174 research outputs found

    Attack-Resilient State Estimation in the Presence of Noise

    Get PDF
    We consider the problem of attack-resilient state estimation in the presence of noise. We focus on the most general model for sensor attacks where any signal can be injected via the compromised sensors. An l0-based state estimator that can be formulated as a mixed-integer linear program and its convex relaxation based on the l1 norm are presented. For both l0 and l1-based state estimators, we derive rigorous analytic bounds on the state-estimation errors. We show that the worst-case error is linear with the size of the noise, meaning that the attacker cannot exploit noise and modeling errors to introduce unbounded state-estimation errors. Finally, we show how the presented attack-resilient state estimators can be used for sound attack detection and identification, and provide conditions on the size of attack vectors that will ensure correct identification of compromised sensors

    Local module identification in dynamic networks with correlated noise: the full input case

    Get PDF
    The identification of local modules in dynamic networks with known topology has recently been addressed by formulating conditions for arriving at consistent estimates of the module dynamics, typically under the assumption of having disturbances that are uncorrelated over the different nodes. The conditions typically reflect the selection of a set of node signals that are taken as predictor inputs in a MISO identification setup. In this paper an extension is made to arrive at an identification setup for the situation that process noises on the different node signals can be correlated with each other. In this situation the local module may need to be embedded in a MIMO identification setup for arriving at a consistent estimate with maximum likelihood properties. This requires the proper treatment of confounding variables. The result is an algorithm that, based on the given network topology and disturbance correlation structure, selects an appropriate set of node signals as predictor inputs and outputs in a MISO or MIMO identification setup. As a first step in the analysis, we restrict attention to the (slightly conservative) situation where the selected output node signals are predicted based on all of their in-neighbor node signals in the network.Comment: Extended version of paper submitted to the 58th IEEE Conf. Decision and Control, Nice, 201

    Passivity Degradation In Discrete Control Implementations: An Approximate Bisimulation Approach

    Full text link
    In this paper, we present some preliminary results for compositional analysis of heterogeneous systems containing both discrete state models and continuous systems using consistent notions of dissipativity and passivity. We study the following problem: given a physical plant model and a continuous feedback controller designed using traditional control techniques, how is the closed-loop passivity affected when the continuous controller is replaced by a discrete (i.e., symbolic) implementation within this framework? Specifically, we give quantitative results on performance degradation when the discrete control implementation is approximately bisimilar to the continuous controller, and based on them, we provide conditions that guarantee the boundedness property of the closed-loop system.Comment: This is an extended version of our IEEE CDC 2015 paper to appear in Japa

    Robust Kalman Filtering: Asymptotic Analysis of the Least Favorable Model

    Full text link
    We consider a robust filtering problem where the robust filter is designed according to the least favorable model belonging to a ball about the nominal model. In this approach, the ball radius specifies the modeling error tolerance and the least favorable model is computed by performing a Riccati-like backward recursion. We show that this recursion converges provided that the tolerance is sufficiently small
    • …
    corecore