131 research outputs found

    A landmark paper in face recognition

    Get PDF
    Good registration (alignment to a reference) is essential for accurate face recognition. The effects of the number of landmarks on the mean localization error and the recognition performance are studied. Two landmarking methods are explored and compared for that purpose: (1) the most likely-landmark locator (MLLL), based on maximizing the likelihood ratio, and (2) Viola-Jones detection. Both use the locations of facial features (eyes, nose, mouth, etc) as landmarks. Further, a landmark-correction method (BILBO) based on projection into a subspace is introduced. The MLLL has been trained for locating 17 landmarks and the Viola-Jones method for 5. The mean localization errors and effects on the verification performance have been measured. It was found that on the eyes, the Viola-Jones detector is about 1% of the interocular distance more accurate than the MLLL-BILBO combination. On the nose and mouth, the MLLL-BILBO combination is about 0.5% of the inter-ocular distance more accurate than the Viola-Jones detector. Using more landmarks will result in lower equal-error rates, even when the landmarking is not so accurate. If the same landmarks are used, the most accurate landmarking method gives the best verification performance

    Abstracts from the 25th Fungal Genetics Conference

    Get PDF
    Abstracts from the 25th Fungal Genetics Conferenc

    26th Fungal Genetics Conference at Asilomar

    Get PDF
    Program and abstracts from the 26th Fungal Genetics Conference, March 15-20, 2011

    Adaptive face modelling for reconstructing 3D face shapes from single 2D images

    Get PDF
    Example-based statistical face models using principle component analysis (PCA) have been widely deployed for three-dimensional (3D) face reconstruction and face recognition. The two common factors that are generally concerned with such models are the size of the training dataset and the selection of different examples in the training set. The representational power (RP) of an example-based model is its capability to depict a new 3D face for a given 2D face image. The RP of the model can be increased by correspondingly increasing the number of training samples. In this contribution, a novel approach is proposed to increase the RP of the 3D face reconstruction model by deforming a set of examples in the training dataset. A PCA-based 3D face model is adapted for each new near frontal input face image to reconstruct the 3D face shape. Further an extended Tikhonov regularisation method has been

    Leveraging Equivariant Features for Absolute Pose Regression

    Get PDF
    While end-to-end approaches have achieved state-of-the-art performance in many perception tasks, they are not yet able to compete with 3D geometry-based methods in pose estimation. Moreover, absolute pose regression has been shown to be more related to image retrieval. As a result, we hypothesize that the statistical features learned by classical Convolutional Neural Networks do not carry enough geometric information to reliably solve this inherently geometric task. In this paper, we demonstrate how a translation and rotation equivariant Convolutional Neural Network directly induces representations of camera motions into the feature space. We then show that this geometric property allows for implicitly augmenting the training data under a whole group of image plane-preserving transformations. Therefore, we argue that directly learning equivariant features is preferable than learning data-intensive intermediate representations. Comprehensive experimental validation demonstrates that our lightweight model outperforms existing ones on standard datasets.Comment: 11 pages, 8 figures, CVPR202

    A practical subspace approach to landmarking

    Get PDF
    A probabilistic, maximum aposteriori approach to finding landmarks in a face image is proposed, which provides a theoretical framework for template based landmarkers. One such landmarker, based on a likelihood ratio detector, is discussed in detail. Special attention is paid to training and implementation issues, in order to minimize storage and processing requirements. In particular a fast approximate singular value decomposition method is proposed to speed up the training process and implementation of the landmarker in the Fourier domain is presented that will speed up the search process. A subspace method for outlier correction and an iterative implementation of the landmarker are both shown to improve its accuracy. The impact of carefully tuning the many parameters of the method is illustrated. The method is extensively tested and compared with alternatives.\ud \ud \u

    Perceptually Valid Facial Expressions for Character-Based Applications

    Get PDF
    This paper addresses the problem of creating facial expression of mixed emotions in a perceptually valid way. The research has been done in the context of a “game-like” health and education applications aimed at studying social competency and facial expression awareness in autistic children as well as native language learning, but the results can be applied to many other applications such as games with need for dynamic facial expressions or tools for automating the creation of facial animations. Most existing methods for creating facial expressions of mixed emotions use operations like averaging to create the combined effect of two universal emotions. Such methods may be mathematically justifiable but are not necessarily valid from a perceptual point of view. The research reported here starts by user experiments aiming at understanding how people combine facial actions to express mixed emotions, and how the viewers perceive a set of facial actions in terms of underlying emotions. Using the results of these experiments and a three-dimensional emotion model, we associate facial actions to dimensions and regions in the emotion space, and create a facial expression based on the location of the mixed emotion in the three-dimensional space. We call these regionalized facial actions “facial expression units.

    Real-Time Depth-Based Hand Detection and Tracking

    Get PDF
    This paper illustrates the hand detection and tracking method that operates in real time on depth data. To detect a hand region, we propose the classifier that combines a boosting and a cascade structure. The classifier uses the features of depth-difference at the stage of detection as well as learning. The features of each candidate segment are to be computed by subtracting the averages of depth values of subblocks from the central depth value of the segment. The features are selectively employed according to their discriminating power when constructing the classifier. To predict a hand region in a successive frame, a seed point in the next frame is to be determined. Starting from the seed point, a region growing scheme is applied to obtain a hand region. To determine the central point of a hand, we propose the so-called Depth Adaptive Mean Shift algorithm. DAM-Shift is a variant of CAM-Shift (Bradski, 1998), where the size of the search disk varies according to the depth of a hand. We have evaluated the proposed hand detection and tracking algorithm by comparing it against the existing AdaBoost (Friedman et al., 2000) qualitatively and quantitatively. We have analyzed the tracking accuracy through performance tests in various situations
    corecore