9,206 research outputs found

    Big Data Caching for Networking: Moving from Cloud to Edge

    Full text link
    In order to cope with the relentless data tsunami in 5G5G wireless networks, current approaches such as acquiring new spectrum, deploying more base stations (BSs) and increasing nodes in mobile packet core networks are becoming ineffective in terms of scalability, cost and flexibility. In this regard, context-aware 55G networks with edge/cloud computing and exploitation of \emph{big data} analytics can yield significant gains to mobile operators. In this article, proactive content caching in 55G wireless networks is investigated in which a big data-enabled architecture is proposed. In this practical architecture, vast amount of data is harnessed for content popularity estimation and strategic contents are cached at the BSs to achieve higher users' satisfaction and backhaul offloading. To validate the proposed solution, we consider a real-world case study where several hours of mobile data traffic is collected from a major telecom operator in Turkey and a big data-enabled analysis is carried out leveraging tools from machine learning. Based on the available information and storage capacity, numerical studies show that several gains are achieved both in terms of users' satisfaction and backhaul offloading. For example, in the case of 1616 BSs with 30%30\% of content ratings and 1313 Gbyte of storage size (78%78\% of total library size), proactive caching yields 100%100\% of users' satisfaction and offloads 98%98\% of the backhaul.Comment: accepted for publication in IEEE Communications Magazine, Special Issue on Communications, Caching, and Computing for Content-Centric Mobile Network

    Will SDN be part of 5G?

    Get PDF
    For many, this is no longer a valid question and the case is considered settled with SDN/NFV (Software Defined Networking/Network Function Virtualization) providing the inevitable innovation enablers solving many outstanding management issues regarding 5G. However, given the monumental task of softwarization of radio access network (RAN) while 5G is just around the corner and some companies have started unveiling their 5G equipment already, the concern is very realistic that we may only see some point solutions involving SDN technology instead of a fully SDN-enabled RAN. This survey paper identifies all important obstacles in the way and looks at the state of the art of the relevant solutions. This survey is different from the previous surveys on SDN-based RAN as it focuses on the salient problems and discusses solutions proposed within and outside SDN literature. Our main focus is on fronthaul, backward compatibility, supposedly disruptive nature of SDN deployment, business cases and monetization of SDN related upgrades, latency of general purpose processors (GPP), and additional security vulnerabilities, softwarization brings along to the RAN. We have also provided a summary of the architectural developments in SDN-based RAN landscape as not all work can be covered under the focused issues. This paper provides a comprehensive survey on the state of the art of SDN-based RAN and clearly points out the gaps in the technology.Comment: 33 pages, 10 figure

    Addressing the Challenges in Federating Edge Resources

    Full text link
    This book chapter considers how Edge deployments can be brought to bear in a global context by federating them across multiple geographic regions to create a global Edge-based fabric that decentralizes data center computation. This is currently impractical, not only because of technical challenges, but is also shrouded by social, legal and geopolitical issues. In this chapter, we discuss two key challenges - networking and management in federating Edge deployments. Additionally, we consider resource and modeling challenges that will need to be addressed for a federated Edge.Comment: Book Chapter accepted to the Fog and Edge Computing: Principles and Paradigms; Editors Buyya, Sriram
    corecore