3 research outputs found

    Performance and power management for multi-core processors

    Get PDF
    This dissertation addresses the problem of power and performance management for various computing systems, from single voltage island multicore processors to power constrained extreme scale cloud systems. Balancing power and performance in modern computing systems is a complex optimization problem. This challenge is addressed by the statement of this thesis: Improving performance and power consumption in modern computing systems will require new techniques, and the body of control theories can provide the basis for such solutions. This thesis developed dynamic models for throughput and power that adjust well to workload variations. Those models are general and can be applied to various kinds of computing frameworks. Based on those models, we use feedback controllers for throughput regulation and power regulation. The controllers are based on integrators for variable gain designed for stabilizing the closed-loop system as well as for rapidly responding to changing workload in short time frames. The feedback control is robust with respect to model uncertainties and computing errors in the loop, and they exhibit fast convergence despite such errors. This thesis addresses the performance and power management through three main contributions: 1. Effective and efficient power & performance management techniques in a single voltage island multi-core processor. 2. Maximizing power efficiency under a power cap in a multi-core processor that is composed of several voltage islands. 3. A hierarchical power management technique to improve performance and energy efficiency under power budgets in a cloud system.Ph.D

    Temperature Variation Aware Energy Optimization in Heterogeneous MPSoCs

    Get PDF
    Thermal effects are rapidly gaining importance in nanometer heterogeneous integrated systems. Increased power density, coupled with spatio-temporal variability of chip workload, cause lateral and vertical temperature non-uniformities (variations) in the chip structure. The assumption of an uniform temperature for a large circuit leads to inaccurate determination of key design parameters. To improve design quality, we need precise estimation of temperature at detailed spatial resolution which is very computationally intensive. Consequently, thermal analysis of the designs needs to be done at multiple levels of granularity. To further investigate the flow of chip/package thermal analysis we exploit the Intel Single Chip Cloud Computer (SCC) and propose a methodology for calibration of SCC on-die temperature sensors. We also develop an infrastructure for online monitoring of SCC temperature sensor readings and SCC power consumption. Having the thermal simulation tool in hand, we propose MiMAPT, an approach for analyzing delay, power and temperature in digital integrated circuits. MiMAPT integrates seamlessly into industrial Front-end and Back-end chip design flows. It accounts for temperature non-uniformities and self-heating while performing analysis. Furthermore, we extend the temperature variation aware analysis of designs to 3D MPSoCs with Wide-I/O DRAM. We improve the DRAM refresh power by considering the lateral and vertical temperature variations in the 3D structure and adapting the per-DRAM-bank refresh period accordingly. We develop an advanced virtual platform which models the performance, power, and thermal behavior of a 3D-integrated MPSoC with Wide-I/O DRAMs in detail. Moving towards real-world multi-core heterogeneous SoC designs, a reconfigurable heterogeneous platform (ZYNQ) is exploited to further study the performance and energy efficiency of various CPU-accelerator data sharing methods in heterogeneous hardware architectures. A complete hardware accelerator featuring clusters of OpenRISC CPUs, with dynamic address remapping capability is built and verified on a real hardware

    Coordinated management of the processor and memory for optimizing energy efficiency

    Get PDF
    Energy efficiency is a key design goal for future computing systems. With diverse components interacting with each other on the System-on-Chip (SoC), dynamically managing performance, energy and temperature is a challenge in 2D architectures and more so in a 3D stacked environment. Temperature has emerged as the parameter of primary concern. Heuristics based schemes have been employed so far to address these issues. Looking ahead into the future, complex multiphysics interactions between performance, energy and temperature reveal the limitations of such approaches. Therefore in this thesis, first, a comprehensive characterization of existing methods is carried out to identify causes for their inefficiency. Managing different components in an independent and isolated fashion using heuristics is seen to be the primary drawback. Following this, techniques based on feedback control theory to optimize the energy efficiency of the processor and memory in a coordinated fashion are developed. They are evaluated on a real physical system and a cycle-level simulator demonstrating significant improvements over prior schemes. The two main messages of this thesis are, (i) coordination between multiple components is paramount for next generation computing systems and (ii) temperature ought to be treated as a resource like compute or memory cycles.Ph.D
    corecore