6 research outputs found

    ECROs: Building global scale systems from sequential code

    Get PDF
    Funding Information: We would like to thank Matteo Marra, Jim Bauwens, and the anonymous reviewers for their comments which helped improve the paper. Kevin De Porre is funded by an SB Fellowship of the Research Foundation - Flanders. Project number: 1S98519N. This work was partially supported by Fundação para a Ciência e a Tecnologia - Portugal (FCT/MCTES) under grants UIDB/04516/2020, PTDC/CCI-INF/32081/2017, and LISBOA-01-0145-FEDER-032662/PTDC/CCI-INF/32662/2017.To ease the development of geo-distributed applications, replicated data types (RDTs) offer a familiar programming interface while ensuring state convergence, low latency, and high availability. However, RDTs are still designed exclusively by experts using ad-hoc solutions that are error-prone and result in brittle systems. Recent works statically detect conflicting operations on existing data types and coordinate those at runtime to guarantee convergence and preserve application invariants. However, these approaches are too conservative, imposing coordination on a large number of operations. In this work, we propose a principled approach to design and implement efficient RDTs taking into account application invariants. Developers extend sequential data types with a distributed specification, which together form an RDT. We statically analyze the specification to detect conflicts and unravel their cause. This information is then used at runtime to serialize concurrent operations safely and efficiently. Our approach derives a correct RDT from any sequential data type without changes to the data type's implementation and with minimal coordination. We implement our approach in Scala and develop an extensive portfolio of RDTs. The evaluation shows that our approach provides performance similar to conflict-free replicated data types for commutative operations, and considerably improves the performance of non-commutative operations, compared to existing solutions.publishersversionpublishe

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access two-volume set constitutes the proceedings of the 27th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2021, which was held during March 27 – April 1, 2021, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021. The conference was planned to take place in Luxembourg and changed to an online format due to the COVID-19 pandemic. The total of 41 full papers presented in the proceedings was carefully reviewed and selected from 141 submissions. The volume also contains 7 tool papers; 6 Tool Demo papers, 9 SV-Comp Competition Papers. The papers are organized in topical sections as follows: Part I: Game Theory; SMT Verification; Probabilities; Timed Systems; Neural Networks; Analysis of Network Communication. Part II: Verification Techniques (not SMT); Case Studies; Proof Generation/Validation; Tool Papers; Tool Demo Papers; SV-Comp Tool Competition Papers

    Proceedings of the 22nd Conference on Formal Methods in Computer-Aided Design – FMCAD 2022

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    Proceedings of the 22nd Conference on Formal Methods in Computer-Aided Design – FMCAD 2022

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing
    corecore