1,747 research outputs found

    Muon colliders and the non-perturbative dynamics of the Higgs boson

    Get PDF
    A muon collider operating in the TeV energy range can be an ideal s-channel Higgs boson factory. This is especially true for a heavy Higgs boson. The non-perturbative dynamical aspects of such a Higgs boson were recently investigated with large N expansion methods at next to leading order, and reveal the existence of a mass saturation effect. Even at strong coupling, the Higgs resonance remains always below 1 TeV. However, if the coupling is strong enough, the resonance becomes impossible to be detected.Comment: Contributed to the International Conference on Physics Potential and Development of mumu Colliders, December 15-17, 1999, San Francisco, C

    An exact solution of the five-dimensional Einstein equations with four-dimensional de Sitter-like expansion

    Full text link
    We present an exact solution to the Einstein field equations which is Ricci and Riemann flat in five dimensions, but in four dimensions is a good model for the early vacuum-dominated universe.Comment: 6 pages; to appear in Journal of Mathematical Physics; v2: reference 3 correcte

    Factorization in integrable systems with impurity

    Full text link
    This article is based on recent works done in collaboration with M. Mintchev, E. Ragoucy and P. Sorba. It aims at presenting the latest developments in the subject of factorization for integrable field theories with a reflecting and transmitting impurity.Comment: 7 pages; contribution to the XIVth International Colloquium on Integrable systems, Prague, June 200

    Efficient description of strongly correlated electrons with mean-field cost

    Get PDF
    We present an efficient approach to the electron correlation problem that is well-suited for strongly interacting many-body systems, but requires only mean-field-like computational cost. %which is based on orbital optimization of electron pairs. The performance of our approach is illustrated for the one-dimensional Hubbard model with periodic boundary conditions for different chain lengths, and for the non-relativistic quantum chemical Hamiltonian exploring the symmetric dissociation of the H50_{50} hydrogen chain.Comment: 4 pages, 4 figure

    Random magnetic field and quasi-particle transports in the mixed state of high T_{c} cuprates

    Full text link
    By a singular gauge transformation, the quasi-particle transport in the mixed state of high T_{c} cuprates is mapped into charge-neutral composite Dirac fermion moving in short-range correlated random scalar and long-range correlated vector potential. A fully quantum mechanical approach to longitudinal and transverse thermal conductivities is presented. The semi-classical Volovik effect is presented in a quantum mechanical way. The quasi-particle scattering from the random magnetic field which was completely missed in all the previous semi-classical approaches is the dominant scattering mechanism at sufficiant high magnetic field. The implications for experiments are discussed.Comment: 4+ pages, 1 figure. To appear in Phys. Rev. Let

    Higher Order Evaluation of the Critical Temperature for Interacting Homogeneous Dilute Bose Gases

    Get PDF
    We use the nonperturbative linear \delta expansion method to evaluate analytically the coefficients c_1 and c_2^{\prime \prime} which appear in the expansion for the transition temperature for a dilute, homogeneous, three dimensional Bose gas given by T_c= T_0 \{1 + c_1 a n^{1/3} + [ c_2^{\prime} \ln(a n^{1/3}) +c_2^{\prime \prime} ] a^2 n^{2/3} + {\cal O} (a^3 n)\}, where T_0 is the result for an ideal gas, a is the s-wave scattering length and n is the number density. In a previous work the same method has been used to evaluate c_1 to order-\delta^2 with the result c_1= 3.06. Here, we push the calculation to the next two orders obtaining c_1=2.45 at order-\delta^3 and c_1=1.48 at order-\delta^4. Analysing the topology of the graphs involved we discuss how our results relate to other nonperturbative analytical methods such as the self-consistent resummation and the 1/N approximations. At the same orders we obtain c_2^{\prime\prime}=101.4, c_2^{\prime \prime}=98.2 and c_2^{\prime \prime}=82.9. Our analytical results seem to support the recent Monte Carlo estimates c_1=1.32 \pm 0.02 and c_2^{\prime \prime}= 75.7 \pm 0.4.Comment: 29 pages, 3 eps figures. Minor changes, one reference added. Version in press Physical Review A (2002

    Unified theory of phase separation and charge ordering in doped manganite perovskites

    Full text link
    A unified theory is developed to explain various types of electronic collective behaviors in doped manganites R1−x_{1-x}Xx_xMnO3_3 (R = La, Pr,Nd etc. and X = Ca, Sr, Ba etc.). Starting from a realistic electronic model, we derive an effective Hamiltonianis by ultilizing the projection perturbation techniques and develop a spin-charge-orbital coherent state theory, in which the Jahn-Teller effect and the orbital degeneracy of eg_g electrons in Mn ions are taken into account. Physically, the experimentally observed charge ordering state and electronic phase separation are two macroscopic quantum phenomena with opposite physical mechanisms, and their physical origins are elucidated in this theory. Interplay of the Jahn-Teller effect, the lattice distortion as well as the double exchange mechanism leads to different magnetic structures and to different charge ordering patterns and phase separation.Comment: 10 ReVTEX pages with 4 figures attache

    A simple necessary decoherence condition for a set of histories

    Full text link
    Within the decoherent histories formulation of quantum mechanics, we investigate necessary conditions for decoherence of arbitrarily long histories. We prove that fine-grained histories of arbitrary length decohere for all classical initial states if and only if the unitary evolution preserves classicality of states (using a natural formal definition of classicality). We give a counterexample showing that this equivalence does not hold for coarse-grained histories.Comment: 11 pages,LaTe

    Two-Staged Magnetoresistance Driven by Ising-like Spin Sublattice in SrCo6O11

    Full text link
    A two-staged, uniaxial magnetoresistive effect has been discovered in SrCo6O11 having a layered hexagonal structure. Conduction electrons and localized Ising spins are in different sublattices but their interpenetration makes the conduction electrons sensitively pick up the stepwise field-dependence of magnetization. The stepwise field-dependence suggests two competitive interlayer interactions between ferromagnetic Ising-spin layers, i.e., a ferromagnetic nearest-layer interaction and an antiferromagnetic next-nearest-layer interaction. This oxide offers a unique opportunity to study nontrivial interplay between conduction electrons and Ising spins, the coupling of which can be finely controlled by a magnetic field of a few Tesla.Comment: 14 pages, 4 figures, accepted for publication in Phys. Rev. Let
    • …
    corecore