456 research outputs found

    Impossibility of dimension reduction in the nuclear norm

    Full text link
    Let S1\mathsf{S}_1 (the Schatten--von Neumann trace class) denote the Banach space of all compact linear operators T:22T:\ell_2\to \ell_2 whose nuclear norm TS1=j=1σj(T)\|T\|_{\mathsf{S}_1}=\sum_{j=1}^\infty\sigma_j(T) is finite, where {σj(T)}j=1\{\sigma_j(T)\}_{j=1}^\infty are the singular values of TT. We prove that for arbitrarily large nNn\in \mathbb{N} there exists a subset CS1\mathcal{C}\subseteq \mathsf{S}_1 with C=n|\mathcal{C}|=n that cannot be embedded with bi-Lipschitz distortion O(1)O(1) into any no(1)n^{o(1)}-dimensional linear subspace of S1\mathsf{S}_1. C\mathcal{C} is not even a O(1)O(1)-Lipschitz quotient of any subset of any no(1)n^{o(1)}-dimensional linear subspace of S1\mathsf{S}_1. Thus, S1\mathsf{S}_1 does not admit a dimension reduction result \'a la Johnson and Lindenstrauss (1984), which complements the work of Harrow, Montanaro and Short (2011) on the limitations of quantum dimension reduction under the assumption that the embedding into low dimensions is a quantum channel. Such a statement was previously known with S1\mathsf{S}_1 replaced by the Banach space 1\ell_1 of absolutely summable sequences via the work of Brinkman and Charikar (2003). In fact, the above set C\mathcal{C} can be taken to be the same set as the one that Brinkman and Charikar considered, viewed as a collection of diagonal matrices in S1\mathsf{S}_1. The challenge is to demonstrate that C\mathcal{C} cannot be faithfully realized in an arbitrary low-dimensional subspace of S1\mathsf{S}_1, while Brinkman and Charikar obtained such an assertion only for subspaces of S1\mathsf{S}_1 that consist of diagonal operators (i.e., subspaces of 1\ell_1). We establish this by proving that the Markov 2-convexity constant of any finite dimensional linear subspace XX of S1\mathsf{S}_1 is at most a universal constant multiple of logdim(X)\sqrt{\log \mathrm{dim}(X)}

    Hardness Amplification of Optimization Problems

    Get PDF
    In this paper, we prove a general hardness amplification scheme for optimization problems based on the technique of direct products. We say that an optimization problem ? is direct product feasible if it is possible to efficiently aggregate any k instances of ? and form one large instance of ? such that given an optimal feasible solution to the larger instance, we can efficiently find optimal feasible solutions to all the k smaller instances. Given a direct product feasible optimization problem ?, our hardness amplification theorem may be informally stated as follows: If there is a distribution D over instances of ? of size n such that every randomized algorithm running in time t(n) fails to solve ? on 1/?(n) fraction of inputs sampled from D, then, assuming some relationships on ?(n) and t(n), there is a distribution D\u27 over instances of ? of size O(n??(n)) such that every randomized algorithm running in time t(n)/poly(?(n)) fails to solve ? on 99/100 fraction of inputs sampled from D\u27. As a consequence of the above theorem, we show hardness amplification of problems in various classes such as NP-hard problems like Max-Clique, Knapsack, and Max-SAT, problems in P such as Longest Common Subsequence, Edit Distance, Matrix Multiplication, and even problems in TFNP such as Factoring and computing Nash equilibrium

    Distributed Averaging via Lifted Markov Chains

    Full text link
    Motivated by applications of distributed linear estimation, distributed control and distributed optimization, we consider the question of designing linear iterative algorithms for computing the average of numbers in a network. Specifically, our interest is in designing such an algorithm with the fastest rate of convergence given the topological constraints of the network. As the main result of this paper, we design an algorithm with the fastest possible rate of convergence using a non-reversible Markov chain on the given network graph. We construct such a Markov chain by transforming the standard Markov chain, which is obtained using the Metropolis-Hastings method. We call this novel transformation pseudo-lifting. We apply our method to graphs with geometry, or graphs with doubling dimension. Specifically, the convergence time of our algorithm (equivalently, the mixing time of our Markov chain) is proportional to the diameter of the network graph and hence optimal. As a byproduct, our result provides the fastest mixing Markov chain given the network topological constraints, and should naturally find their applications in the context of distributed optimization, estimation and control

    Scattering and Sparse Partitions, and Their Applications

    Get PDF

    On Strong Diameter Padded Decompositions

    Get PDF
    Given a weighted graph G=(V,E,w), a partition of V is Delta-bounded if the diameter of each cluster is bounded by Delta. A distribution over Delta-bounded partitions is a beta-padded decomposition if every ball of radius gamma Delta is contained in a single cluster with probability at least e^{-beta * gamma}. The weak diameter of a cluster C is measured w.r.t. distances in G, while the strong diameter is measured w.r.t. distances in the induced graph G[C]. The decomposition is weak/strong according to the diameter guarantee. Formerly, it was proven that K_r free graphs admit weak decompositions with padding parameter O(r), while for strong decompositions only O(r^2) padding parameter was known. Furthermore, for the case of a graph G, for which the induced shortest path metric d_G has doubling dimension ddim, a weak O(ddim)-padded decomposition was constructed, which is also known to be tight. For the case of strong diameter, nothing was known. We construct strong O(r)-padded decompositions for K_r free graphs, matching the state of the art for weak decompositions. Similarly, for graphs with doubling dimension ddim we construct a strong O(ddim)-padded decomposition, which is also tight. We use this decomposition to construct (O(ddim),O~(ddim))-sparse cover scheme for such graphs. Our new decompositions and cover have implications to approximating unique games, the construction of light and sparse spanners, and for path reporting distance oracles
    corecore