223 research outputs found

    Methodologies for innovation and best practices in Industry 4.0 for SMEs

    Get PDF
    Today, cyber physical systems are transforming the way in which industries operate, we call this Industry 4.0 or the fourth industrial revolution. Industry 4.0 involves the use of technologies such as Cloud Computing, Edge Computing, Internet of Things, Robotics and most of all Big Data. Big Data are the very basis of the Industry 4.0 paradigm, because they can provide crucial information on all the processes that take place within manufacturing (which helps optimize processes and prevent downtime), as well as provide information about the employees (performance, individual needs, safety in the workplace) as well as clients/customers (their needs and wants, trends, opinions) which helps businesses become competitive and expand on the international market. Current processing capabilities thanks to technologies such as Internet of Things, Cloud Computing and Edge Computing, mean that data can be processed much faster and with greater security. The implementation of Artificial Intelligence techniques, such as Machine Learning, can enable technologies, can help machines take certain decisions autonomously, or help humans make decisions much faster. Furthermore, data can be used to feed predictive models which can help businesses and manufacturers anticipate future changes and needs, address problems before they cause tangible harm

    AIoT for Achieving Sustainable Development Goals

    Get PDF
    Artificial Intelligence of Things (AIoT) is a relatively new concept that involves the merging of Artificial Intelligence (AI) with the Internet of Things (IoT). It has emerged from the realization that Internet of Things networks could be further enhanced if they were also provided with Artificial Intelligence, enhancing the extraction of data and network operation. Prior to AIoT, the Internet of Things would consist of networks of sensors embedded in a physical environment, that collected data and sent them to a remote server. Upon reaching the server, a data analysis would be carried out which normally involved the application of a series of Artificial Intelligence techniques by experts. However, as Internet of Things networks expand in smart cities, this workflow makes optimal operation unfeasible. This is because the data that is captured by IoT is increasing in size continually. Sending such amounts of data to a remote server becomes costly, time-consuming and resource inefficient. Moreover, dependence on a central server means that a server failure, which would be imminent if overloaded with data, would lead to a halt in the operation of the smart service for which the IoT network had been deployed. Thus, decentralizing the operation becomes a crucial element of AIoT. This is done through the Edge Computing paradigm which takes the processing of data to the edge of the network. Artificial Intelligence is found at the edge of the network so that the data may be processed, filtered and analyzed there. It is even possible to equip the edge of the network with the ability to make decisions through the implementation of AI techniques such as Machine Learning. The speed of decision making at the edge of the network means that many social, environmental, industrial and administrative processes may be optimized, as crucial decisions may be taken faster. Deep Intelligence is a tool that employs disruptive Artificial Intelligence techniques for data analysis i.e., classification, clustering, forecasting, optimization, visualization. Its strength lies in its ability to extract data from virtually any source type. This is a very important feature given the heterogeneity of the data being produced in the world today. Another very important characteristic is its intuitiveness and ability to operate almost autonomously. The user is guided through the process which means that anyone can use it without any knowledge of the technical, technological and mathematical aspects of the processes performed by the platform. This means that the Deepint.net platform integrates functionalities that would normally take years to implement in any sector individually and that would normally require a group of experts in data analysis and related technologies [1-322]. The Deep Intelligence platform can be used to easily operate Edge Computing architectures and IoT networks. The joint characteristics of a well-designed Edge Computing platform (that is, one which brings computing resources to the edge of the network) and of the advanced Deepint.net platform deployed in a cloud environment, mean that high speed, real-time response, effective troubleshooting and management, as well as precise forecasting can be achieved. Moreover, the low cost of the solution, in combination with the availability of low-cost sensors, devices, Edge Computing hardware, means that deployment becomes a possibility for developing countries, where such solutions are needed most

    Last mile delivery

    Get PDF
    Last mile delivery is one of the most complex processes in the whole logistics process. This is because it involves many uncertainties, such as weather conditions, road conditions, traffic, car accidents, delivery vehicle anomalies, choice of route, avoiding parcel damage and delivery errors, and communication with the retailer or the recipient of the parcel; all this makes the successful delivery of parcels at the customers’ doorstep difficult. In addition, today’s consumers have much greater expectations regarding delivery services, they demand to receive their parcels much faster or be able to choose the time and place of delivery. All this increases the cost of last mile delivery, accounting for 40% of overall supply chain costs. E-commerce giants such as Amazon can invest a large number of resources into creating optimal last mile delivery solutions, establish numerous warehouses throughout countries which enable them to store the parcels as close to the end user as possible. However, companies that do not have as many resources may find it difficult to satisfy the delivery expectations of their customers; longer and inflexible waiting times, as well as additional payment for delivery may cause companies to quickly lose competitiveness on the market. This means that companies must turn to technological solutions that are going to help them to improve their last mile delivery effectively but at a reasonably low price. Big Data are the basis of all smart solutions. This is because collecting large amounts of data makes it possible to extract information and make future predictions on the basis of past patterns

    Artificial Intelligence, social changes and impact on the world of education

    Get PDF
    The way in which humans acquire and share knowledge has been under constant evolution throughout times. Since the appearance of the first computers, education has changed dramatically. Now, as disruptive technologies are in full development, new opportunities arise for taking education to levels that have never been seen before. Ever since the coronavirus pandemic, the use of online teaching modalities has become widespread all over the world and the situation has caused the development of robust digital learning solutions an urgent need. At present, primary, secondary, third-level teaching and all sorts of courses may be delivered online, either in real-time or recorded for later viewing. Classes can be complemented with videos, documents or even interactive exercises. However, the institutions that used little or no technology prior to Covid-19 have found this situation overwhelming. The lack of knowledge regarding the digital teaching/learning tools available on the market and/or lack of knowledge regarding their use, means that educational institutions will not be able to take full advantage of the opportunities offered; poor use of technology in online classrooms may hinder the students’ progress

    IoT and Blockchain for Smart Cities

    Get PDF
    Blockchain is a Distributed Ledger Technology (DLT) that makes it possible to secure any type of transaction. This is because the information stored on the Blockchain is immutable, impeding any type of fraud or modification of the data. It was first created for Bitcoin transactions; however, the research community has realized its potential quickly, and started using it for purposes other than cryptocurrency transactions. Blockchain may even be used to secure and provide reliability to the data being transmitted between computational systems, ensuring their immutability. Given the amount of data produced within a smart city, the use of Blockchain is imperative in smart cities, as it protects them from cyberattacks and fraud. Moreover, the transparency of the information stored on Blockchain means that it helps create a more just and democratic society

    Efficient Digital Management in Smart Cities

    Get PDF
    The concept of smart cities puts the citizen at the center of all processes. It is the citizen who decides what kind of city they live in. Their opinions and attitudes towards technologies and the solutions they would like to see in their cities must be listened to. With Deep Intelligence, cities will be able to create more optimal citizen-centered services as, as the tool can collect data from multiple sources, such as databases and social networks, from which valuable information on citizens’ opinions and attitudes regarding technology, smart city services and urban problems, may be extracted

    Building Efficient Smart Cities

    Get PDF
    Current technological developments offer promising solutions to the challenges faced by cities such as crowding, pollution, housing, the search for greater comfort, better healthcare, optimized mobility and other urban services that must be adapted to the fast-paced life of the citizens. Cities that deploy technology to optimize their processes and infrastructure fit under the concept of a smart city. An increasing number of cities strive towards becoming smart and some are even already being recognized as such, including Singapore, London and Barcelona. Our society has an ever-greater reliance on technology for its sustenance. This will continue into the future, as technology is rapidly penetrating all facets of human life, from daily activities to the workplace and industries. A myriad of data is generated from all these digitized processes, which can be used to further enhance all smart services, increasing their adaptability, precision and efficiency. However, dealing with large amounts of data coming from different types of sources is a complex process; this impedes many cities from taking full advantage of data, or even worse, a lack of control over the data sources may lead to serious security issues, leaving cities vulnerable to cybercrime. Given that smart city infrastructure is largely digitized, a cyberattack would have fatal consequences on the city’s operation, leading to economic loss, citizen distrust and shut down of essential city services and networks. This is a threat to the efficiency smart cities strive for

    Smart Buildings

    Get PDF
    This talk presents an efficient cyberphysical platform for the smart management of smart buildings http://www.deepint.net. It is efficient because it facilitates the implementation of data acquisition and data management methods, as well as data representation and dashboard configuration. The platform allows for the use of any type of data source, ranging from the measurements of a multi-functional IoT sensing devices to relational and non-relational databases. It is also smart because it incorporates a complete artificial intelligence suit for data analysis; it includes techniques for data classification, clustering, forecasting, optimization, visualization, etc. It is also compatible with the edge computing concept, allowing for the distribution of intelligence and the use of intelligent sensors. The concept of smart building is evolving and adapting to new applications; the trend to create intelligent neighbourhoods, districts or territories is becoming increasingly popular, as opposed to the previous approach of managing an entire megacity. In this paper, the platform is presented, and its architecture and functionalities are described. Moreover, its operation has been validated in a case study at Salamanca - Ecocasa. This platform could enable smart building to develop adapted knowledge management systems, adapt them to new requirements and to use multiple types of data, and execute efficient computational and artificial intelligence algorithms. The platform optimizes the decisions taken by human experts through explainable artificial intelligence models that obtain data from IoT sensors, databases, the Internet, etc. The global intelligence of the platform could potentially coordinate its decision-making processes with intelligent nodes installed in the edge, which would use the most advanced data processing techniques

    Learning AI with deepint.net

    Get PDF
    This keynote will examine the evolution of intelligent computer systems over the last years, underscoring the need for human capital in this field, so that further progress can be made. In this regard, learning about AI through experience is a big challenge, but it is possible thanks to tools such as deepint.net, which enable anyone to develop AI systems; knowledge of programming is no longer necessary

    The role of the AIoT and deepint.net

    Get PDF
    AIoT is a term, also known as intelligence of things, which refers to the new wave of the future of technology that combines two major platforms, very present in today's market: Artificial Intelligence (AI) and the Internet of things (IoT). As IoT devices will generate large amounts of data, Artificial Intelligence is going to be functionally necessary to deal with these huge volumes if we are to have any chance of making sense of the data. This whole process will be called connected intelligence. To take this step forward and definitively enter the era of Intelligence of Things, we will need to enable to a greater or lesser part these cognitive and executive capacities towards objects. To do this, we are going to talk more and more about the concept of Edge Computing (or “edge computing”), which is nothing more than the ability to process data, analyze situations, evaluate possible scenarios and make decisions from the object itself and not from a server hundreds or thousands of miles away
    • …
    corecore