search in an e-commerce platform or music platform, etc., in 

order to deal with the information overload problem. The initial idea for this study was 

originated from the need, as an Internet user, to find and be recommended more 

relevant items, such as products, research papers, bibliography, news and other general 

information. Thus, accuracy in recommendations is important to researchers, but also to 

Internet users as customers, for reducing the time of searching and gaining more 

relevant recommendations. Moreover, improving recommendation accuracy is valuable 

also to e-commerce service providers for increasing their revenue.  

The aim of this study was to improve the accuracy of trust-based recommender systems 

through the inference of new connections between users, based on existing 

relationships within a trust network. The main idea was to utilise the available 

information given by the trust network in order to expand it, by inferring new trust 

connections and, finally, improve recommendation accuracy.  

Propagation is one of the main methods for inferring new trust relationships, since one 

of the main challenges in trust-based approaches is to expand the personal trust network 

of a user by inferring new trust relationships. Current approaches propagate trust based 

on the intuition that “the friend of my friend is also my friend”. However, the homophily 
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phenomenon defines that similarity breeds connection. This means that persons having 

a common friend tend also to become friends. In social networks, this mechanism, also 

known as ‘triadic closure’, is a fundamental mechanism of link formation governing the 

majority of new connections formed. However, this mechanism was not considered to 

any of the existing methods, leading to the inspiration that, if triadic closure was 

considered to infer trust connections, this could lead to improved accuracy of 

recommendations. 

Thus, based on the homophily phenomenon of social networks, and specifically on the 

triadic closure mechanism of link formation in social networks, a novel method was 

proposed to overcome the sparsity problem of the trust networks. Also, another method 

for calculating the trust value of an inferred trust relationship is proposed based on the 

Jaccard Coefficient similarity measure. Both the methods proposed exploit structural 

information of the trust graph to infer new trust relationships and calculate their trust 

value. Finally, through these two methods, trust-based recommendations were 

produced, which were compared to other existing state-of the-art methods. The results 

of the evaluation showed that the main method for inferring trust relationships 

surpasses the other methods in terms of accuracy and coverage. 

All the objectives of this study were met, since it initially performed a review on the 

literature of existing methods, and techniques on recommender systems reviewed, 

along with a review, identification and evaluation of the state-of-the-art trust-based 

approaches. A new method, the triadic closure, was developed for expanding existing 

trust networks along with a new method, the Jaccard Coefficient, to calculate trust value 

of the inferred trust relationships. Then, the influence on the accuracy of 

recommendations was investigated for both the proposed methods as stand-alone 

methods, but also integrated into other state-of-the-art methods. Finally, both methods 

were evaluated and compared with existing state-of-the-art approaches and the results 

were presented and analysed discussing the learning outcome suggesting future work. 

The main contribution of the current study is the use of a novel trust inference technique 

that increases the range of the existing neighbours of a user and improves 

recommendation accuracy, since it performs better than existing standard trust 

inference techniques. In fact, it is a novel trust metric. The novelty of the proposed 

approach is the way that relationships are handled, inspired by real-life scenarios and, 

especially, the triadic closure mechanism of social networks. Additionally, this study 
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provided evidence that the proposed model substantially improves prediction accuracy 

and coverage with respect to previous methods. 

The proposed method can be applied in many areas, from e-commerce platforms to 

bibliographic recommenders, but also into search engines. The triadic closure method 

can inspire researchers for extending it or finding new methods incorporating this one. 

In practice, the proposed method can improve bibliographic recommendations and also 

infer connections in collaboration networks. Consider also that Google currently uses co-

occurrences in its algorithm to find the similarity between two pages by calculating the 

frequency of occurrence, and close proximity of similar keywords existing in the pages. 

Combining the triadic closure and co-occurrence algorithms can deal with the context-

dependency property of trust. 

Concluding, as the online social networks continue to exponentially grow, the 

exploitation of the properties and structure characteristics of social networks can inspire 

novel methods to deal with the information overload problem and produce 

recommendations closer to the user’s needs. 
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Appendix A  

Java code 

 
public class TriadicClosure 
{ 
 
 /** 
  * TriadicClosure algorithm to infer trust 
  *  
  *  
  * @param userTrusteesMap 
  *  
  * @param source 
  *            source user 
  * @param maxDepth 
  *            maximum length of the searching path 
  * @return 
  */ 
 
 
 public static <U> Map<U, Double> runAlgorithm(Map<U, Set<U>> 
userTrusteesMap, 
   String source, int maxDepth, boolean jcFlag) 
 { 
  Map<U, Double> trustScores = new HashMap<>(); 
   
  /** 
   * Triadic Closure: adds the connection between two nodes with common 
neighbors  
   */ 
   
         for (U user : userTrusteesMap.keySet()){ 
          if ( ! user.equals(source) ){ 
            
           // get the map of source 
           Set<U> sourceMap = userTrusteesMap.get(source) != null ?  
             userTrusteesMap.get(source) : null; 
            
           //get the map of users 
           Set<U> userMap = userTrusteesMap.get(user) != null ?  
             userTrusteesMap.get(user) : null; 
           
           if (userMap == null || sourceMap == null ) continue; 
             
           Set<U> intersectionMap = findIntersection(userMap, sourceMap); 
           Set<U> unionMap = findUnion(userMap, sourceMap); 
            
           //calculate the Jaccard Coefficient 
           if ( jcFlag ) { 
            Double jc  = getJaccardCoefficient(intersectionMap,  
unionMap); 
             
         if (intersectionMap.size() > 0){ 
          trustScores.put (user, jc); 
         } 
           } 
           else { 
            if (intersectionMap.size() > 0){ 
             trustScores.put (user, 1d); 
            } 
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           } 
          } 
         } 
        return trustScores; 
 } 
  
  
 /** 
  * @param userTrusteesMap the input map 
  * @param trustScores the output map 
  * @param source 
  * @return the triadic closure 
  */ 
 public static <U> Map<U, Double> findTriadicClosure(Map<U, Map<U,Double>>  
 userTrusteesMap, Map<U, Double> trustScores, U source, boolean jcFlag) 
 { 
   
  /** 
   * Triadic Closure: adds the connection between two nodes with common 
neighbors  
   */ 
   
         for (U user : userTrusteesMap.keySet()){ 
          if ( ! user.equals(source) ){ 
            
           // get the map of source 
           Set<U> sourceMap = userTrusteesMap.get(source) != null ?  
             userTrusteesMap.get(source).keySet() : null; 
            
           //get the map of users 
           Set<U> userMap = userTrusteesMap.get(user) != null ?  
             userTrusteesMap.get(user).keySet() : null; 
           
           if (userMap == null || sourceMap == null ) continue; 
 
           Set<U> intersectionMap = findIntersection(userMap, sourceMap); 
            
           //calculate the Jaccard Coefficient 
           if ( jcFlag ) { 
            Double jc  = getJaccardCoefficient(sourceMap,  userMap); 
             
             
         if (intersectionMap.size() > 0){ 
          trustScores.put (user, jc); 
         } 
           } 
           else { 
            if (intersectionMap.size() > 0){ 
          trustScores.put (user, 1d); 
         } 
           } 
          } 
         } 
        return trustScores; 
 } 
  
 /** 
  * Calculate the Jaccard Coefficient (jc) as the intersection of two given 
sets/the union of these sets 
  * The sets are built here from the given map: there is one set built for 
source and another for user  
  * @param userTrusteesMap  
  * @param source 
  * @param user 
  * @return the Jaccard Coefficient or 1 in case source map or user map is 
empty or in case their intersection is empty. 
  */ 
 public static <U> Double getJaccardCoefficient( Map<U, Map<U,Double>>  
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 userTrusteesMap, U source, U user) { 
   // get the map of source 
   Set<U> sourceMap = userTrusteesMap.get(source) != null ?  
     userTrusteesMap.get(source).keySet() : null; 
    
   //get the map of users 
   Set<U> userMap = userTrusteesMap.get(user) != null ?  
     userTrusteesMap.get(user).keySet() : null; 
    
   if (userMap != null && sourceMap != null ) { 
    Set<U> intersectionMap = findIntersection(userMap, sourceMap); 
     
    if (intersectionMap.size() == 0){ 
     return 0d; 
    } 
     
    Set<U> unionMap = findUnion(userMap, sourceMap); 
    Double jc =  unionMap.size() > 0 ?  
    (double)intersectionMap.size() / 
(double)unionMap.size():(double)0; 
    jc = round(jc); 
     
    return jc;  
   } 
   else { 
    return 0d; 
   } 
 } 
  
 /** 
  * Calculate the Jaccard Coefficient (jc) as the intersection of two given 
sets/the union of these sets 
  * @param intersectionMap the intersection of two sets 
  * @param unionMap the union of two sets 
  * @return the Jaccard Coefficient 
  */ 
 private static <U> Double getJaccardCoefficient( Set<U> sourceMap, Set<U> 
userMap) { 
  Set<U> intersectionMap = findIntersection(userMap, sourceMap); 
  Set<U> unionMap = findUnion(userMap, sourceMap); 
  Double jc =  unionMap.size() > 0 ?  
    (double)intersectionMap.size() / (double)unionMap.size() : 
(double)0; 
  jc = round(jc); 
   
  return jc; 
 } 
  
 /** 
  * Rounds a double value to 2 decimal places 
  * @param value a double value 
  * @return rounded double to 2 decimal places 
  */ 
 private static double round(double value) { 
     BigDecimal bd = new BigDecimal(value); 
     bd = bd.setScale(2, RoundingMode.HALF_UP); 
     return bd.doubleValue(); 
 } 
  
 /** 
  * Finds the common elements between two given sets  
  * @param set1 
  * @param set2 
  * @return the intersection of 2 given sets 
  */ 
 private static <U> Set<U> findIntersection(Set<U> set1, Set<U> set2){ 
  Set<U> commonSet = new HashSet<U>(); 
  for (U element1 : set1){ 
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   for (U element2 : set2 ) { 
    if (element1.equals(element2)){ 
     commonSet.add(element1); 
    } 
   } 
  } 
  return commonSet; 
 } 
 
 /** 
  * Finds the union of elements between two given sets  
  * @param set1 
  * @param set2 
  * @return the union of 2 given sets 
  */ 
 private static <U> Set<U> findUnion(Set<U> set1, Set<U> set2){ 
  Set<U> commonSet = new HashSet<U>(); 
   
  commonSet.addAll(set1); 
  commonSet.addAll(set2); 
   
  return commonSet; 
 } 
}  



147 
 

References 

Abdollahi, B. (2017) ‘Using Explainability for Constrained Matrix Factorization’, pp. 79–
83. doi: 10.1145/3109859.3109913. 

Aberer, K. et al. (2006) ‘The Complex Facets of Reputation and Trust’, Computational 
Intelligence, Theory and Applications. Edited by B. Reusch. Springer Berlin Heidelberg, 
38, pp. 281–294. doi: 10.1007/3-540-34783-6_29. 

Aberer, K. and Despotovic, Z. (2001) ‘Managing trust in a peer-2-peer information 
system’, Proceedings of the Tenth International Conference on Information and 
Knowledge Management (CIKM01), pp. 310–317. doi: 
http://doi.acm.org/10.1145/502585.502638. 

Adali, S. (2013) Modeling Trust Context in Networks. Springer Publishing Company, 
Incorporated. Available at: http://dl.acm.org/citation.cfm?id=2490542 (Accessed: 25 
September 2014). 

Adamic, L. A. and Adar, E. (2003) ‘Friends and neighbors on the Web’, Social Networks, 
25(3), pp. 211–230. doi: 10.1016/S0378-8733(03)00009-1. 

Adomavicius, G. and Tuzhilin, A. (2005) ‘Toward the Next Generation of Recommender 
Systems: A Survey of the State-of-the-Art and Possible Extensions’, IEEE Transactions on 
Knowledge and Data Engineering. Piscataway, NJ, USA: IEEE Educational Activities 
Department, 17(6), pp. 734–749. doi: http://dx.doi.org/10.1109/TKDE.2005.99. 

Aggarwal, C. (2011) Social Network Data Analytics. Edited by C. C. Aggarwal. Boston, MA: 
Springer US. doi: 10.1007/978-1-4419-8462-3. 

Aiello, L. M. et al. (2012) ‘Friendship prediction and homophily in social media’, ACM 
Transactions on the Web, 6(2), pp. 1–33. doi: 10.1145/2180861.2180866. 

Airoldi, E. M. et al. (2006) ‘Mixed membership stochastic block models for relational data 
with application to protein-protein interactions’, Proceedings of the international 
biometrics society annual meeting, pp. 1–34. Available at: http://www-
2.cs.cmu.edu/~epxing/papers/ENAR06.pdf. 

Anagnostopoulos, A., Kumar, R. and Mahdian, M. (2008) ‘Influence and correlation in 
social networks’, Proceeding of the 14th ACM SIGKDD international conference on 
Knowledge discovery and data mining KDD 08, 10(1), p. 7. doi: 
10.1145/1401890.1401897. 

Andersen, R. et al. (2008) ‘Trust-based recommendation systems: an axiomatic 
approach’, in Proceeding of the 17th international conference on World Wide Web. ACM, 
pp. 199–208. 

Avesani, P. and Massa, P. (2005) ‘Moleskiing. it: a trust-aware recommender system for 
ski mountaineering’, International Journal for Infonomics, pp. 1–19. doi: 
10.1145/1067036. 

Azadjalal, M. M., Moradi, P. and Abdollahpouri, A. (2014) ‘Application of game theory 
techniques for improving trust based recommender systems in social networks’, 
Proceedings of the 4th International Conference on Computer and Knowledge 



148 
 

Engineering, ICCKE 2014, pp. 261–266. doi: 10.1109/ICCKE.2014.6993436. 

Backes, M. et al. (2010) ‘Anonymous webs of trust’, in Lecture Notes in Computer Science 
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in 
Bioinformatics), pp. 130–148. doi: 10.1007/978-3-642-14527-8_8. 

Balabanović, M. and Shoham, Y. (1997) ‘Fab: content-based, collaborative 
recommendation’, Communications of the ACM, 40(3), pp. 66–72. doi: 
10.1145/245108.245124. 

Banks, D. L. and Carley, K. M. (1996) ‘Models for network evolution’, Journal of 
Mathematical Sociology, 1995(March), pp. 1–36. doi: 10.1016/j.ehb.2012.05.003. 

Barber, K. S. and Kim, J. (2001) ‘Belief Revision Process Based on Trust: Agents Evaluating 
Reputation of Information Sources’, in Falcone, R., Singh, M., and Tan, Y.-H. (eds) Trust 
in Cyber-societies. Springer Berlin Heidelberg (Lecture Notes in Computer Science), pp. 
73–82. doi: 10.1007/3-540-45547-7_5. 

Basu, C., Hirsh, H. and Cohen, W. (1998) ‘Recommendation as Classification : Using Social 
and Content-Based Information in Recommendation’, Proceedings of the Fifteenth 
National Conference on Artificial Intelligence, pp. 714–720. doi: 10.1.1.36.4620. 

Bedi, P. and Kaur, H. (2006) ‘Trust based Personalized Recommender System’, INFOCOM 
Journal of Computer Science, 5(1), pp. 19–26. 

Bedi, P., Kaur, H. and Marwaha, S. (2007) ‘Trust based recommender system for the 
semantic web’, in Proceedings of the 20th international joint conference on Artifical 
intelligence. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc (IJCAI’07), pp. 
2677–2682. Available at: http://dl.acm.org/citation.cfm?id=1625275.1625706. 

Bedi, P. and Sharma, R. (2012) ‘Trust based recommender system using ant colony for 
trust computation’, Expert Systems with Applications. Elsevier Ltd, 39(1), pp. 1183–1190. 
doi: 10.1016/j.eswa.2011.07.124. 

Bennett, J. and Lanning, S. (2007) ‘The Netflix Prizes’. Available at: www.netflixprize.com. 

Bhuiyan, T. (2013) Trust for Intelligent Recommendation. doi: 10.1007/978-1-4614-6895-
0. 

Bianconi, G. et al. (2014) ‘Triadic closure as a basic generating mechanism of 
communities in complex networks’, Physical Review E - Statistical, Nonlinear, and Soft 
Matter Physics, 90(4). doi: 10.1103/PhysRevE.90.042806. 

Bing Wu, Luo Qi and Xiong Feng (2007) ‘Personalized Recommendation Algorithm based 
on SVM’, in 2007 International Conference on Communications, Circuits and Systems, pp. 
951–953. doi: 10.1109/ICCCAS.2007.4348205. 

Bobadilla, J. et al. (2013) ‘Recommender systems survey’, Knowledge-Based Systems. 
Elsevier B.V., 46, pp. 109–132. doi: 10.1016/j.knosys.2013.03.012. 

Bowman, D. a., Gabbard, J. L. and Hix, D. (2002) ‘A Survey of Usability Evaluation in Virtual 
Environments: Classification and Comparison of Methods’, Presence: Teleoperators and 
Virtual Environments, 11(4), pp. 404–424. doi: 10.1162/105474602760204309. 

Breese, J. S., Heckerman, D. and Kadie, C. (1998) ‘Empirical analysis of predictive 



149 
 

algorithms for collaborative filtering’, in UAI’98 Proceedings of the Fourteenth conference 
on Uncertainty in artificial intelligence. San Francisco, CA, USA: Morgan Kaufmann 
Publishers Inc., pp. 43–52. Available at: 
http://delivery.acm.org/10.1145/2080000/2074100/p43-
breese.pdf?ip=195.251.66.108&id=2074100&acc=ACTIVE 
SERVICE&key=5641A0C343C36AC1.EDF3AD695DCBC58A.4D4702B0C3E38B35.4D4702B
0C3E38B35&CFID=770399962&CFTOKEN=27232126&__acm__=1460628721_15ac710a
2e6dde6. 

Brin, S. and Page, L. (1998) ‘The Anatomy of a Large-scale Hypertextual Web Search 
Engine’, in Proceedings of the Seventh International Conference on World Wide Web 7. 
Amsterdam, The Netherlands: Elsevier Science Publishers B. V (WWW7), pp. 107–117. 
Available at: http://dl.acm.org/citation.cfm?id=297805.297827. 

Burke, R. (2000) ‘Knowledge-based recommender systems’, Encyclopedia of library and 
information systems, 69(Supplement 32), pp. 175–186. doi: 10.2991/iske.2007.110. 

Burke, R. (2002) ‘Hybrid Recommender Systems: Survey and experiments’, User 
Modeling and UserAdapted Interaction, 12(4), pp. 331–370. doi: 
10.1023/A:1021240730564]. 

Burton, R. (1621) The Anatomy of Melanholy. 

Canny, J. (2002) ‘Collaborative Filtering with Privacy via Factor Analysis’, Proceeding 
SIGIR ’02 Proceedings of the 25th annual international ACM SIGIR conference on 
Research and development in information retrieval, (i), pp. 238–245. doi: 
10.1145/564376.564419. 

Cantador, I., Bellogín, A. and Castells, P. (2008) ‘A multilayer ontology-based hybrid 
recommendation model’, AI Communications, 21(2–3), pp. 203–210. doi: 10.3233/AIC-
2008-0437. 

Capuruço, R. A. C. and Capretz, L. F. (2012) ‘A fuzzy-based inference mechanism of trust 
for improved social recommenders.’, in Herder, E. et al. (eds) UMAP Workshops. CEUR-
WS.org (CEUR Workshop Proceedings). Available at: http://dblp.uni-
trier.de/db/conf/um/umap2012w.html#CapurucoC12. 

Casino, F. et al. (2015) ‘A k-anonymous approach to privacy preserving collaborative 
filtering’, Journal of Computer and System Sciences, 81(6), pp. 1000–1011. doi: 
10.1016/j.jcss.2014.12.013. 

Castelfranchi, C. and Falcone, R. (2010) Trust Theory: A socio-cognitive and 
computational model, Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki. Wiley. 

Centola, D. (2010) ‘The spread of behavior in an online social network experiment.’, 
Science (New York, N.Y.), 329(5996), pp. 1194–7. doi: 10.1126/science.1185231. 

Chakraborty, P. S. and Karform, S. (2012) ‘Designing Trust Propagation Algorithms based 
on Simple Multiplicative Strategy for Social Networks’, Procedia Technology, 6, pp. 534–
539. doi: 10.1016/j.protcy.2012.10.064. 

Charif, H., Anne, B. and Azim, R. (2012) ‘Hybridising collaborative filtering and trust-
aware recommender systems’, in WEBIST 2012 - Proceedings of the 8th International 
Conference. New York, NY, USA: SciTePress, pp. 695–700. Available at: 
http://hal.inria.fr/hal-00679233 (Accessed: 25 September 2014). 



150 
 

Chee, S. H. S., Han, J. and Wang, K. (2001) ‘RecTree: An efficient collaborative filtering 
method’, Lecture Notes in Computer Science (including subseries Lecture Notes in 
Artificial Intelligence and Lecture Notes in Bioinformatics), 2114, pp. 141–151. doi: 
10.1007/3-540-44801-2_15. 

Chen, G. et al. (2005) ‘A Fuzzy Trust Model for Multi-agent System’, Advances in Natural 
Computation. Edited by L. Wang, K. Chen, and Y. Ong. Springer Berlin Heidelberg (Lecture 
Notes in Computer Science), 3612, pp. 444–448. doi: 10.1007/11539902_53. 

Chirita, P.-A., Nejdl, W. and Zamfir, C. (2005) ‘Preventing shilling attacks in online 
recommender systems’, Proceedings of the seventh ACM international workshop on Web 
information and data management WIDM 05, 55(2), p. 67. doi: 
10.1145/1097047.1097061. 

De Choudhury, M. et al. (2010) ‘“Birds of a Feather”: Does User Homophily Impact 
Information Diffusion in Social Media?’, arXiv:1006.1702 [physics], pp. 1–31. Available 
at: http://arxiv.org/abs/1006.1702%5Cnhttp://www.arxiv.org/pdf/1006.1702.pdf. 

Christakis, N. A. and Fowler, J. H. (2008) ‘The Collective Dynamics of Smoking in a Large 
Social Network’, New England Journal of Medicine, 358(21), pp. 2249–2258. doi: 
10.1056/NEJMsa0706154. 

Christakis, N. a and Fowler, J. H. (2007) ‘The spread of obesity in a large social network 
over 32 years.’, The New England journal of medicine, 357(4), pp. 370–9. doi: 
10.1056/NEJMsa066082. 

Ciotti, V. et al. (2016) ‘Homophily and missing links in citation networks’, EPJ Data 
Science. Ciotti et al., 5(1). doi: 10.1140/epjds/s13688-016-0068-2. 

Colquitt, J. A., Scott, B. A. and LePine, J. A. (2007) ‘Trust, trustworthiness, and trust 
propensity: a meta-analytic test of their unique relationships with risk taking and job 
performance.’, The Journal of applied psychology, 92(4), pp. 909–927. doi: 
10.1037/0021-9010.92.4.909. 

Cui, J., Wang, F. and Zhai, J. (2010) ‘Citation Networks as a Multi-layer Graph: Link 
Prediction and Importance Ranking’, snap.stanford.edu. Available at: 
http://snap.stanford.edu/class/cs224w-2010/proj2010/05_ProjectReport.pdf 
(Accessed: 25 September 2014). 

Deerwester, S. et al. (1990) ‘Indexing by Latent Semantic Analysis’, Journal of the 
American Society for Information Science, 41(6), pp. 391–407. doi: 10.1002/(SICI)1097-
4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9. 

Deutsch, M. (1958) ‘Trust and suspicion’, Journal of Conflict Resolution, 2(4), pp. 265–
279. doi: 10.1177/002200275800200401. 

Dodds, P. S., Muhamad, R. and Watts, D. J. (2003) ‘An Experimental Study of Search in 
Global Social Networks’, 301(August). 

Dokoohaki, N. and Matskin, M. (2008) ‘Effective Design of Trust Ontologies for 
Improvement in the Structure of  Socio-Semantic Trust Networks’, International Journal 
On Advances in Intelligent Systems, 1(1942–2679), pp. 23–42. Available at: 
http://www.iariajournals.org/intelligent_systems/intsys_v1_n1_2008_paged.pdf. 

Dong, X. and Frossard, P. (2012) ‘Clustering with multi-layer graphs: A spectral 



151 
 

perspective’, IEEE Transactions on Signal Processing, 60(11), pp. 5820–5831. doi: 
10.1109/TSP.2012.2212886. 

Easley, D. and Kleinberg, J. (2010) ‘Networks , Crowds , and Markets : Reasoning about a 
Highly Connected World’, Science, 81, p. 744. doi: 10.1017/CBO9780511761942. 

Ekstrand, M. D., Riedl, J. T. and Konstan, J. A. (2007) ‘Collaborative Filtering 
Recommender Systems’, Foundations and Trends in Human-Computer Interaction, 
4321(1), pp. 291–324. doi: 10.1504/IJEB.2004.004560. 

Elmagarmid, A. K., Ipeirotis, P. G. and Verykios, V. S. (2007) ‘Duplicate record detection: 
A survey’, IEEE Transactions on Knowledge and Data Engineering, 19(1), pp. 1–16. doi: 
10.1109/TKDE.2007.250581. 

ElSalamouny, E., Sassone, V. and Nielsen, M. (2010) ‘HMM-Based Trust Model’, Formal 
Aspects in Security and Trust. Edited by P. Degano and J. Guttman. Springer Berlin 
Heidelberg (Lecture Notes in Computer Science), 5983, pp. 21–35. doi: 10.1007/978-3-
642-12459-4_3. 

Falcone, R. and Castelfranchi, C. (2001) Trust and Deception in Virtual Societies. Edited 
by C. Castelfranchi and Y.-H. Tan. Norwell, MA, USA: Kluwer Academic Publishers. doi: 
10.1007/978-94-017-3614-5. 

Falcone, R., Pezzulo, G. and Castelfranchi, C. (2003) ‘A Fuzzy Approach to a Belief-based 
Trust Computation’, in Proceedings of the 2002 International Conference on Trust, 
Reputation, and Security: Theories and Practice. Berlin, Heidelberg: Springer-Verlag 
(AAMAS’02), pp. 73–86. Available at: 
http://dl.acm.org/citation.cfm?id=1762128.1762135. 

Fang, H., Guo, G. and Zhang, J. (2015) ‘Multi-faceted trust and distrust prediction for 
recommender systems’, Decision Support Systems, 71, pp. 37–47. doi: 
10.1016/j.dss.2015.01.005. 

Felden, C. and Linden, M. (2007) ‘Ontology-Based User Profiling’, in Abramowicz, W. (ed.) 
Business Information Systems. TU Bergakademie Freiberg, Fakultät für 
Wirtschaftswissenschaft, Professur ABWL, 
Informationswirtschaft/Wirtschaftsinformatik, Lessingstraße 45, 09599 Freiberg: 
Springer Berlin / Heidelberg (Lecture Notes in Computer Science), pp. 314–327. Available 
at: http://dx.doi.org/10.1007/978-3-540-72035-5_24. 

Fleder, D. M. and Hosanagar, K. (2007) ‘Recommender systems and their impact on sales 
diversity’, Proceedings of the 8th ACM conference on Electronic commerce EC 07, 55, p. 
192. doi: 10.1145/1250910.1250939. 

Fouss, F. et al. (2007) ‘Random-Walk Computation of Similarities Between Nodes of a 
Graph with Application to Collaborative Recommendation’, IEEE Trans.on Knowl.and 
Data Eng. Piscataway, NJ, USA: IEEE Educational Activities Department, 19(3), pp. 355–
369. doi: 10.1109/TKDE.2007.46. 

Gambetta, D. (1988) ‘Can we trust trust?’, in Trust: Making and Breaking Cooperative 
Relations., pp. 213–237. doi: 10.2307/2076328. 

Gao, M., Liu, K. and Wu, Z. (2010) ‘Personalisation in web computing and informatics: 
Theories, techniques, applications, and future research’, Information Systems Frontiers. 
Hingham, MA, USA: Kluwer Academic Publishers, 12(5), pp. 607–629. Available at: 



152 
 

http://dx.doi.org/10.1007/s10796-009-9199-3. 

Gao, P. et al. (2016) ‘STAR: Semiring Trust Inference for Trust-Aware Social 
Recommenders’, Proceedings of the 10th ACM Conference on Recommender Systems - 
RecSys ’16, (ACM), pp. 301–308. doi: 10.1145/2959100.2959148. 

Gao, Q. (2010) ‘Towards Trust in Web Content Using Semantic Web’, in Aroyo, L. et al. 
(eds) The Semantic Web: Research and Applications: 7th Extended Semantic Web 
Conference, ESWC 2010. Heraklion, Crete, Greece: Springer Berlin Heidelberg, pp. 457–
461. doi: 10.1007/978-3-642-13489-0_43. 

Ghazanfar, M. A. and Prügell-Bennett, A. (2014) ‘Leveraging clustering approaches to 
solve the gray-sheep users problem in recommender systems’, Expert Systems with 
Applications. Elsevier Ltd, 41(7), pp. 3261–3272. doi: 10.1016/j.eswa.2013.11.010. 

Golbeck, J. A. (2005) Computing and applying trust in web-based social networks. 

Golbeck, J. A. (2006a) ‘Combining provenance with trust in social networks for semantic 
web content filtering’, in Provenance and Annotation of Data. Available at: 
http://link.springer.com/chapter/10.1007/11890850_12 (Accessed: 25 September 
2014). 

Golbeck, J. A. (2006b) ‘Generating Predictive Movie Recommendations from Trust in 
Social Networks’, in Stølen, K. et al. (eds) Trust Management. University of Maryland, 
College Park, 8400 Baltimore Avenue, College Park, Maryland 20740: Springer Berlin / 
Heidelberg (Lecture Notes in Computer Science), pp. 93–104. Available at: 
http://dx.doi.org/10.1007/11755593_8. 

Golbeck, J. A. and Hendler, J. (2006) ‘Inferring binary trust relationships in Web-based 
social networks’, ACM Transactions on Internet Technology, 6(4), pp. 497–529. doi: 
10.1145/1183463.1183470. 

Golbeck, J. A., Parsia, B. and Hendler, J. (2003) ‘Trust Networks on the Semantic Web’, in 
Klusch, M. et al. (eds) Cooperative Information Agents VII. Springer Berlin / Heidelberg 
(Lecture Notes in Computer Science), pp. 238–249. doi: 10.1007/978-3-540-45217-1_18. 

Golbeck, J. and Hendler, J. (2004) ‘Reputation Network Analysis for Email Filtering’, 
Proceedings of the 1st Conference on Email and Anti-Spam, 44, pp. 54–58. doi: 
10.1.1.59.8119. 

Goldberg, D. et al. (1992) ‘Using collaborative filtering to weave an information tapestry’, 
Commun.ACM. New York, NY, USA: ACM, 35(12), pp. 61–70. doi: 
http://doi.acm.org/10.1145/138859.138867. 

Goldberg, K. et al. (2001) ‘Eigentaste: A Constant Time Collaborative Filtering Algorithm’, 
Information Retrieval, 4(2), pp. 133–151. doi: 10.1023/A:1011419012209. 

Granovetter, M. (1985) ‘Economic-action and social-structure - the problem of 
embeddedness’, American Journal of Sociology, pp. 481–510. doi: Doi 10.1086/228311. 

Gray, E. et al. (2003) Trust Propagation in Small Worlds, Lecture Notes in Computer 
Science. doi: 10.1007/3-540-44875-6_17. 

Gretzel, U. and Yoo, K. H. (2008) ‘Information and Communication Technologies in 
Tourism 2008; Use and Impact of Online Travel Reviews’, pp. 35–46. Available at: 



153 
 

http://dx.doi.org/10.1007/978-3-211-77280-5_4. 

Guanfeng, L. et al. (2010) ‘A Heuristic Algorithm for Trust-Oriented Service Provider 
Selection in Complex Social Networks’, in Services Computing (SCC), 2010 IEEE 
International Conference on, pp. 130–137. doi: 10.1109/SCC.2010.47. 

Guanfeng, L., Yan, W. and Orgun, M. A. (2009) ‘Trust Inference in Complex Trust-Oriented 
Social Networks’, in Computational Science and Engineering, 2009. CSE ’09. International 
Conference on, pp. 996–1001. doi: 10.1109/CSE.2009.248. 

Guha, R. et al. (2004) ‘Propagation of trust and distrust’, in Proceedings of the 13th 
international conference on World Wide Web. New York, NY, USA: ACM (WWW ’04), pp. 
403–412. doi: 10.1145/988672.988727. 

Guibing, G. et al. (2015) ‘LibRec: A Java Library for Recommender Systems’, in Posters, 
Demos, Late-breaking Results and Workshop Proceedings of the 23rd Conference on User 
Modelling, Adaptation and Personalization (UMAP). Dublin, Ireland. 

Guo, G. et al. (2014) ‘From Ratings to Trust: An Empirical Study of Implicit Trust in 
Recommender Systems’, in Proceedings of the 29th Annual ACM Symposium on Applied 
Computing, pp. 248–253. doi: 10.1145/2554850.2554878. 

Guo, G., Zhang, J. and Thalmann, D. (2014) ‘Merging trust in collaborative filtering to 
alleviate data sparsity and cold start’, Knowledge-Based Systems. Elsevier B.V., 57, pp. 
57–68. doi: 10.1016/j.knosys.2013.12.007. 

Guo, G., Zhang, J. and Yorke-Smith, N. (2013) ‘A Novel Bayesian Similarity Measure for 
Recommender Systems’, in Proceedings of the 23rd International Joint Conference on 
Artificial Intelligence (IJCAI). Beijing, China: AAAI Press, pp. 2619–2625. 

Hamdi, S. et al. (2013) ‘Trust inference computation for online social networks’, 
Proceedings - 12th IEEE International Conference on Trust, Security and Privacy in 
Computing and Communications, TrustCom 2013, pp. 210–217. doi: 
10.1109/TrustCom.2013.240. 

Hang, C. and Singh, M. P. (2010) ‘Trust-based recommendation based on graph 
similarity’, in in AAMAS Workshop on Trust in Agent Societies (Trust, pp. 1–11. 

Hang, C. W., Wang, Y. and Singh, M. P. (2009) ‘Operators for propagating trust and their 
evaluation in social networks’, in Proceedings of The 8th International Conference on 
Autonomous Agents and Multiagent Systems-Volume 2, pp. 1025–1032. Available at: 
http://portal.acm.org/citation.cfm?id=1558155. 

Harford, T. (2010) ‘The Economics Of Trust’, Forbes, 21 July. Available at: 
http://www.forbes.com/2006/09/22/trust-economy-markets-
tech_cx_th_06trust_0925harford.html (Accessed: 25 September 2014). 

Hasan, M. Al and Zaki, M. J. (2011) ‘A Survey of Link Prediction in Social Networks’, in 
Aggarwal, C. (ed.) Social Network Data Analytics. Springer US, pp. 243–275. doi: 
10.1007/978-1-4419-8462-3. 

Heath, T., Motta, E. and Petre, M. (2007) ‘Computing word-of-mouth trust relationships 
in social networks from semantic web and web 2.0 data sources’, in 4th European 
Semantic Web Conference (ESWC 2007). Innsbruck, Austria, pp. 44–56. Available at: 
http://oro.open.ac.uk/23610/ (Accessed: 25 September 2014). 



154 
 

Heckmann, D., Schwartz, T., Brandherm, B. and Kr, A. (2005) ‘Decentralized User 
Modeling with UserML and GUMO’, in Workshop on Decentralized, Agent Based and 
Social Approaches to User Modelling (DASUM), 9th Intl Conference on User Modeling, pp. 
61–64. 

Heckmann, D., Schwartz, T., Brandherm, B., Schmitz, M., et al. (2005) ‘Gumo – The 
General User Model Ontology’, in Ardissono, L., Brna, P., and Mitrovic, A. (eds) User 
Modeling 2005. Saarland University, Saarbrücken, Germany: Springer Berlin / Heidelberg 
(Lecture Notes in Computer Science), p. 149. Available at: 
http://dx.doi.org/10.1007/11527886_58. 

Heckmann, D. and Krueger, A. (2003) ‘A User Modeling Markup Language (UserML) for 
Ubiquitous Computing’, in Brusilovsky, P., Corbett, A., and de Rosis, F. (eds) User 
Modeling 2003. European Post-Graduate College ‘Cognitive Systems and Speech 
Technology’ Germany: Springer Berlin / Heidelberg (Lecture Notes in Computer Science), 
p. 148. Available at: http://dx.doi.org/10.1007/3-540-44963-9_55. 

Herlocker, J. L. et al. (2004) ‘Evaluating collaborative filtering recommender systems’, 
ACM Transactions on Information Systems, 22(1), pp. 5–53. Available at: 
http://portal.acm.org/citation.cfm?doid=963770.963772. 

Heß, C. (2007) Trust-based recommendations in multi-layer networks. University of 
Bamberg. 

Homans, G. C. (1951) The Human Group, International Library of Sociology and Social 
Reconstruction. doi: 10.2307/2088295. 

Hooijmaijers, D. and Stumptner, M. (2007) ‘Trust Calculation’, Intelligent Information 
Processing III. Edited by Z. Shi, K. Shimohara, and D. Feng. Springer US (IFIP International 
Federation for Information Processing), 228, pp. 111–121. doi: 10.1007/978-0-387-
44641-7_12. 

Htun, Z. and Tar, P. P. (2013) ‘A Trust-aware Recommender System Based on Implicit 
Trust Extraction’, International Journal of Innovations in Engineering and Technology 
(IJIET)Technology (IJIET), 2(1), pp. 271–276. Available at: 
http://scholar.google.com/scholar?hl=en%5C&btnG=Search%5C&q=intitle:A+Trust-
aware+Recommender+System+Based+on+Implicit+Trust+Extraction%5C#0 (Accessed: 
25 September 2014). 

Ivory, M. Y. and Hearst, M. A. (2001) ‘The state of the art in automating usability 
evaluation of user interfaces’, ACM Computing Surveys, 33(4), pp. 470–516. doi: 
10.1145/503112.503114. 

Jaccard, P. (1901) ‘Étude comparative de la distribution florale dans une portion des 
Alpes et des Jura’, Bulletin del la Société Vaudoise des Sciences Naturelles, 37(JANUARY 
1901), pp. 547–579. doi: http://dx.doi.org/10.5169/seals-266450. 

Jamali, M. (2010) ‘A Distributed Method for Trust-Aware Recommendation in Social 
Networks’. Available at: http://arxiv.org/abs/1011.2245 (Accessed: 15 September 2014). 

Jamali, M. and Ester, M. (2009) ‘TrustWalker: a random walk model for combining trust-
based and item-based recommendation’, in Proceedings of the 15th ACM SIGKDD 
international conference on Knowledge discovery and data mining. Paris, France: ACM 
(KDD ’09), pp. 397–406. doi: citeulike-article-id:5151320. 



155 
 

Jannach, D. et al. (2010) Recommender Systems: An Introduction. 1st edn. New York, NY, 
USA: Cambridge University Press. 

Jeckmans, A. J. P. et al. (2013) ‘Privacy in Recommender Systems’, in Social Media 
Retrieval, pp. 263–281. doi: 10.1007/978-1-4471-4555-4_12. 

Jøsang, A. (2001) ‘A Logic for Uncertain Probabilities’, International Journal of 
Uncertainty, Fuzziness and Knowledge-Based Systems. River Edge, NJ, USA: World 
Scientific Publishing Co., Inc, 9(3), pp. 279–311. Available at: 
http://dl.acm.org/citation.cfm?id=565980.565981. 

Jøsang, A., Hayward, R. and Pope, S. (2006) ‘Trust Network Analysis with Subjective 
Logic’, in Proceedings of the 29th Australasian Computer Science Conference - Volume 
48. Hobart, Australia: Australian Computer Society, Inc (ACSC ’06), pp. 85–94. Available 
at: http://dl.acm.org/citation.cfm?id=1151699.1151710. 

Jøsang, A. and Lo Presti, S. (2004) ‘Analysing the Relationship between Risk and Trust’, in 
Jensen, C., Poslad, S., and Dimitrakos, T. (eds) Trust Management. Springer Berlin 
Heidelberg (Lecture Notes in Computer Science), pp. 135–145. doi: 10.1007/978-3-540-
24747-0_11. 

Kamvar, S. D., Schlosser, M. T. and Garcia-Molina, H. (2003) ‘The Eigentrust algorithm for 
reputation management in P2P networks’, 12th International Conference on World Wide 
Web (WWW ), p. 640. doi: 10.1145/775240.775242. 

Kim, H.-N. et al. (2007) ‘User Preference Modeling from Positive Contents for 
Personalized Recommendation’, in Corruble, V., Takeda, M., and Suzuki, E. (eds) 
Discovery Science. Intelligent E-Commerce Systems Laboratory, Department of 
Computer Science & Information Engineering, Inha University: Springer Berlin / 
Heidelberg (Lecture Notes in Computer Science), pp. 116–126. Available at: 
http://dx.doi.org/10.1007/978-3-540-75488-6_12. 

Kim, H. H. and Kim, H. H. (2012) ‘Improving Recommendation based on Implicit Trust 
Relationships from Tags’, in 2nd international conference on computers, networks, 
systems, and industrial applications, pp. 25–30. 

Kim, S. and Kwon, J. (2007) ‘Effective Context-aware Recommendation on the Semantic 
Web’, International Journal of Computer Science and Network Security, 7(8), pp. 154–
159. Available at: http://paper.ijcsns.org/07_book/200708/20070822.pdf. 

Kim, Y. A. and Song, H. S. (2011) ‘Strategies for predicting local trust based on trust 
propagation in social networks’, Knowledge-Based Systems. Elsevier B.V., 24(8), pp. 
1360–1371. doi: 10.1016/j.knosys.2011.06.009. 

Kleinberg, J. (2000) ‘The Small-World Phenomenon: An Algorithmic Perspective’, in 
Proceedings of the 32nd ACM Symposium on Theory of Computing, pp. 163–170. doi: 
10.1.1.117.7097. 

Koren, Y., Bell, R. and Volinsky, C. (2009) ‘Matrix Factorization Techniques for 
Recommender Systems’, Computer, 42(8), pp. 42–49. doi: 10.1109/MC.2009.263. 

Kossinets, G. and Watts, D. J. (2009) ‘Origins of Homophily in an Evolving Social Network’, 
American Journal of Sociology, 115(2), pp. 405–450. doi: 10.1086/599247. 

Kuter, U. and Golbeck, J. A. (2007) ‘Sunny: A new algorithm for trust inference in social 



156 
 

networks using probabilistic confidence models’, AAAI. Available at: 
http://www.aaai.org/Papers/AAAI/2007/AAAI07-218.pdf (Accessed: 25 September 
2014). 

Lam, S. K. and Riedl, J. (2004) ‘Shilling recommender systems for fun and profit’, 
Proceedings of the 13th conference on World Wide Web WWW 04, pp. 393–402. doi: 
10.1145/988672.988726. 

Laumann, E. O. (1966) Prestige and association in an urban community; an analysis of an 
urban stratification system, An Advanced study in sociology. 

Lazarsfeld, P. F. and Merton, R. K. (1954) ‘Frienship as a Social Process: A Substantive and 
Methodological Analysis’, in Freedom and Control in Modern Society. 

Lee, J., Sun, M. and Lebanon, G. (2012) ‘PREA : Personalized Recommendation 
Algorithms Toolkit’, The Journal of Machine Learning Research, 13, pp. 2699–2703. 

Lehman, E. W. and Sztompka, P. (2001) ‘Trust: A Sociological Theory’, Contemporary 
Sociology, 30(4), p. 418. doi: 10.2307/3089802. 

Levien, R. (2009) ‘Attack-Resistent Trust Metrics’, in Computing with Social Trust, pp. 
121–132. doi: 10.1007/978-1-84800-356-9. 

Lewicki, R. J., Mcallister, D. J. and Bies, R. J. (1998) ‘Trust and Distrust: New Relationships 
and Realities’, Academy of Management Review, 23(3), pp. 438–458. 

Li, C. et al. (2012) ‘Multi-Layer network for influence propagation over microblog’, 
Intelligence and Security Informatics, pp. 60–72. Available at: 
http://link.springer.com/chapter/10.1007/978-3-642-30428-6_5 (Accessed: 25 
September 2014). 

Li, Y.-M. and Kao, C.-P. (2009) ‘TREPPS: A Trust-based Recommender System for Peer 
Production Services’, Expert Systems with Applications, 36(2), pp. 3263–3277. doi: 
10.1016/j.eswa.2008.01.078. 

Liben-Nowell, D. and Kleinberg, J. (2003) ‘The Link Prediction Problem for Social 
Networks’, Proceedings of the Twelfth Annual ACM International Conference on 
Information and Knowledge Management (CIKM), (November 2003), pp. 556–559. doi: 
10.1002/asi.v58:7. 

Liu, C. et al. (2004) ‘Beyond concern: A privacy-trust-behavioral intention model of 
electronic commerce’, Information and Management, 42(1), pp. 127–142. doi: 
10.1016/j.im.2004.01.002. 

Liu, Y., Cao, X. and Yu, Y. (2016) ‘Are You Influenced by Others When Rating?’, 
Proceedings of the 10th ACM Conference on Recommender Systems - RecSys ’16, pp. 
269–272. doi: 10.1145/2959100.2959141. 

Lou, T. et al. (2013) ‘Learning to predict reciprocity and triadic closure in social networks’, 
ACM Transactions on Knowledge Discovery from Data, 7(2), pp. 1–25. doi: 
10.1145/2499907.2499908. 

Lu, L. and Zhou, T. (2010) ‘Link Prediction in Complex Networks: A Survey’, Physica A: 
Statistical Mechanics and its Applications, 390(6), pp. 1150–1170. doi: 
10.1016/j.physa.2010.11.027. 



157 
 

Lucas, J. P. et al. (2013) ‘A hybrid recommendation approach for a tourism system’, 
Expert Systems with Applications, 40(9), pp. 3532–3550. doi: 
10.1016/j.eswa.2012.12.061. 

Luhmann, N. (2000) ‘Familiarity, Confidence, Trust: Problems and Alternatives’, in Trust: 
Making and Breaking Cooperative Relations, pp. 94–107. doi: 10.1088/1751-
8113/44/8/085201. 

Ma, H., King, I. and Lyu, M. R. (2011) ‘Learning to recommend with explicit and implicit 
social relations’, ACM Transactions on Intelligent Systems and Technology (TIST). New 
York, NY, USA: ACM, 2(3), p. 29 (1-19). doi: 
http://doi.acm.org/10.1145/1961189.1961201. 

Marsden, P. V and Friedkin, N. E. (1993) ‘Network Studies of Social Influence’, 
Sociological Methods & Research, 22(1), pp. 127–151. doi: 
10.1177/0049124193022001006. 

Marsh, S. P. (1994) Formalising trust as a computational concept. University of Stirling. 

Martín-Vicente, M. I., Gil-solla, A. and Ramos-Cabrer, M. (2012) ‘Implicit Trust Networks: 
A Semantic Approach to Improve Collaborative Recommendations’, Recommender 
Systems for the Social Web. Springer Berlin Heidelberg (Intelligent Systems Reference 
Library), 32, pp. 107–119. doi: 10.1007/978-3-642-25694-3_5. 

Massa, P. and Avesani, P. (2004) ‘Trust-Aware Collaborative Filtering for Recommender 
Systems’, in Meersman, R. and Tari, Z. (eds) On the Move to Meaningful Internet Systems 
2004: CoopIS, DOA, and ODBASE. ITC-iRST, Via Sommarive 14, I-38050 Povo, TN, Italy: 
Springer Berlin / Heidelberg (Lecture Notes in Computer Science), pp. 492–508. Available 
at: http://dx.doi.org/10.1007/978-3-540-30468-5_31. 

Massa, P. and Avesani, P. (2005) ‘Controversial users demand local trust metrics: An 
experimental study on epinions. com community’, in Proceedings of the National 
Conference on Artificial Intelligence. Pittsburgh, Pennsylvania: AAAI Press (AAAI’05), p. 
121. Available at: http://dl.acm.org/citation.cfm?id=1619332.1619354. 

Massa, P. and Avesani, P. (2007) ‘Trust-aware recommender systems’, Proceedings of 
the 2007 ACM conference on Recommender systems RecSys 07, 20, pp. 17–24. doi: 
10.1145/1297231.1297235. 

Massa, P. and Avesani, P. (2009) ‘Trust metrics in recommender systems’, Computing 
with social trust, pp. 1–27. Available at: http://link.springer.com/chapter/10.1007/978-
1-84800-356-9_10 (Accessed: 25 September 2014). 

Maurer, U. (1996) ‘Modelling a Public-Key Infrastructure’, Lncs, pp. 1–26. Available at: 
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.31.4069&rep=rep1&type=p
df. 

Mayer, R. C., Davis, J. H. and Schoorman, F. D. (1995) ‘An Integrative Model of 
Organizational Trust’, The Academy of Management Review, 20(3), pp. 709–734. doi: 
10.2307/258792. 

McGrath, M. (2008) ‘Employing ’Social Network Analysis’ to Influence Tourism Events 
Decision-Making: A Pilot Study’, in Information and Communication Technologies in 
Tourism 2008, pp. 556–567. doi: 10.1007/978-3-211-77280-5_49. 



158 
 

McKnight, D. H. and Chervany, N. L. (2001) ‘Trust and distrust definitions: One bite at a 
time’, Trust in Cyber-societies. Springer, pp. 27–54. Available at: 
http://link.springer.com/chapter/10.1007/3-540-45547-7_3 (Accessed: 25 September 
2014). 

McPherson, J. M. and Smith-Lovin, L. (1987) ‘Homophily in Voluntary Organizations: 
Status Distance and the Composition of Face-to-Face Groups’, American Sociological 
Review, 52(3), p. 370. doi: 10.2307/2095356. 

McPherson, M., Smith-Lovin, L. and Cook, J. M. (2001) ‘Birds of a Feather: Homophily in 
Social Networks’, Annual Review of Sociology. McPherson, M (Reprint Author), Univ 
Arizona, Dept Sociol, Tucson, AZ 85721 USA. Univ Arizona, Dept Sociol, Tucson, AZ 85721 
USA. Duke Univ, Dept Sociol, Durham, NC 27708 USA.: ANNUAL REVIEWS, 27(1), pp. 415–
444. doi: 10.1146/annurev.soc.27.1.415. 

Mehta, H. et al. (2011) ‘Collaborative Personalized Web Recommender System using 
Entropy based Similarity Measure’, International Journal of Computer Science Issues 
(IJCSI), 8(6 No 3), pp. 231–240. 

Mehta, S. and Banati, H. (2012) ‘Trust aware social context filtering using Shuffled frog 
leaping algorithm’, in 12th International Conference on Hybrid Intelligent Systems, {HIS} 
2012, Pune, India, December 4-7, 2012. IEEE, pp. 342–347. doi: 
10.1109/HIS.2012.6421358. 

Mei, J. et al. (2017) ‘A social influence based trust model for recommender systems’, 
Intelligent Data Analysis, 21(2), pp. 263–277. doi: 10.3233/IDA-150479. 

Meyffret, S. et al. (2012) RED : a Rich Epinions Dataset for Recommender Systems. 
Available at: https://hal.archives-ouvertes.fr/hal-01010246. 

Milgram, S. (1967) ‘The small world problem’, Psychology today, 1(May), pp. 61–67. doi: 
10.1007/BF02717530. 

Mobasher, B. et al. (2005) ‘Effective Attack Models for Shilling Item-Based Collaborative 
Filtering System’, Proceedings of the seventh International Workshop on Knowledge 
Discovery from the Web (WEBKDD 2005), pp. 13–23. Available at: 
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.93.7759&amp;rep=rep1&a
mp;type=pdf#page=23. 

Mobasher, B., Jin, X. and Zhou, Y. (2004) ‘Semantically enhanced collaborative filtering 
on the web’, Lecture Notes in Computer Science, 3209(49), pp. 57–76. doi: 10.1007/978-
3-540-30123-3_4. 

Mooney, R. J., Bennett, P. N. and Roy, L. (1998) ‘Book Recommending Using Text 
Categorization with Extracted Information’, Proceedings of AAAI-98 Workshop on 
Recommender Systems, (July), pp. 49–54. 

Mui, L. (2002) Computational Models of Trust and Reputation : Agents , Evolutionary 
Games , and Social Networks. Massachusetts Institute of Technology. 

Mui, L., Mohtashemi, M. and Halberstadt, A. (2002) ‘A Computational Model of Trust and 
Reputation for E-businesses’, in Proceedings of the 35th Annual Hawaii International 
Conference on System Sciences (HICSS’02)-Volume 7. Washington, DC, USA: IEEE 
Computer Society (HICSS ’02), p. 188. Available at: 
http://dl.acm.org/citation.cfm?id=820745.821158. 



159 
 

Nageswara Rao, K. and Talwar G., V. (2008) ‘Application domain and functional 
classification of recommender systems—a survey’, DESIDOC Journal of Library & 
Information Technology, 28(3), pp. 17–35. 

Nanas, N., De Roeck, A. and Vavalis, M. (2009) ‘What Happened to Content-Based 
Information Filtering?’, in Azzopardi, L. et al. (eds) Advances in Information Retrieval 
Theory. Springer Berlin / Heidelberg (Lecture Notes in Computer Science), pp. 249–256. 
Available at: http://dx.doi.org/10.1007/978-3-642-04417-5_23. 

Newman, M. E. J. (2001) ‘Clustering and preferential attachment in growing networks’, 
Physical Review E, 64(2), p. 25102. doi: 10.1103/PhysRevE.64.025102. 

Newmann, M. E. J. (2003) ‘The structure and function of complex networks’, SIAM 
Review, 45(2), p. 58. doi: 10.1137/S003614450342480. 

Nielsen (2015) Global Trust in Advertising Winning Strategies for an Evolving Media 
Landscape. 

Nolen-Hoeksema, S., Fredrickson, B. and Loftus, G. (2009) Atkinson & Hilgard’s 
Introduction to Psychology, Cengage Learning. doi: 9781844807284. 

O’Connor, P. (2008) ‘Information and Communication Technologies in Tourism 2008; 
User-Generated Content and Travel: A Case Study on Tripadvisor.Com’, pp. 47–58. 
Available at: http://dx.doi.org/10.1007/978-3-211-77280-5_5. 

O’Doherty, D., Jouili, S. and Roy, P. Van (2012) ‘Towards trust inference from bipartite 
social networks’, … on Databases and Social Networks, pp. 13–18. doi: 
10.1145/2304536.2304539. 

O’Doherty, D., Jouili, S. and Roy, P. Van (2012) ‘Trust-based recommendation: an 
empirical analysis’, in Sixth ACM Workshop on Social Network Mining and Analysis (SNA-
KDD 2012). Beijing, China. Available at: 
http://wan.poly.edu/KDD2012/forms/workshop/SNAKDD2012/doc/a4-doherty.pdf 
(Accessed: 25 September 2014). 

O’Mahony, M. P. and Hurley, N. (2004) ‘Collaborative recommendation: A robustness 
analysis’, ACM Transactions on Internet Technology (TOIT), 4(4), pp. 344–377. doi: 
10.1145/1031114.1031116. 

Oufaida, H. and Nouali, O. (2009) ‘Exploiting Semantic Web Technologies for 
Recommender Systems: A Multi View Recommendation Engine (Short Paper)’, in 
Sarabjot, S. A. et al. (eds) Proceedings of the 7th Workshop on Intelligent Techniques for 
Web Personalization & Recommender Systems (ITWP’09), in conjunction with the 21st 
International Joint Conference on Artificial Intelligence. Pasadena, California USA. 
Available at: http://ceur-ws.org/Vol-528/paper10.pdf. 

Park, S. T., Seo, K. and Jang, D. (2005) ‘Expert system based on artificial neural networks 
for content-based image retrieval’, Expert Systems with Applications, 29(3), pp. 589–597. 
doi: 10.1016/j.eswa.2005.04.027. 

Patel, J. et al. (2005) ‘A Probabilistic Trust Model for Handling Inaccurate Reputation 
Sources’, Trust Management. Edited by P. Herrmann, V. Issarny, and S. Shiu. Springer 
Berlin Heidelberg (Lecture Notes in Computer Science), 3477, pp. 193–209. doi: 
10.1007/11429760_14. 



160 
 

Pathak, B. et al. (2010) ‘Empirical Analysis of the Impact of Recommender Systems on 
Sales’, Journal of Management Information Systems, 27(2), pp. 159–188. doi: 
10.2753/MIS0742-1222270205. 

Pazzani, M. and Billsus, D. (1997) ‘Learning and Revising User Profiles: The Identification 
of Interesting Web Sites’, Machine Learning, 27(3), pp. 313–331. doi: 
10.1023/A:1007369909943. 

Pazzani, M. J. (1999) ‘A framework for collaborative, content-based and demographic 
filtering’, Artificial Intelligence Review, 13(5), pp. 393–408. doi: 
10.1023/A:1006544522159. 

Pazzani, M., Muramatsu, J. and Billsus, D. (1996) ‘Syskill & Webert: Identifying interesting 
web sites’, Proceedings of the thirteenth national conference on Artificial intelligence - 
Volume 1, pp. 54–61. doi: citeulike-article-id:1188705. 

Polat, H. and Du, W. (2003) ‘Privacy-preserving collaborative filtering using randomized 
perturbation techniques’, Data Mining, 2003. ICDM 2003. Third IEEE International 
Conference on, pp. 625–628. doi: 10.1109/ICDM.2003.1250993. 

Polatidis, N. et al. (2017) ‘Privacy-preserving collaborative recommendations based on 
random perturbations’, Expert Systems with Applications. Elsevier Ltd, 71, pp. 18–25. doi: 
10.1016/j.eswa.2016.11.018. 

Portes, A. and Sensenbrenner, J. (1993) ‘Embeddedness and Immigration: Notes on the 
Social Determinants of Economic Action’, American Journal of Sociology, 98(6), pp. 1320–
1350. doi: 10.1086/230191. 

Powell, M. J. D. (1981) Approximation theory and methods. Cambridge University Press. 
Available at: http://books.google.gr/books?id=ODZ1OYR3w4cC. 

Quercia, D., Hailes, S. and Capra, L. (2007) ‘Lightweight distributed trust propagation’, 
Proceedings - IEEE International Conference on Data Mining, ICDM, pp. 282–291. doi: 
10.1109/ICDM.2007.64. 

Quinlan, J. R. (1984) ‘Learning Efficient Classification Procedures and their Application to 
Chess End Games’, Machine Learning: An Artificial Intelligence Approach, pp. 463–482. 
doi: 10.1007/978-3-662-12405-5_15. 

Rafailidis, D. (2016) ‘Modeling trust and distrust information in recommender systems 
via joint matrix factorization with signed graphs’, Proceedings of the 31st Annual ACM 
Symposium on Applied Computing - SAC ’16, pp. 1060–1065. doi: 
10.1145/2851613.2851697. 

Rafailidis, D. and Crestani, F. (2017) ‘Learning to Rank with Trust and Distrust in 
Recommender Systems’, Proceedings of the Eleventh ACM Conference on Recommender 
Systems  - RecSys ’17, pp. 5–13. doi: 10.1145/3109859.3109879. 

Rapoport, A. (1953) ‘Spread of information through a population with socio-structural 
bias: I. Assumption of transitivity’, The Bulletin of mathematical biophysics, 15(4), pp. 
523–533. doi: 10.1007/BF02476440". 

Ray, S. and Mahanti, A. (2010) ‘Improving Prediction Accuracy in Trust-Aware 
Recommender Systems’, in Proceedings of the 2010 43rd Hawaii International 
Conference on System Sciences. Washington, DC, USA: IEEE Computer Society (HICSS 



161 
 

’10), pp. 1–9. doi: 10.1109/HICSS.2010.225. 

Rennie, J. D. M. and Srebro, N. (2005) ‘Fast Maximum Margin Matrix Factorization for 
Collaborative Prediction’, Proceedings of the 22Nd International Conference on Machine 
Learning, pp. 713–719. doi: 10.1145/1102351.1102441. 

Resnick, P. et al. (1994) ‘GroupLens: An Open Architecture for Collaborative Filtering of 
Netnews’, in Proceedings of the 1994 ACM Conference on Computer Supported 
Cooperative Work. New York, NY, USA: ACM (CSCW ’94), pp. 175–186. doi: 
10.1145/192844.192905. 

Ricci, F. et al. (2011) Recommender Systems Handbook. Available at: 
http://dx.doi.org/10.1007/978-0-387-85820-3. 

Rich, E. (1979) ‘User modeling via stereotypes’, Cognitive Science, 3(4), pp. 329–354. 
Available at: http://www.sciencedirect.com/science/article/B6W48-4FWF9GC-
9/1/26c2b8da340100c45590cc04bc7b8a18. 

Richardson, M., Agrawal, R. and Domingos, P. (2003) ‘Trust Management for the 
Semantic Web’, Interpretation A Journal Of Bible And Theology, 3(April), pp. 351–368. 
doi: 10.1007/978-3-540-39718-2_23. 

Rosenquist, J. N. et al. (2010) ‘The spread of alcohol consumption behavior in a large 
social network’, Annals of Internal Medicine, 152(7), pp. 426–433. doi: 10.7326/0003-
4819-152-7-201004060-00007 [doi]. 

Roy, P. Van, Jouili, S. and Skhiri, S. (2012) Structural trust inference for social 
recommendation. 

Ruef, M. et al. (2003) ‘The Structure of Founding Teams: Homophily, Strong Ties, and 
Isolation among U.S. Entrepreneurs’, AMERICAN SOCIOLOGICAL REVIEW, 68(2), pp. 195–
222. Available at: http://www.jstor.org/stable/1519766. 

Salakhutdinov, R. and Mnih, A. (2007) ‘Probabilistic Matrix Factorization.’, Proc. 
Advances in Neural Information Processing Systems 20 (NIPS 07), pp. 1257–1264. doi: 
10.1145/1390156.1390267. 

Salakhutdinov, R. and Mnih, A. (2008) ‘Bayesian probabilistic matrix factorization using 
Markov chain Monte Carlo’, Proceedings of the 25th international conference on 
Machine learning - ICML ’08, pp. 880–887. doi: 10.1145/1390156.1390267. 

Salton, G. (1989) Automatic text processing: the transformation, analysis, and retrieval 
of information by computer. Boston, MA, USA: Addison-Wesley Longman Publishing Co., 
Inc. 

Sarwar, B. M. et al. (1998) ‘Using filtering agents to improve prediction quality in the 
GroupLens research collaborative filtering system’, in Proceedings of the 1998 ACM 
conference on Computer supported cooperative work - CSCW ’98. New York, New York, 
USA: ACM Press, pp. 345–354. doi: 10.1145/289444.289509. 

Sarwar, B. M. et al. (2000) ‘Application of Dimensionality Reduction in Recommender 
System - A Case Study’, Architecture, 1625, pp. 264–8. doi: 10.1.1.38.744. 

Sarwar, B. M. et al. (2002) ‘Recommender Systems for Large-scale E-Commerce : Scalable 
Neighborhood Formation Using Clustering’, Communications, 50(12), pp. 158–167. doi: 



162 
 

10.1.1.4.6985. 

Schwartz, B. (2004) The paradox of choice: why more is less. ECCO. Available at: 
http://books.google.com/books?id=zutxr7rGc_QC. 

Selvaraj, C. and Anand, S. (2012) ‘Peer profile based trust model for P2P systems using 
genetic algorithm’, Peer-to-Peer Networking and Applications. Springer US, 5(1), pp. 92–
103. doi: 10.1007/s12083-011-0111-9. 

Shang, M.-S. et al. (2009) ‘Relevance is more significant than correlation: Information 
filtering on sparse data’, Europhysics Letters, 88(6), p. 68008. doi: 10.1209/0295-
5075/88/68008. 

Shani, G. and Gunawardana, A. (2011) ‘Evaluating recommendation systems’, 
Recommender systems handbook, pp. 257–298. doi: 10.1007/978-0-387-85820-3_8. 

Sherchan, W., Nepal, S. and Paris, C. (2013) ‘A Survey of Trust in Social Networks’, ACM 
Comput.Surv. New York, NY, USA: ACM, 45(4), p. 47:1-47:33. doi: 
10.1145/2501654.2501661. 

Sivapalan, S. et al. (2014) ‘Recommender systems in e-commerce’, in 2014 World 
Automation Congress (WAC). IEEE, pp. 179–184. doi: 10.1109/WAC.2014.6935763. 

Smith, D., Menon, S. and Sivakumar, K. (2005) ‘Online peer and editorial 
recommendations, trust, and choice in virtual markets’, Journal of Interactive Marketing. 
Wiley Subscription Services, Inc., A Wiley Company, 19(3), pp. 15–37. Available at: 
http://dx.doi.org/10.1002/dir.20041. 

Soboroff, I. and Nicholas, C. (1999) ‘Combining content and collaboration in text 
filtering’, International Joint Conferences on Artificial Intelligence, 99, pp. 86--91. doi: 
10.3115/1118935.1118938. 

Song, W., Phoha, V. V and Xu, X. (2004) ‘The HMM-Based Model for Evaluating 
Recommender’s Reputation’, in Proceedings of the E-Commerce Technology for Dynamic 
E-Business, IEEE International Conference. Washington, DC, USA: IEEE Computer Society 
(CEC-EAST ’04), pp. 209–215. doi: 10.1109/CEC-EAST.2004.64. 

Symeonidis, P. and Tiakas, E. (2014) ‘Transitive node similarity: Predicting and 
recommending links in signed social networks’, World Wide Web, 17(4), pp. 743–776. 
doi: 10.1007/s11280-013-0228-2. 

Tang, J. et al. (2012) ‘eTrust: Understanding Trust Evolution in an Online World’, in 
Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery 
and Data Mining. New York, NY, USA: ACM (KDD ’12), pp. 253–261. doi: 
10.1145/2339530.2339574. 

Tang, J. et al. (2013) ‘Exploiting homophily effect for trust prediction’, Proceedings of the 
sixth ACM international conference on Web search and data mining, pp. 53–62. doi: 
10.1145/2433396.2433405. 

Tang, J. (2015) Computing Distrust in Social Media. Available at: 
http://repository.asu.edu/attachments/146459/content/Tang_asu_0010E_14639.pdf. 

Ungar, L. H. and Foster, D. P. (1998) ‘Clustering methods for collaborative filtering’, AAAI 
Workshop on Recommendation Systems, pp. 114–129. doi: 10.1.1.33.4026. 



163 
 

Victor, P. et al. (2013) ‘Enhancing the Trust-Based Recommendation Process with Explicit 
Trust’, 7(2), pp. 1–19. 

Victor, P., Cornelis, C. and DeCock, M. (2011) Trust Networks for Recommender Systems, 
Trust Networks for Recommender Systems. Edited by C. Cornelis, M. de Cock, and S. 
(Online Service). Atlantis Press. doi: 10.2991/978-94-91216-08-4. 

Virzi, R. a. (1992) ‘Refining the test phase of usability evaluation: how many subjects is 
enough?’, Human Factors, 34(4), pp. 457–468. doi: 10.1177/001872089203400407. 

Walter, F. E., Battiston, S. and Schweitzer, F. (2008) ‘A model of a trust-based 
recommendation system on a social network’, Autonomous Agents and Multi-Agent 
Systems. Springer Netherlands, 16(1), pp. 57–74. doi: 10.1007/s10458-007-9021-x. 

Wan, Y.-H. and Chen, C. C. (2011) ‘An Effective Cold Start Recommendaton Method Using 
a Web Of Trust’, in Seddon, P. B. and Gregor, S. (eds) Pacific Asia Conference on 
Information Systems, {PACIS} 2011: Quality Research in Pacific Asia, Brisbane, 
Queensland, Australia, 7-11 July 2011. Queensland University of Technology, p. 205. 
Available at: http://aisel.aisnet.org/pacis2011/205. 

Wang, J., Vries, A. P. De and Reinders, M. J. T. (2006) ‘Unifying User-based and Item-
based Collaborative Filtering Approaches by Similarity Fusion Categories and Subject 
Descriptors’, Proceedings of the 29th annual international ACM SIGIR conference on 
Research and development in information retrieval, pp. 501–508. doi: 
10.1145/1148170.1148257. 

Watts, D. J. (1999) ‘Networks, Dynamics, and the Small&#x2010;World Phenomenon’, 
American Journal of Sociology, pp. 493–527. doi: 10.1086/210318. 

Watts, D. J. and Strogatz, S. H. (1998) ‘Collective dynamics of “small-world” networks.’, 
Nature, 393(6684), pp. 440–442. doi: 10.1038/30918. 

Wieringa, R. J. and Heerkens, J. M. G. (2006) ‘The methodological soundness of 
requirements engineering papers: A conceptual framework and two case studies’, 
Requirements Engineering, 11(4), pp. 295–307. doi: 10.1007/s00766-006-0037-6. 

Wierzbicki, A. (2010) Trust and fairness in open, distributed systems, Studies in 
Computational Intelligence. doi: 10.1007/978-3-642-13451-7_1. 

Wilks, Y. and Brewster, C. (2009) ‘Natural Language Processing as a Foundation of the 
Semantic Web’, Found.Trends Web Sci. Hanover, MA, USA: Now Publishers Inc, 1(3–4), 
pp. 199–327. doi: http://dx.doi.org/10.1561/1800000002. 

De Wit, J. (2005) Evaluating Recommender Systems, Thesis. University of Twente. doi: 
10.1109/AXMEDIS.2008.21. 

Xue, G.-R. et al. (2005) ‘Scalable collaborative filtering using cluster-based smoothing’, 
Proceedings of the 28th annual international ACM SIGIR conference on Research and 
development in information retrieval - SIGIR ’05, p. 114. doi: 10.1145/1076034.1076056. 

Yang, X., Steck, H. and Liu, Y. (2012) ‘Circle-based recommendation in online social 
networks’, in Proceedings of the 18th ACM SIGKDD international conference on 
Knowledge discovery and data mining (KDD ’12). New York, NY, USA: ACM Press, pp. 
1267–1275. Available at: http://dl.acm.org/citation.cfm?id=2339728 (Accessed: 25 
September 2014). 



164 
 

Yu, B. and Singh, M. P. (2002) ‘An Evidential Model of Distributed Reputation 
Management’, in Proceedings of the First International Joint Conference on Autonomous 
Agents and Multiagent Systems: Part 1. Bologna, Italy: ACM (AAMAS ’02), pp. 294–301. 
doi: 10.1145/544741.544809. 

Yu, K. et al. (2009) ‘Fast Nonparametric Matrix Factorization for Large-scale Collaborative 
Filtering Categories and Subject Descriptors’, Proceedings of the 32nd international ACM 
SIGIR conference on Research and development in information retrieval, 4, pp. 211–218. 
doi: 10.1145/1571941.1571979. 

Yuan, W. et al. (2010) ‘iTARS: trust-aware recommender system using implicit trust 
networks’, Communications, IET. IET, 4(14), pp. 1709–1721. 

Zafarani, R. and Liu, H. (2009) ‘Social Computing Data Repository at {ASU}’. Available at: 
http://socialcomputing.asu.edu. 

Zarghami, A. et al. (2009) ‘Social Trust-Aware Recommendation System: A T-Index 
Approach’, 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and 
Intelligent Agent Technology. Ieee, pp. 85–90. doi: 10.1109/WI-IAT.2009.237. 

Zhan, J. et al. (2010) ‘Privacy-preserving collaborative recommender systems’, IEEE 
Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, 40(4), 
pp. 472–476. doi: 10.1109/TSMCC.2010.2040275. 

Zhang, F. (2009) ‘A Survey of Shilling Attacks in Collaborative Filtering Recommender 
Systems’, in 2009 International Conference on Computational Intelligence and Software 
Engineering. IEEE, pp. 1–4. doi: 10.1109/CISE.2009.5365077. 

Zhang, F., Bai, L. and Gao, F. (2009) ‘A User Trust-Based Collaborative Filtering 
Recommendation Algorithm’, in, pp. 411–424. 

Zhang, H., Song, Y. and Song, H.-T. (2007) ‘Construction of Ontology-Based User Model 
for Web Personalization’, in Proceedings of the 11th international conference on User 
Modeling. Corfu, Greece: Springer-Verlag (UM ’07), pp. 67–76. doi: 
http://dx.doi.org/10.1007/978-3-540-73078-1_10. 

Zhao, M. and Smith, S. W. (2006) ‘Modeling and Evaluation of Certification Path 
Discovery in the Emerging Global PKI’, EuroPKI 2006, pp. 16–30. 

Zhou, X. et al. (2012) ‘The state-of-the-art in personalized recommender systems for 
social networking’, Artificial Intelligence Review. Springer Netherlands, 37(2), pp. 119–
132. doi: 10.1007/s10462-011-9222-1. 

Zhu, J., Hong, J. and Hughes, J. (2002) ‘Using Markov models for web site link prediction’, 
Hypertext 2002, p. 169. doi: 10.1145/513378.513381. 

Ziegler (2004) ‘Semantic web recommender systems’, Current Trends in Database 
TechnologyEDBT 2004 Workshops, 3268, pp. 78–89. Available at: 
http://www.springerlink.com/index/BVUY163JEH4FH6KH.pdf. 

Ziegler, C.-N. and Golbeck, J. A. (2007) ‘Investigating interactions of trust and interest 
similarity’, Decision Support Systems, 43(2), pp. 460–475. doi: 
10.1016/j.dss.2006.11.003. 

Ziegler, C.-N. and Golbeck, J. A. (2015) ‘Models for Trust Inference in Social Networks’, in 



165 
 

Dariusz, K., Fay, D., and Gabryś, B. (eds) Propagation Phenomena in Real World Networks. 
Springer International Publishing, pp. 53–89. doi: 10.1007/978-3-319-15916-4_3. 

Ziegler, C.-N. and Lausen, G. (2004) ‘Spreading activation models for trust propagation’, 
in IEEE International Conference on e-Technology, e-Commerce and e-Service, 2004. EEE 
’04. 2004. IEEE, pp. 83–97. doi: 10.1109/EEE.2004.1287293. 

Ziegler, C.-N. and Lausen, G. (2005) ‘Propagation Models for Trust and Distrust in Social 
Networks’, Information Systems Frontiers, 7(4–5), pp. 337–358. doi: 10.1007/s10796-
005-4807-3. 

Zigomitros, A., Papageorgiou, A. and Patsakis, C. (2016) ‘A practical k-anonymous 
recommender system’, in IISA 2016 - 7th International Conference on Information, 
Intelligence, Systems and Applications. doi: 10.1109/IISA.2016.7785379. 

Zolfaghar, K. and Aghaie, A. (2012) ‘A syntactical approach for interpersonal trust 
prediction in social web applications: Combining contextual and structural data’, 
Knowledge-Based Systems. Elsevier B.V., 26, pp. 93–102. doi: 
10.1016/j.knosys.2010.10.007. 

 


