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Strong Targeted Controllability of Dynamical Networks

Nima Monshizadeh⇤ Kanat Camlibel† Harry Trentelman†

Abstract— Network controllability is the ability to control the

entire network, meaning that we can drive the network from

any initial state to any desired final state in finite time by using

appropriate inputs which are applied to a subset of nodes of the

network. Despite obvious advantages, network controllability is

not always feasible as it may ask for a considerable portion

of the nodes to be controlled. Moreover, there are cases

where controllability of the entire network is not of interest,

but rather we are interested in controllability properties of

certain parts of the network. This motivates us to investigate

the so-called “targeted controllability” of the network, where

controllability is only required for a subset of nodes in the

network. Noting that targeted controllability can be treated as

an output controllability problem, we investigate the (strong)

structural output controllability properties of the network from

a topological viewpoint. In addition, we examine the structural

properties of the reachable subspace of the network. To this

end, we use the notion of zero forcing sets, which has been

recently exploited in the context of structural controllability.

I. INTRODUCTION

The study of systems evolving on graphs and networks of
dynamical agents have attracted a lot of attentions in the last
two decades. In this context, it is customary to represent the
infrastructure of a dynamical network by a graph where the
agents are located at the nodes, and the physical coupling or
the communication takes place over the edges of the graph.
Hence, graph theory has become an indispensable tool for
analysis and control of complex networks.

Clearly, we cannot solely rely on purely algebraic methods
for analysis and design of dynamical networks, and we need
to adopt a topological viewpoint to deal with numerical
errors, uncertainties and changes in the network parameters.
Motivated by this fact, a topological approach has been
taken to study consensus [3], model reduction [14], [15],
and controllability see e.g. [12], [7], [20], [19], [17], [18],
[4], [5].

In the controllability framework, agents are labeled as
leaders and followers. Leaders are agents through which
external input signals are injected to the network, and the
rest of the agents are called followers. Then, controllability
analysis amounts to investigate the possibility of deriving the
states of the agents to a desired point by appropriate input
signals applied to the leaders. The mainstream of research in
this direction has been devoted to controllability analysis of
networks with symmetric unweighted Laplacian matrix, see
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e.g. [7], [20], [19], [17], [18], [22]. To broaden the scope of
the analysis and to cope with the inherent uncertainties in
complex networks, an emerging thread in the study of con-
trollability of complex network is centered around structural
controllability. Structural controllability deals with a family
of systems rather than a particular instance and asks whether
the family contains a controllable pair (weak structural con-
trollability) [11] or all members of the family are controllable
(strong structural controllability) [2], [16]. In particular, it has
been shown that weak structural controllability of complex
networks can be fully characterized in terms of maximum
matching [11], and strong structural controllability has a one-
to-one correspondence to zero forcing sets of the graph [16].
For a more general look at control properties of structured
linear systems, see e.g. [6].

Note that network controllability is not always present in
complex networks, or it may ask for considerable number of
nodes to be directly controlled which is not always feasible.
In addition, one can postulate the cases where steering the
network to any arbitrary state is not necessary, and the do-
main of interest is restricted from the whole state space to a
particular subspace. Likewise, we may ask for controllability
properties in a subset of the nodes of the network, rather than
the entire network. The latter, under the title of “targeted
controllability”, has been recently studied in [8], and exact
topological condition for targeted controllability (in the weak
structural sense) is reported in case the leader set is singleton.

In this paper, we study the “strong structurally reachable
subspace” of the network, which is a strong structural exten-
sion of ordinary reachability subspace. In particular, a point
in the strongly reachable subspace can always be reached for
the whole family of systems defined on a graph. We show
that the strong structurally reachable subspace is topologi-
cally equivalent to the so called “derived set” of the leader
set. Then, noting that targeted controllability is essentially an
output controllability problem, we conclude that each node
in the derived set is controllable from the leader set, in a
strong structural manner. This provides a sufficient condition
for strong structural targeted controllability of the network
in terms of the derived set. We also provide a shaper version
of this sufficient condition by extending the derived set. An
exact topological condition for targeted controllability is a
subject of future research.

The structure of this paper is as follows. Preliminaries and
problem motivation are provided In Section II. In Section III
and Section V, we recap the notion of output controllability
and zero forcing sets, respectively. The main results of the
paper are reported in Section VI. The paper ends with
conclusions in Section VII.



II. PRELIMINARIES AND MOTIVATION

For a given simple directed graph G, the vertex set of
G is a nonempty set and is denoted by V . The arc set of
G, denoted by E, is a subset of V ⇥ V , and (i, i) /2 E
for all i 2 V . The cardinality of a given set V is denoted
by |V |. Also we sometimes use |G| to denote in short the
cardinality of V . We call vertex j an out-neighbor of vertex
i if (i, j) 2 E. The following family of matrices associated
with G is called the qualitative class of G:

Q(G) =

{X 2 R|G|⇥|G|
: for i 6= j, Xij 6= 0 , (j, i) 2 E} (1)

For V = {1, 2, . . . , n} and V 0
= {v1, v2, . . . , vr} ✓ V ,

we define the n⇥ r matrix P (V ;V 0
) = [Pij ] by:

Pij =

(
1 if i = vj

0 otherwise.
(2)

We consider the following finite-dimensional linear in-
put/state/output system defined on a graph G

ẋ(t) = Xx(t) + Uu(t) (3a)

y = Hx(t) (3b)

where x 2 R|G| is the state, u 2 Rm is the input, y 2 R`

is the output, X 2 Q(G), U = P (V ;VL) for some given
leader set VL ✓ V , and H = PT

(V ;VT ) for some given
target set VT ✓ V .

Systems of the form (3) where X 2 Q(G) for a given
graph G are encountered in various contexts. Examples
include the cases where X is the adjacency matrix [9],
the (in-degree or out-degree) Laplacian [13], normalized
Laplacian [1], etc.

In this paper, we study structural controllability properties
of the systems (3a), and we investigate the “structural output
controllability problem” for systems of the form (3).

With a slight abuse of notation, we sometimes call (X;VL)

controllable if the pair (X,U) is controllable. For a given
graph G and a leader set VL we say (G;VL) is controllable
if the pair (X;VL) is controllable for all X 2 Q(G). In
this case, we say that the network (3) is strongly structurally
controllable.

For simplicity, we use calligraphic notation to denote the
image of a matrix induced by a subset V 0 ✓ V . More
precisely, V 0 denotes, in short, the subspace imP (V ;V 0

).
As mentioned before, in this paper we are primarily

interested in the case where strong structural controllability
does not hold in the network. Then, clearly, driving the
entire network from any initial state to any desired final state
may not be possible. However, an interesting problem is to
quantify the “partial controllability” which is still present in
the network. In particular, we address the question which
states of the network are reachable by applying appropriate
input signals to the leaders? What is the subset of the nodes
that can be driven to an arbitrary state, given a leader set?
To formalize the aforementioned questions, we recap some
notion from geometric control theory in the next section.

III. REVIEW: REACHABLE SUBSPACE AND OUTPUT
CONTROLLABILITY

In this section we will review the notion of output con-
trollability for general linear input-state-output systems.

Consider the system

ẋ(t) = Ax(t) +Bu(t) (4)

with state space Rn. For a given initial state x0 and input
function u, we denote the resulting state trajectory of the
system by xu(t, x0). The smallest A-invariant subspace
containing the image imB of the input matrix B is denoted
by hA | imBi. This subspace, called the reachable subspace,
consists of all points in the state space that can be reached
from the origin in finite time by choosing an appropriate
input function, i.e., all points x1 2 Rn for which there exists
T > 0 and u such that x1 = xu(T, 0). It is well known
that the system is controllable if and only if the reachable
subspace hA | imBi is equal to the entire state space Rn.
In turn, this is equivalent to the condition

rank

⇥
B AB · · · An�1B

⇤
= n.

If, in addition to the state equation, we specify an output
equation

y(t) = Cx(t), (5)

where the output y(t) takes its values in the output space
Rp, we may introduce the notion of output controllability.
Denote the output trajectory corresponding to the initial state
x0 and input function u by yu(t, x0). The system (4), (5)
is then called output controllable if for any x0 2 Rn and
y1 2 Rp there exists an input function u and a T > 0 such
that yu(T, x0) = y1. We also say that the triple (A,B,C)

is output controllable meaning that the system (4), (5) is
output controllable. It is well known (see e.g. [21, Exc. 3.22])
that (A,B,C) is output controllable if and only if the rank
condition

rank

⇥
CB CAB · · · CAn�1B

⇤
= p.

holds. In turn this is equivalent to the condition

ChA | imBi = Rp,

i.e. the image under C of the reachable subspace is equal to
the output space Rp. Obviously, this condition is equivalent
to kerC + hA | imBi = Rn. Finally, by taking orthogonal
complements, the latter holds if and only if

imC> \ hA | imBi? = {0}.

IV. PROBLEM FORMULATION

In this section, we formally define the problems mentioned
in Section II. Note that for a given X 2 Q(G) and a
given leader set VL, the subspace hX | VLi contains all
the states that can be reached from the origin by applying
inputs to the nodes in the leader set VL. Recall that we are
interested in strong structural properties, i.e. properties which
are valid for the whole qualitative class of a given graph.
Hence, we define the strong structurally reachable as the
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Fig. 1. An example for the coloring rule

subspace containing all the states which can be reached by
applying appropriate input signals to the nodes in the leader
set VL, independent of the choice of X 2 Q(G). Clearly,
this subspace is equal to

T
X2Q(G)hX | VLi. As for the first

problem, we investigate a topological characterization of the
strong structurally reachable subspace. To this end, we need
the notion of zero forcing sets.

V. ZERO FORCING SETS

In this section, we review the notion of zero forcing sets
together with the notations involved and terminology that
will be used in the sequel. For more details see e.g. [10].

Let G be a graph, and suppose that each vertex is colored
either white or black. Consider the following coloring rule:

G# : If u is a black vertex and exactly one out-neighbor v
of u is white, then change the color of v to black.

The following terminology will be used when we apply
the color-change rule above to a graph G:

– If the color-change rule is applied to u 2 V to change
the color of v 2 V , we say u forces or infects v, and
write u ! v.

– Given a coloring set C ✓ V , i.e. C indexes the initially
black vertices of G, the derived set set of C is denoted
by D(C), and is the set of black vertices obtained by
applying the color-change rule until no more changes
are possible. Noting that C ✓ D(C), we call D(C)\C
the strict derived set of C.

– The set Z ✓ V is a zero forcing set (ZFS) for G if
D(Z) = V .

Figure 1 illustrates the coloring rule, where vertex 1 is
initially colored black. Then, by the color-change rule it
is clear that 1 ! 2. Consequently, 2 ! 3, and 3 ! 4.
Therefore, the derived set of {1} is equal to {1, 2, 3, 4}, and
thus {1} is not a zero forcing set. It is easy to see that {1, 5}
constitutes a zero forcing set for the depicted graph.

It is worth mentioning that there is a one to one correspon-
dance between zero forcing sets and sets of leaders rendering
the network strongly structurally controllable, more precisely
(G;VL) is controllable if and only if VL is a zero forcing
set [16].

VI. MAIN RESULTS

Let VL denote the subspace imP (V ;VL), and let D(VL)

denote the subspace imP (V ;D(VL)), where P is defined in

(2). Then, D(VL) is contained in the reachability subspace
as stated in the following lemma.

Lemma VI.1 For a given X 2 Q(G) and a leader set VL ✓
V , we have D(VL) ✓ hX | VLi

Proof. First note that in case D(VL) = VL, and thus
D(VL) = VL, the statement of the lemma trivially holds.
Now, suppose that D(VL) 6= VL, and vertex v 2 VL forces
vertex w /2 VL. Then, we claim that

imP (V ;VL [ {w}) ✓ hX | VLi. (6)

where P is given by (2). Clearly, the subspace inclusion (6)
holds if and only if

hX | VLi? ✓ P (V ;VL [ {w})? (7)

Without loss of generality, assume that VL = {1, 2, . . . ,m},
v = m, and w = m + 1. Then, the matrix X can be
partitioned as

X =

2

664

X11 X12 X13 X14

X21 X22 X23 X24

X31 X32 X33 X34

X41 X42 X43 X44

3

775 (8)

where the diagonal blocks/elements X11, X22, X33, and X44

correspond to the vertices in VL\{v}, the vertex v, the vertex
w, and the rest of the vertices, respectively.

Let ⇠ 2 Rn be a vector in hX | VLi?. Clearly, we
have ⇠TXk�1P (V ;VL) = 0 for each k 2 N. We write
⇠ = col(⇠1, ⇠2, ⇠3, ⇠4) compatible with the partitioning of
X . Note that P (V ;VL [ {w}) now reads as

P (V ;VL [ {w}) =

2

664

Im�1 0 0

0 1 0

0 0 1

0 0 0

3

775

From the equality ⇠TP (VL;V ) = 0, we obtain that ⇠1 = 0

and ⇠2 = 0. Then, the equality ⇠TXP (VL;V ) = 0 yields
⇥
⇠T3 ⇠T4

⇤ X31 X32 X33

X41 X42 X43

�
= 0 (9)

Observe that, since v ! w, the vertex v has exactly one
out-neighbor in V \ VL, and thus we have X32 6= 0 and
X42 = 0. Therefore, by (9), we obtain that the scalar ⇠3 is
equal to zero. Clearly, ⇠ = col(0, 0, 0, ⇠4) is orthogonal to
the subspace P (V ;VL[{w}). Hence, the subspace inclusion
(7), and thus (6) holds. By repeating the argument above, we
conclude that D(VL) ✓ hX | VLi . ⌅

Next, we show that the reachable subspace is invariant
under the coloring rule.

Lemma VI.2 For any given X 2 Q(G) and leader set VL ✓
V , we have hX | VLi = hX | D(VL)i.

Proof. As VL ✓ D(VL), we obtain that

hX | VLi ✓ hX | D(VL)i



In addition, by Lemma VI.1, we have D(VL) ✓ hX | VLi.
Hence, hX | D(VL)i ✓ hX | VLi, and thus the equality
hX | VLi = hX | D(VL)i holds. ⌅

Now, the following theorem provides an exact topological
characterization of the strong structurally reachable subspace.

Theorem VI.3 For any given leader set VL ✓ V , we have
\

X2Q(G)

hX | VLi = D(VL)

Proof. First, note that by Lemma VI.1 it follows that

D(VL) ✓
\

X2Q(G)

hX | VLi (10)

Now, we claim that
\

X2Q(G)

hX | D(VL)i ✓ D(VL) (11)

We define the set S as

S = {s 2 Rn
: si = 0 , i 2 D(VL)} (12)

Let s be a vector in S. Without loss of generality, let
D(VL) = {1, 2, . . . , d}. Then, s can be written as col(0d, s2)
where each element of s2 2 Rn�d is nonzero. Let the matrix
X be partitioned accordingly as

X =


X11 X12

X21 X22

�

Clearly, we have

sTX = sT2
⇥
X21 X22

⇤

Observe that X21 corresponds to the arcs from a vertex
v 2 D(VL) to a vertex w /2 D(VL). Hence, by the coloring
rule, each column of X21 is either identically zero or contains
at least two nonzero elements. We choose these nonzero
elements, if any, such that sT2 X21 = 0. Noting that the
diagonal elements of X22 are free parameters, we conclude
that, for any vector s 2 S, there exists a matrix X 2 Q(G)

such that sTX = 0. Therefore, we obtain that

s 2 hX | D(VL)i?

for some matrix X 2 Q(G). Now, let ⇠ 2 Rn be a vector inT
X2Q(G)hX | D(VL)i. Hence, by definition,

⇠ 2 hX | D(VL)i

for all X 2 Q(G). Therefore, we have sT ⇠ = 0 which yields
sT2 ⇠2 = 0, by writing ⇠ = col(⇠1, ⇠2). As this conclusion
holds for an arbitrary choice of s 2 S, we obtain that ⇠2 = 0,
and thus ⇠ 2 D(VL) which proves (11). Now, by Lemma
VI.2, the subspace inclusion (11) is equivalent to

\

X2Q(G)

hX | VLi ✓ D(VL)

This together with (10) completes the proof. ⌅

Next, we consider the “strong targeted controllability”
problem for systems of the form (3). For a given leader
set VL and a target set VT , we call the system (3) strongly
targeted controllable if the triple (X,U,H) is output con-
trollable for all X 2 Q(G). In this case, we also say that
(G;VL;VT ) is targeted controllable.

Observe that (strong) targeted controllability is basically
a (strong) structural output controllability property. Indeed,
in case (G;VL;VT ) is targeted controllable, then the output
of the network can be steered to any desired state in R|VT |,
irrespective of the choice of X 2 Q(G).

Let VT = imP (V ;VT ). Then, by Section III, geometric
conditions for strong targeted controllability can be given as
follows.

Proposition VI.4 The following statements are equivalent:

(i) (G;VL;VT ) is targeted controllable

(ii) rank

⇥
HU HXU HX2U · · · HXn�1U

⇤
= `

for all X 2 Q(G)

(iii) H hX | VLi = R` for all X 2 Q(G)

(iv) VT \ hX | VLi? = {0} for all X 2 Q(G)

Then, by using the results established previously in this
section, we have the following theorem.

Theorem VI.5 Given a leader set VL and a target set VT ,
we have that (G;VL;VT ) is targeted controllable if VT ✓
D(VL).

Proof. Assume that VT ✓ D(VL), and thus VT ✓ D(VL).
By Theorem VI.3, this is equivalent to

VT ✓
\

X2Q(G)

hX | VLi (13)

Therefore, it is easy to observe that

VT \ hX | VLi? = {0} (14)

for all X 2 Q(G), which results in targeted controllability
of (G;VL;VT ) by the fourth statement of Proposition VI.4.

⌅

Theorem VI.5 provides a sufficient condition for tar-
geted controllability. In particular, targeted controllability of
(G;VL;VT ) is guaranteed provided that the target nodes
belong to the derived set of VL. The absence of necessary
and sufficient condition in Theorem VI.5 is associated with
the gap between the conditions (13) and (14).

Consider the graph depicted in Figure 2, and let VL =

{1, 2}. It is easy to observe that by the color-change rule
the derived set of VL is obtained as D(VL) = {1, 2, 3, 4}.
By Theorem VI.5, we have that (G;VL;VT ) is targeted
controllable for any

VT ✓ {1, 2, 3, 4}. (15)
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Fig. 3. The subgraph G0 = (V,E0)

However, this is not necessary as one can show that
(G;VL;VT ) is targeted controllable with

VT = {1, 2, 3, 4, 5, 6, 7}. (16)

Next, we show that the sufficient condition provided by
Theorem VI.5 can be sharpened by extending the derived set
of VL. In particular, our goal is to conclude that (G;VL;VT )

is targeted controllable if

VT ✓ D(VL) [ VE (17)

for some appropriate, to be chosen, subset VE ✓ V \D(VL).
To this end, we define the subgraph G0

= (V,E0
) with

E0
= {(i, j) : i 2 D(VL) and j 2 VT } (18)

We choose VE as the strict derived set of D(VL) in the
subgraph G0. This means that the vertices in D(VL) are
initially colored black, and we apply the color-change rule
based on the arc set E0.

Let D(VL) [ VE be denoted by D0
(VL), and note that

D0
(VL) is equal to the derived set of D(VL) in G0. Then,

by construction, we have VE ✓ VT .
Clearly (17) can be written as

VT ✓ D0
(VL) = D(VL)� VE (19)

where D0
(VL) = imP (V ;D0

(VL)) and VE = imP (V ;VE).
Without loss of generality, assume that

D(VL) = {1, 2, . . . , d}

and
VE = {d+ 1, d+ 2, · · · , d+ e}.

Also let

VT = {d� t, d� t+ 1, . . . , d, d+ 1, . . . , d+ e}

for some t < d. Consider the fourth statement in Proposition
VI.4. Let X 2 Q(G) and ⇠ be a vector in the subspace VT \
hX | VLi?. Hence, ⇠ 2 VT \hX | D(VL)i? by Lemma VI.2.
We write ⇠ 2 Rn as ⇠ = col(⇠1, ⇠2, ⇠3, ⇠4) by partitioning
the vertices into the subsets D(VL) \ VT , D(VL) \ VT , VE ,
and V \ D0

(VL), respectively. Now, compatible with ⇠, let
the matrix X be partitioned as

X =

2

664

X11 X12 X13 X14

X21 X22 X23 X24

X31 X32 X33 X34

X41 X42 X43 X44

3

775 (20)

and assume that (17), and thus (19), holds. Then, we have
⇠ 2 D0

(VL), and clearly we obtain that ⇠4 = 0. Moreover,
we have

⇠TXk�1P (V ;D(VL) = 0 (21)

for each k 2 N. The equality ⇠TP (V ;D(VL)) = 0 yields
⇠1 = ⇠2 = 0. Then, from ⇠TXP (V ;D(VL)) = 0, we obtain
that

⇠T3
⇥
X31 X32

⇤
= 0. (22)

Note that X21, X22, X31, and X32 correspond to the arcs
from the vertices in the derived set to those in the target set
VT . Observe that the matrix

X 0
=

2

664

0 0 0 0

X21 X22 0 0

X31 X32 0 0

0 0 0 0

3

775

belongs to the qualitative class Q(G0
), where the partitioning

is compatible to (20). Noting that D0
(VL) is equal to the

derived set of D(VL) in G0, by Lemma VI.1, we have

D0
(VL) ✓ hX 0 | D(VL)i (23)

It is straightforward to investigate that the subspace in the
right hand side of (23) is computed as

hX 0 | D(VL)i = im

2

664

I 0 0 0

0 I 0 0

0 0 X31 X32

0 0 0 0

3

775 .

Hence, (23) yileds

D0
(VL) = im

2

664

I 0 0

0 I 0

0 0 I
0 0 0

3

775 ✓ im

2

664

I 0 0 0

0 I 0 0

0 0 X31 X32

0 0 0 0

3

775

where the partitioning is again compatible to (20). This
obviously implies that

⇥
X31 X32

⇤
is full row rank. Conse-

quently, (22) results in ⇠3 = 0 which in turn implies targeted
controllability of (G;VL;VT ) by the fourth statement of



Proposition VI.4. Therefore, we conclude that the sufficient
condition provided by Theorem VI.5 can be sharpened as
(17) with VE being the strict derived set of D(VL) in the
subgraph G0. This, using the same notation as above, is
summarized in the following theorem.

Theorem VI.6 Given a leader set VL and a target set VT ,
we have that (G;VL;VT ) is targeted controllable if VT ✓
D0

(VL).

To clarify, note that the set D0
(VL) is constructed as a

result of the following steps:
1) Compute the set D(VL), that is the derived set of VL

in the graph G = (V,E)

2) Construct the subgraph G0
= (V,E0

) from G, with E0

given by (18)
3) Compute the derived set of D(VL) in G0, and denote it

by D0
(VL). This means that the vertices in D(VL) are

initially colored black, and we apply the color-change
rule based on the arc set E0.

Now, consider again the graph depicted in Figure 2 with
VL = {1, 2}. Recall that the derived set of VL is given by
D(VL) = {1, 2, 3, 4} in this case. Let VT be given by

VT = {1, 2, 3, 4, 5, 6} (24)

Then, Figure 3 shows the subgraph G0
= (V,E0

) with E0

given by (18). It is easy to observe that the derived set
of D(VL) in G0 is obtained as D0

(VL) = {1, 2, 3, 4, 5, 6}.
Therefore, noting that VT = D0

(VL), we conclude that
(G;VL;VT ) is targeted controllable by Theorem VI.6. Ob-
serve that by extending the derived set of VL to the set
D0

(VL), the condition (15) has been replaced by a less
conservative condition (24). However, the sufficient condition
provided by Theorem VI.6 is still not exact, as evident by
(16). In fact, the set D(VL) does not infect vertex 7 in G0.

VII. CONCLUSIONS

In this paper, we have studied the case where the network
is not strongly structurally controllable, and we are interested
in partial controllability or controllability properties in some
parts of the network. We have exploited the notion of zero
forcing sets equipped with a coloring rule. As observed, the
reachability subspace is invariant under this coloring. We
have also investigated strong structurally reachable subspace
of the network and showed that this subspace is topoligically
equivalent to the derived set of the leader set. Then, we
have studied targeted controllability of the network from a
strong structural perspective. We have established topological
sufficient conditions guaranteeing the (strong) targeted con-
trollability of the network. Investigating an exact topological
characterization of targeted controllability is a subject of
future research.
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