4 research outputs found

    Brain fame:From FPGA to heterogeneous acceleration of brain simulations

    Get PDF
    Among the various methods in neuroscience for understanding brain function, in-silico simulations have been gaining popularity. Advances in neuroscience and engineering led to the creation of mathematical models of networks that do not simply mimic biological behaviour in an abstract fashion but emulate its in significant detail, even to the level of its biophysical properties. Such an example is the Spiking Neural Network (SNN) that can model a variety of additional behavioural features, like encoding data and adapting according to a spike train`s amplitude, frequency and general precise pattern of arrival of spiking events on a neuron. As a result, SNNs have higher explanatory power than their predecessors, thus brain simulations based on SNNs become an attractive topic to explore. In-silico simulations of SNNs can have beneficial results not only for neuroscience research but breakthroughs can also potentially benefit medical, computing and A.I. research. SNNs, though, computationally depending workloads that traditional computing might not be able to cover. Thus, the use of High Performance Computing (HPC) platforms in this application domain becomes desirable. This dissertation explores the topic of HPC-based in-silico brain simulations. Initially, the effort focuses on custom hardware accelerators, due to their potential in providing real-time performance alongside support for large-scale non-real-time experiments and specifically Field Programmable Gate Arrays (FPGAs). The nature of FPGA-based accelerators provides specific benefits against other similar paradigms like Application Specific Integrated Circuit (ASIC) designs.Firstly, we explore the general characteristics of typical SNNs model types to identify their computational requirements in relation to their explanatory strength. We also identify major design characteristics in model development that can directly affect its performance and behaviour when ported to an HPC platform. Subsequently, a detailed literature review is made on FPGA-based SNN implementations. The HPC porting effort begins with the implementation of an extended-Hodgkin-Huxley model of the Inferior-olivary nucleus featuring advanced connectivity. The model is quite demanding and complex enough to act as a realistic benchmark for HPC implementations, while also being scientifically relevant in its own right. FPGA development shows promising performance results not only when doing custom designs but also using High-level synthesis (HLS) toolflows that significantly reduce development time. FPGAs have proven suitable for small-scale embedded-HPC uses as well. The various efforts, though, reveal a very specific weakness of FPGA development that has less to do with the silicon itself and more with its programming environment. The FPGA tools are very inaccessible to non-experts, thus any acceleration effort would require the engineer (and the FPGA development time) to be in the critical path of the research process. An important question to be answered is how the FPGA platform would compare to other popular software-based HPC solutions such as GPU- and CPU-based platforms. A detailed comparison of the best FPGA implementation with GPU and manycore-CPU ports of the same benchmark is conducted. The comparison and evaluation shows that, when it comes to real-time performance, FPGAs have a clear advantage. But for non-real-time, large scale simulations, there is no single platform that can optimally support the complete range of experiments that could be conducted with the inferior olive model. The comparison makes a clear case for BrainFrame, a platform that supports heterogeneous HPC substrates. This dissertation, thus, concludes with the proposal of the BrainFrame system. The proof-of-concept design supports standard and extended Hodgkin-Huxley models, , such as the original inferior-olive model. The system integrates a GPU-, CPU- and FPGA-based HPC back-end while also using a standard neuroscientific language front-end (PyNN) that can score best-in-class performance, alleviate some of the development hurdles and make it far more user-friendly for the typical model developer. Additionally, the multi-node potential of the platform is being explored. BrainFrame provides both a powerful heterogeneous platform for acceleration and also a front-end familiar to the neuroscientist

    Memòria del curs acadèmic 2012-2013

    Get PDF

    A DPLL Procedure with Dichotomous Branching for Propositional Product Logic

    Full text link
    The propositional product logic is one of the basic fuzzy logics with continuous t-norms, exploiting the multiplication t-norm on the unit interval [0,1]. Our aim is to combine well-established automated deduction (theorem proving) with fuzzy inference. As a first step, we devise a modification of the procedure of Davis, Putnam, Logemann, and Loveland (DPLL) with dichotomous branching inferring in the product logic. We prove that the procedure is refutation sound and finitely complete. As a consequence, solutions to the deduction, satisfiability, and validity problems will be proposed for the finite case. The presented results are applicable to a design of intelligent systems, exploiting some kind of multi-step fuzzy inference

    Políticas de Copyright de Publicações Científicas em Repositórios Institucionais: O Caso do INESC TEC

    Get PDF
    A progressiva transformação das práticas científicas, impulsionada pelo desenvolvimento das novas Tecnologias de Informação e Comunicação (TIC), têm possibilitado aumentar o acesso à informação, caminhando gradualmente para uma abertura do ciclo de pesquisa. Isto permitirá resolver a longo prazo uma adversidade que se tem colocado aos investigadores, que passa pela existência de barreiras que limitam as condições de acesso, sejam estas geográficas ou financeiras. Apesar da produção científica ser dominada, maioritariamente, por grandes editoras comerciais, estando sujeita às regras por estas impostas, o Movimento do Acesso Aberto cuja primeira declaração pública, a Declaração de Budapeste (BOAI), é de 2002, vem propor alterações significativas que beneficiam os autores e os leitores. Este Movimento vem a ganhar importância em Portugal desde 2003, com a constituição do primeiro repositório institucional a nível nacional. Os repositórios institucionais surgiram como uma ferramenta de divulgação da produção científica de uma instituição, com o intuito de permitir abrir aos resultados da investigação, quer antes da publicação e do próprio processo de arbitragem (preprint), quer depois (postprint), e, consequentemente, aumentar a visibilidade do trabalho desenvolvido por um investigador e a respetiva instituição. O estudo apresentado, que passou por uma análise das políticas de copyright das publicações científicas mais relevantes do INESC TEC, permitiu não só perceber que as editoras adotam cada vez mais políticas que possibilitam o auto-arquivo das publicações em repositórios institucionais, como também que existe todo um trabalho de sensibilização a percorrer, não só para os investigadores, como para a instituição e toda a sociedade. A produção de um conjunto de recomendações, que passam pela implementação de uma política institucional que incentive o auto-arquivo das publicações desenvolvidas no âmbito institucional no repositório, serve como mote para uma maior valorização da produção científica do INESC TEC.The progressive transformation of scientific practices, driven by the development of new Information and Communication Technologies (ICT), which made it possible to increase access to information, gradually moving towards an opening of the research cycle. This opening makes it possible to resolve, in the long term, the adversity that has been placed on researchers, which involves the existence of barriers that limit access conditions, whether geographical or financial. Although large commercial publishers predominantly dominate scientific production and subject it to the rules imposed by them, the Open Access movement whose first public declaration, the Budapest Declaration (BOAI), was in 2002, proposes significant changes that benefit the authors and the readers. This Movement has gained importance in Portugal since 2003, with the constitution of the first institutional repository at the national level. Institutional repositories have emerged as a tool for disseminating the scientific production of an institution to open the results of the research, both before publication and the preprint process and postprint, increase the visibility of work done by an investigator and his or her institution. The present study, which underwent an analysis of the copyright policies of INESC TEC most relevant scientific publications, allowed not only to realize that publishers are increasingly adopting policies that make it possible to self-archive publications in institutional repositories, all the work of raising awareness, not only for researchers but also for the institution and the whole society. The production of a set of recommendations, which go through the implementation of an institutional policy that encourages the self-archiving of the publications developed in the institutional scope in the repository, serves as a motto for a greater appreciation of the scientific production of INESC TEC
    corecore