
PERFORMANCE AND POWER MANAGEMENT FOR MULTI-CORE
PROCESSORS

A Dissertation
Presented to

The Academic Faculty

By

Xinwei Chen

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology

May 2018

Copyright c© Xinwei Chen 2018

PERFORMANCE AND POWER MANAGEMENT FOR MULTI-CORE
PROCESSORS

Approved by:

Dr. Sudhakar Yalamanchili, Advi-
sor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Yorai Wardi, Advisor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Magnus Egerstedt
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Saibal Mukhopadhyay
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Linda M Wills
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Ada Gavrilovska
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Date Approved: April 4, 2018

To my husband Dr. Emory Hsu and my parents.

ACKNOWLEDGEMENTS

This thesis would not be possible without the concerted effort of many people. Fore-

most are my advisers Dr. Sudhakar Yalamanchili and Dr. Yorai Wardi. I have been for-

tunate enough to have gotten to know them over the past few years. Through both of

their hard work and mentorship, I have learned not only technical aspects, but also enjoyed

getting to understand the process of research. Hopefully I have absorbed some of their

brilliance in computer science. I would also like to thank Dr. Magnus Egerstedt and Dr.

Saibal Mukhopadhyay for their feedback and insight as my reading committee members,

and Dr. Linda Wills and Dr. Ada Gavrilovska for their input on my thesis and during the

defense.

I would also like to thank Dr. Leonardo Piga and Dr. Indrani Paul for their mentorship

during my internship at AMD Corporation in Austin, Texas. This real-world internship

outside of Georgia Tech provided a great learning experience in seeing computer science

from a different approach.

Of course, daily work in the CASL (Computer Architecture and Systems Laboratory)

lab means getting to know many wonderful colleagues. These include Jeffrey Young, Chad

Kersey, Will Song, Jin Wang, Haicheng Wu, Eric Anger, Si Li, Minhaj Hassan, He Xiao,

Karthik Rao, Blaise Tine, and Bahar Asgari. GRITS lab colleagues include Matt Hale,

Tina Setter, Sebastian Ruf, Li Wang, Mara Santos, Daniel Pickem, Yancy Diaz-Mercado,

Zak Costello, and Usman Ali. Other GT colleagues include Jen-cheng Huang, Lifeng Nai,

Alexis Champsaur, Hongteng Xu, Yu Liu, Alexander Merritt and Vinson Young. Through

the successes and the challenges, I am so glad to have the good fortune to be able pick your

brains and share in both the exhilaration and the tedium of computer science research. Your

teamwork and friendship are so invaluable to me, and I am truly indebted to you all.

There are many, many other individuals who contributed as well, and to each and every

person who I have encountered, I owe my thanks and deep appreciation.

v

Finally, I am in gratitude to my friends and family. Your encouragement and support

form the bedrock of my daily life, and this thesis would not be possible without you all.

vi

TABLE OF CONTENTS

Acknowledgments . v

List of Tables . x

List of Figures . xi

Chapter 1: Introduction . 1

1.1 Contributions . 2

1.2 Organization . 4

Chapter 2: Literature Review . 7

2.1 Power Regulation For Multi-core Processors 7

2.2 Throughput Regulation For Multi-core Processors 7

2.3 Optimizing Power Efficiency For Multi-core Processors 8

2.4 Optimizing Energy Efficiency Under Power Budgets in Data Center Systems 10

Chapter 3: Experimental Frameworks . 13

3.1 System Architecture of a 3D Multi-core Processor 13

3.2 A Full System Cycle Level Computer Architecture Simulator: Manifold . . 14

3.3 A Haswell 4-core Processor . 16

3.4 Linux Governors . 18

vii

3.5 Benchmarks . 19

Chapter 4: Throughput Regulation for Multicore Processors 20

4.1 A Variable Gain Controller . 21

4.2 A Throughput Model . 23

4.3 Experiments in A Full System Cycle Level Simulator 28

4.4 Implementataion on an Intel Haswell 4-Core Processor 31

4.4.1 Modified Regulator . 31

4.4.2 Experimental Results . 34

4.5 Concluding Remarks . 42

Chapter 5: Power Regulation For Multicore Processors 44

5.1 A Power Model and a Power Regulator . 45

5.2 Implementation in an Intel Haswell 4-core Processor 48

5.3 Concluding Remarks . 55

Chapter 6: Power Efficiency Optimization for Multicore Processors 57

6.1 Core-level Power Efficiency Optimization 58

6.1.1 A Stochastic Approximation Approach 58

6.1.2 Experiments in a Full System Cycle Level Simulator 61

6.2 A Processor-level Power Efficiency Optimization Controller 64

6.3 Implementation in a Haswell 4-core Processor 65

6.3.1 Comparison With Linux Governors 65

6.3.2 Experimental Results . 67

viii

6.3.3 Overhead Analysis . 76

6.4 Concluding Remarks . 78

Chapter 7: Power Efficiency Optimization Under Power Caps For Multicore
Processors . 80

7.1 A Power Efficiency Optimization Technique 81

7.1.1 Computing Operating Frequencies 84

7.2 Dynamic Power Tracking . 88

7.2.1 Baseline Model . 89

7.3 Experiments in a Full System Cycle Level Simulator 90

7.4 Concluding Remarks . 93

Chapter 8: Energy Efficiency Optimization Under Power Budgets For Cloud
Systems . 95

8.1 A Hierarchical Power Gating and Power Shifting Technique 96

8.2 Experimental Results . 102

8.3 Concluding Remarks . 103

Chapter 9: Conclusion . 105

References . 116

ix

LIST OF TABLES

3.1 System Configuration . 15

4.1 Continuous-Discrete Frequency Mapping Table 33

5.1 Barnes: average power at different control cycles 52

5.2 Triangle Count: average power at different control cycles 55

6.1 Power Efficiency for 0.5GHz Constant Frequency 61

6.2 Power Efficiency for 5GHz Constant Frequency 62

6.3 Power Efficiency Using The Optimization Controller With Frequency Range
0.5GHz to 5GHz . 62

6.4 Power Efficiency Optimization Controller With Frequency Range From
0.2GHz to 1GHz . 63

6.5 Power Efficiency for 0.2GHz Constant Frequency 64

x

LIST OF FIGURES

1.1 The Structure of Contributions . 2

3.1 3D Architecture Overview . 14

3.2 Flow Chart of Manifold Simulation . 15

3.3 Manifold Platform Model . 16

3.4 System Architecture Model . 17

3.5 Haswell Die Map [71] . 18

4.1 The Feedback System . 21

4.2 Out-of-order Execution [82] . 24

4.3 Throughput regulation: Cholesky . 30

4.4 Throughput regulation: Ocean-nc (beginning part) 30

4.5 Throughput regulation: Ocean-nc (full execution) 30

4.6 Throughput regulation (modified algorithm): Cholesky 31

4.7 Throughput regulation (modified algorithm): Ocean-nc 31

4.8 Flow Chart of the implementation in Centralized Controller 32

4.9 Barnes: throughput vs. time, target = 1,200 MIPS 34

4.10 Barnes: frequency vs. time, target = 1,200 MIPS 35

4.11 Barnes: throughput vs. time, target = 1,000 MIPS 35

xi

4.12 Barnes: frequency vs. time, target = 1,000 MIPS 36

4.13 Barnes: throughput vs. time, target = 800 MIPS 36

4.14 Barnes: frequency vs. time, target = 800 MIPS 37

4.15 DFS: throughput vs. time, target = 1,200 MIPS 38

4.16 DFS: frequency vs. time, target = 1,200 MIPS 39

4.17 Connected Component: throughput vs. time, target = 1,200 MIPS 39

4.18 Connected Component: frequency vs. time, target = 1,200 MIPS 40

4.19 DFS: throughput vs. time, target = 1,500 MIPS 40

4.20 DFS: frequency vs. time, target = 1,500 MIPS 41

4.21 Connected Component: throughput vs. time, target = 1,500 MIPS 41

4.22 Connected Component: frequency vs. time, target = 1,500 MIPS 42

4.23 DFS: throughput vs. time, target = 1,900 MIPS 42

4.24 Connected Component: throughput vs. time, target = 1,500 MIPS 43

5.1 Barnes: power vs. time, target = 10 W, control cycle = 10 ms 49

5.2 Barnes: power vs. time, target = 10 W, control cycle = 10 ms, first 1000 ms 50

5.3 Barnes: clock frequency vs. time, target = 10 W, control cycle = 10 ms . . . 50

5.4 Barnes: power vs. time, target = 10 W, control cycle = 20 ms 51

5.5 Barnes: power vs. time, target = 10 W, control cycle = 30 ms 51

5.6 Triangle Count: power vs. time, target = 5 W, control cycle = 10 ms 52

5.7 Triangle Count: clock frequency vs. time, target = 5 W, control cycle = 10 ms 53

5.8 Triangle Count: power vs. time, target = 5 W, control cycle = 20 ms 53

5.9 Triangle Count: clock frequency vs. time, target = 5 W, control cycle = 20 ms 54

xii

5.10 Triangle Count: power vs. time, target = 5 W, control cycle = 30 ms 54

5.11 Triangle Count: clock frequency vs. time, target = 5 W, control cycle = 30 ms 55

6.1 The Optimization System . 59

6.2 Flowchart for the On-line Optimization Algorithm 61

6.3 Normalized Power Efficiency (with frequency range between 0.5GHZ to
5GHz) . 63

6.4 Normalized Power Efficiency (with frequency range between 0.2GHZ to
1GHz) . 64

6.5 Overview of the Operation of the Power Efficiency Optimization 66

6.6 EDP Improvement Compared to Ondemand Governor 67

6.7 Application run time with the optimization controller and Other Linux Gov-
ernors . 68

6.8 Energy Saving Compared to Ondemand Governor 68

6.9 Power Efficiency (Throughput-per-Watt) Improvement for Splash-II Bench-
marks . 69

6.10 Energy Saving for Splash-II Benchmark 69

6.11 Power Efficiency (Throughput-per-Watt) Improvement for GraphBig Bench-
mark . 70

6.12 Energy Saving for GraphBig Benchmarks 71

6.13 Throughput for ”Connected Component” Using the Optimization Controller
and the Conservative Governor . 72

6.14 Power for ”Connected Component” Using the Optimization Controller and
the Conservative Governor . 72

6.15 Throughput and Power for ”Connected Component” Using the Optimiza-
tion Controller . 73

6.16 Throughput and Power for ”Connected Component” Using the Conserva-
tive Governor . 73

xiii

6.17 Graphbig: Power Efficiency (Throughput-per-Watt) Improvement Compar-
ison . 74

6.18 Graphbig: Energy Saving Comparison . 74

6.19 Splash-II: Power Efficiency (Throughput-per-Watt) Improvement Compar-
ison . 75

6.20 Splash-II: Energy Saving Comparison . 75

6.21 Overhead Factors . 77

6.22 Overhead vs Control Cycle Duration . 78

6.23 Energy Saving vs Control Cycle Duration 79

7.1 Optimization System Overview . 82

7.2 Optimization Regions . 84

7.3 Throughput over power (MIPS per W) with 15W Power Budget 91

7.4 Throughput over power (MIPS per W) with 15W Power Budget under dis-
crete frequencies . 92

7.5 Processor power (W) with 15W Power Budget 93

7.6 Processor power (W) with 16W Power Budget under discrete frequencies . 93

8.1 Barrier Synchronization . 97

8.2 Barrier Synchronization After Power Shifting & Power Gating 97

8.3 HPGPS Power Management . 98

8.4 Probability vs Delay . 100

8.5 HPGPS Speedup vs Group Delay . 101

8.6 HPGPS Speedup vs Group Delay: Small Network Delay 104

8.7 HPGPS Speedup vs Group Delay: Medium Network Delay 104

xiv

8.8 HPGPS Speedup vs Group Delay: Large Network Delay 104

xv

SUMMARY

This dissertation addresses the problem of power and performance management for

various computing systems, from single voltage island multicore processors to power-

constrained extreme scale cloud systems. Balancing power and performance in modern

computing systems is a complex optimization problem. This challenge is addressed by

the statement of this thesis: Improving performance and power consumption in modern

computing systems will require new techniques, and the body of control theories can pro-

vide the basis for such solutions. This thesis addresses this problem through three main

contributions:

• Effective and efficient power & performance management techniques in a single volt-

age island multi-core processor.

• Maximizing power efficiency under a power cap in a multi-core processor that is

composed of several voltage islands.

• A hierarchical power management technique to improve performance and energy

efficiency under power budgets in a cloud system.

The first topic is comprised of 1) throughput regulation, 2) power regulation, and 3)

power efficiency optimization for single voltage island multicore processors. A throughput-

frequency model is obtained by IPA analysis, while a power-frequency model is obtained

by a system identification approach. These models are generic and can be applied to various

applications. They provide a foundation for the on-line optimization of power efficiency in

multi-core processors.

The second topic addresses the problem of optimizing power efficiency in a many-core

processor under power caps, such as those found in servers in the nodes of cloud systems.

Given a power budget, we provide two techniques for improving the power efficiency: 1)

an on-line optimization technique for maximizing throughput, 2) a dynamic power regula-

tion technique that dynamically distributes power across the processor based on workload

variation, which is an extension of the power regulation technique in the first topic.

Finally the third topic addresses the problem of performance and energy efficiency

improvement for cloud systems under power budgets. This work presents a hierarchical

power gating & power shifting (HPGPS) technique for bulk synchronous parallel applica-

tions in cloud computing systems. Nodes that are otherwise waiting to be synchronized are

power gated and their power budgets are redistributed to other high workload nodes, thus

reducing the penalty of workload imbalances across the system. This hierarchical power

management scheme is scalable to extreme scale cloud computing systems.

By examining these topics, this thesis contributes to improving the power consumption

and performance of computing systems from single processor architectures to full scale

cloud systems.

CHAPTER 1

INTRODUCTION

Power efficiency is a major concern in all components of computing systems, from mo-

bile devices to servers to data centers. This concern is exacerbated as modern applications

process a growing volume of data which requires increasing performance and energy. Data

centers consume approximately 2% of all electricity use in the U.S. [1], and concerns about

the impact of energy consumption in these facilities continue to grow. This imposes a chal-

lenge for balancing performance and power consumption in modern computing systems. In

general, performance and power consumption are opposing metrics, where improving one

is often achieved at the expense of the other. Heuristic solutions may no longer satisfy the

demand for systematic power and performance management. Formal techniques with the-

oretical bases that are robust, stable, and efficient are needed. This challenge is addressed

by the following thesis statement: Improving performance and power consumption in mod-

ern computing systems will require new techniques, and the body of control theories can

provide the basis for such solutions.

Optimization of power consumption in these computing systems is a multi-step pro-

cess. For example, a data center is composed of thousands of nodes, and each node is

composed of several processors. A processor is composed of one or more voltage islands,

and each voltage island is composed of one or more cores. The process of performance

and power usage at each component is different based on their architecture characteristics;

thus, power efficiency optimization must be individually tailored to each component. This

thesis presents power and performance management for cores, processors, and cloud sys-

tems, with the goal of creating optimized components and laying the foundation for further

synergies in power efficiency of computing systems.

To that end, this dissertation presents formal control approaches for balancing power

1

and performance in order to achieve better performance at lower power expense. The work

is categorized into three research themes: 1) power regulation, throughput regulation, and

power efficiency optimization in a single voltage island in a processor; 2) power efficiency

optimization across multiple voltage islands in a multi-core processor under power caps;

and 3) performance and energy efficiency improvement in a cloud computing system that

is composed of thousands or millions of voltage islands. Figure 1.1 shows the relationship

between contributions of this work.

This thesis developed dynamic models for throughput and power that adjust well to

workload variations. Those models are general and can be applied to various kinds of com-

puting frameworks. Based on those models, we use feedback controllers for throughput

regulation and power regulation. The controllers are based on integrators for variable gain

designed for stabilizing the closed-loop system as well as for rapidly responding to chang-

ing workload in short time frames. The feedback control is robust with respect to model

uncertainties and computing errors in the loop, and they exhibit fast convergence despite

such errors.

Throughput – Frequency Model

Multicore Processors,
Servers, etc

Data Centers
Portable Devices,

Processors, etc

Throughput Regulation

Large Scale Computing
Systems Power Efficiency

Optimization

Multiple Voltage Islands
Power Efficiency

Optimization

Single Voltage Island
Power Efficiency

Optimization

Power Regulation

Power – Frequency Model

Figure 1.1: The Structure of Contributions

The next section describes the main contributions of this work, followed by a summary

2

of the structure of this thesis. The main contributions have also been presented in several

publications [2][3][4][5][6].

1.1 Contributions

This thesis makes the following key contributions

The first contribution of this work is effective and efficient power and performance

management in a single voltage island in a processor. This single voltage island may con-

tain one or more cores. We created three designs for performance and power management.

The first design is an adaptive gain throughput regulator that adjusts operating frequen-

cies. This regulator maintains fixed throughput in the presence of dynamically varying

parallelism and inter-instruction dependencies in the instruction stream. The second de-

sign is an adaptive gain power regulator that can control the power of cores residing in a

single voltage island to desired set points under a variety of program workloads. Finally,

the third design is an on-line power efficiency optimization controller based on stochastic

approximation approaches that balance the power consumption with throughput.

The second contribution of this work is to maximize of power efficiency in a power

capped processor that is composed of several voltage islands. Cores residing in the same

voltage island operate at the same frequency, while different voltage islands can operate at

different voltage and frequency levels. Based on the understanding of frequency-power and

frequency-throughput relationship that is developed in the first contribution, we extend the

single voltage island optimization to multiple voltage islands that are composed of many

cores. Our approach modulates power to performance variation across multiple voltage

islands by dynamically assigning the frequency and voltage level for each voltage island

so that the overall power efficiency of the processor is maximized. The clock frequency

presents trade-offs between performance and power. Hence, two intuitive methods to im-

prove power efficiency are 1) reducing power under fixed throughput, and 2) increasing

throughput under power caps. This work is based on the second approach. We present

3

two designs: optimization and dynamic regulation. The optimization design assigns the

frequency and voltage levels of voltage islands distributed in the processor in order to max-

imize performance under power caps. On the other hand, the regulation design is based on

the on-line power tracking technique in the first contribution. We dynamically distribute

power targets for voltage islands depending on the underlying application characteristics.

The third contribution of this work is a hierarchical power management approach that

can improve performance and energy efficiency under a power budget in a cloud computing

system. A cloud computing system is composed of thousands to perhaps millions of nodes,

and each node is composed of multiple processors. Performance variation is a significant

problem for efficient power management of High Performance Computing (HPC) applica-

tions in large scale cloud systems. Among the most frequently used HPC applications in

modern cloud systems are Bulk Synchronous Parallel (BSP) applications. A BSP is com-

posed of parallel computations on each node, communication among nodes, and barrier

synchronizations. The application behaviors vary significantly across nodes. The nodes

that arrive at the barrier first must spend idle time waiting for other nodes to arrive at the

barrier. The performance is limited by the slowest node since the other nodes have to wait

on barrier synchronization. This idle waiting consumes power but produces no effective

throughput - thus it is a major source of inefficiency. The key idea of this work is to power-

gate the nodes that have finished computation arriving at the barrier, and shift the saved

power from those power-gated nodes to other nodes that are still under computation so that

those computation nodes are sped up while staying under the system power budgets. Con-

sequently, the program completion time is reduced under the preassigned power budget.

The hierarchical power-shifting & power-gating approach is scalable across system sizes.

Thus, this dissertation contributes to improving the power consumption and perfor-

mance of computing systems from single processor architectures to full scale cloud sys-

tems.

4

1.2 Organization

In brief, Chapter 2 provides an overview of power and performance management in com-

puting systems. Chapter 3 describes the evaluation frameworks for experiments in this

work. The first contribution is presented in Chapter 4, Chapter 5, and Chapter 6. The sec-

ond contribution is presented in Chapter 7. The third contribution is presented in Chapter

8. A more detailed overview of the chapters is below.

Chapter 2 describes the landscape for power and performance management in comput-

ing systems. It contains an overview of techniques used to regulate performance and power,

as well as improve power efficiency for multi-core processors. In addition, this chapter

includes a description of energy efficiency improvement techniques for cloud computing

systems as they scale, and the major existing methods for optimizing the performance and

energy efficiency of bulk-synchronous parallel applications.

Chapter 3 presents the evaluation frameworks for experiments conducted in this work,

including a cycle level architecture simulator and an Intel Haswell processor. This chapter

also introduces benchmarks that are used for testing.

Chapter 4 presents the method for regulating processor throughput under various work-

loads. An on-line sensitivity analysis technique is developed to model the relationship

between throughput and operating frequencies. A variable gain feedback controller is de-

veloped for regulating the throughput of multi-core processors. Implementation in an Intel

Haswell 4-core processor demonstrates less than 2.8% throughput tracking errors.

Chapter 5 demonstrates the method for regulating power of multi-core processors. A

system identification model is developed to estimate the power-frequency relationship. An

adaptive gain feedback controller for power regulation in multi-core processors is pre-

sented. Implementation in an Intel Haswell 4-core processor shows less than 5.7% power

tracking errors.

Chapter 6 presents the method for improving power efficiency of cores as well as pro-

5

cessors. Based on the performance model developed in Chapter 4 and the power model de-

veloped in Chapter 5, we further explore the trade-off between power and performance by

on-line optimization. Compared to Linux Conservative governor, our approach improves

the power efficiency (measured as Throughout-per-Watt) up to 15.91%.

Chapter 7 presents two techniques for improving performance and power efficiency

for power capped processors that are composed of multiple voltage islands. Those two

techniques are: an on-line optimization controller for optimizing performance in a power

capped processor, and a dynamic power regulator which is an extension of the power reg-

ulation presented in Chapter 5 to leverage power for performance across multiple voltage

islands.

Chapter 8 presents the method for improving energy efficiency and performance of

cloud systems executing bulk-synchronous applications. This hierarchical power gating

and power shifting (HPGPS) technique is scalable to extreme scale cloud systems and

can tolerate large network latency. Experiments in an AMD in-house simulator show that

HPGPS can achieve up to 1.5% energy saving.

Finally, Chapter 9 summarizes the contributions and conclusions from this thesis as

well as contemplates future areas of research.

6

CHAPTER 2

LITERATURE REVIEW

2.1 Power Regulation For Multi-core Processors

Various techniques from the field of system and control have been used to regulate the

power consumption in multi-core processors. Several power regulation algorithms utilize

open-loop optimization strategies under the assumption that power consumption of a pro-

cessor at each supply voltage level can be estimated accurately [7] [8]. Those methods can

work effectively when the system is running programs that have similar patterns as the ones

used for empirical analysis. However they may present severe performance degradation or

even power constraint violation when workloads vary significantly.

Feedback control is an effective way to regulate power in multi-core processors because

of its theoretically guaranteed accuracy and robustness [9] [10]. The parameters in the con-

trol model can be determined by off-line analysis of extensive workload [11] or on-line

system analysis [12]. Proportional controllers [13] and PID controllers [14] are imple-

mented in hardware architecture design to dynamically change supply voltages adapting

to power constraints in muli-core processors. Wang et al. [15] regulate per-core power

under various workload by a model estimator and shifting power between CPU cores and

memory components based on MPC (Model Predictive Control) theory.

2.2 Throughput Regulation For Multi-core Processors

In multi-core processors, a wide range of throughput regulation techniques using control

theoretic approaches have been explored. One fuzzy flow regulation technique [16] uses

fuzzy logic to intelligently control the input flow rate in the chip network according to

traffic dynamism and interconnection network status. PI and PID controllers are used to

7

balance resource utilization and immigrate tasks in multi-core processors [17]. The work

by Brinkschulte et al. [18] regulate the IPC (instruction per second) rate by switching CPU

resources among threads using a proportional controller. Almoosa et al. [19] presented

an on-line throughput regulation method using IPA (Infinitesimal Perturbation Analysis)

by modeling the instruction-sequences as stochastic DEDS (Discrete Event Dynamic Sys-

tems). However this work does not provide as robust regulation as in [6], where memory-

bounded instructions are part of the instruction flow model.

2.3 Optimizing Power Efficiency For Multi-core Processors

In recent years, several classes of techniques have been developed to improve power and

energy efficiency in multicore processors. Two such classes are resource allocation and

DVFS [20]. Resource allocation techniques dynamically re-assign computing resources

according to workload variations. Example techniques include virtual machine schedul-

ing [21], task migration [22] and thread scheduling [23]. Those techniques usually depend

on the ability to predict or detect application phases. In reference [24] an approach is

described for predicting power load variations using performance counter information and

controlling the power module configuration accordingly. Ref. [25] maximized performance

while maintaining power and thermal constraints by a runtime optimization policy, which is

based on the training of power and performance statistics from simulations across a group

of benchmarks. Ref. [26] predicted the system performance state from readily available

input features, such as the occupancy state of a global service queue, using Supervised

Learning technique, and then used this predicted state to look up the optimal power man-

agement action, e.g. voltage frequency setting, from a pre-computed policy table.

There has been a surge of power efficiency optimization techniques [27] [28] [29] ap-

plying DVFS (Dynamic Voltage and Frequency Scaling) to multi-core processors, where

operating frequencies and voltages are reduced to diminish power consumption without

performance loss. In order to exploit power for performance, various scheduling tech-

8

niques to adapt frequency and voltage levels according to workload variations and resource

utilization are developed. These techniques decrease CPU frequency and voltage during 1)

memory-intensive phases in applications, and 2) internal communication phases in parallel

programs [30]. These scheduling technologies can be implemented in different fashions,

from low-level hardware architecture to high-level runtime optimization policies.

Low-level DVFS implementations include hardware architecture design, and operating

system level power management strategies [31] [32]. The work in [33] detects L2 cache

misses and instruction-level parallelism in hardware to leverage the low-usage period of

CPU. However, the implementation for architecture level power management schemes re-

quires hardware support, which is complicated and sometimes impractical. In OS-system

level, CPU frequencies and voltages can be set in response to runtime application behavior

prediction, which is based on resource utilization information provided by OS kernels [34].

To take full advantage of DVFS techniques effectively and efficiently, high-level imple-

mentations including power and performance modeling and control theoretic approaches

are used. In power and performance models, potential benefits or penalties of different fre-

quency and voltage states can be predicted before actual occurrences [35]. Some models

are established according to detailed analysis of certain architecture [36], while others are

linear models for power estimation based on CPU utilizations [10][37]. Meng et al. [25]

design an application based optimization policy by maximizing performance under power

and thermal constraints. They study application runtime characteristics such as network

traffic, workload, and memory intensive patterns, and use them to construct an off-line

model to determine the optimized Voltage-Frequency setting. Recent work has developed

simple and real-time power models with low implementation overhead based on perfor-

mance counters and OS utilization metrics [11] [38]. Srikantaiah et al [39] measure disk,

network, and CPU utilization, paving the way for modeling consolidated power and per-

formance so as to minimize power consumption.

Formal control theoretic approaches have been used to optimize power efficiency for

9

multicore processors using DVFS [40][41]. They are broadly classified as optimal con-

trol, especially Model Predictive Control (MPC) [42] and formal feedback control [43].

The mathematical model developed by [44] based on Model Predictive Control (MPC) de-

scribes the workload variation in multicore environment and changed operating frequency

and voltage accordingly to save energy. [45] used MPC techniques to minimize multi-

core processor system energy under temperature constraints. The researchers in [15] regu-

lated power under temperature constraints by integrating dynamic cache size to shift power

among cores via piecewise linear model.

Closed loop feedback controllers are also used to manage power and performance in

multicore processors. Proportional controllers [13] and PID controllers [14] are imple-

mented in hardware architecture design to dynamically change supply voltages adapting to

power constraints. The work in [43] uses a PID controller with the synchronizing queue

occupancy as the input in multi-clock domain processors. [12] used an online feedback

controller to regulate the power consumption for a multicore processor with theoretically

proved robustness and stability.

2.4 Optimizing Energy Efficiency Under Power Budgets in Data Center Systems

In large scale computing systems, performance is limited by the available power [46]. A

power budget may be imposed by the existing power provisioning facilities as well as

high power consumption issues. Two well-known approaches, DVFS[47][48], and power-

shifting and power-gating [49], have been developed to increase power efficiency under

power caps in data centers, leading to better performance.

DVFS is a widely used technology that allows the CPU clock frequency and supply

voltage to be changed dynamically [50]. DVFS trades processor performance for lower

power consumption in cluster nodes. Lower frequencies and voltages lead to lower power,

making power-up active computing nodes possible. As a result, the execution time for

nodes in critical paths is reduced. The overall performance measured in BSP (Bulk Syn-

10

chronous Parallelism) programs improves because of shorter synchronization time. In ad-

dition, a node frequency and power can be switched to the lower power status during phases

of communication in parallel programs [30].

A runtime mechanism is presented by [51] for slack prediction and slowing down of

critical path computation for the benefit of energy saving. However, their execution model

consisting of multiple steps is assumed to contain a compute followed by communication

globally at each step in BSP. This approach does not provide as good energy efficiency

for applications with time-dependent processing patterns as [52], where an Energy Tem-

plate is proposed to identify idle states of the processor cores. This template information is

passed to MPI (Message Passing Interface) runtime to achieve potential energy saving. A

job scheduling policy is proposed by [53] to allocate both processor and power resources

to all jobs at the same time. It distributes the available power among the jobs, assigning

optimal CPU frequency to each of the selected jobs. Several software-controlled dynamic

power management algorithms have been explored [54] [55] [36] [56] by using DVFS to

expand computation into slack that occurs during communication for synchronization, thus

reducing energy consumption. The work by [57] tracks the idle time spent by a processor

waiting for other processors to reach the barrier in the program and reduces the frequency

of the processor in order to reduce or eliminate these idle time. Energy aware optimiza-

tion methods have been applied to MPI by identifying communication phases of parallel

applications and using DVFS during such phases to conserve power [58] [30] [59] [60].

Power-gating is a technique that shuts off the power supply of a logic block by inserting

a gate or sleep transistor [61]. There is virtually no power consumption in the gated block.

The supply voltage is significant lower than what is used in standard DVFS, contributing

to aggressive reduction in power consumption. Under a strict power budget, the power

saved from gated nodes can be used by other nodes in the data center system, which is

called power-shifting. Thus, power-gating and power-shifting make full use of computing

resources. However, power-gating should not be used liberally because there is usually a

11

performance overhead associated with entering and exiting the power gated states.

Power-gating and power-shifting techniques have emerged as energy efficiency solu-

tions for data centers. To complement existing DVFS techniques, per-core power-gating

(PCPG) [62] has been developed to reduce leakage power when computing resource uti-

lization exhibits high variability. The Booster [63] runtime system re-balances parallel

workloads by shifting power among function units within a processor. The work by [64]

provides a power-gating strategy which makes power saving possible without performance

loss. The transition of power states from power-gated mode to full power mode is smooth

and vice versa. Moreover, Lefurgy et al. [58] are among the first to explore the power-

shifting technique in node level under power caps. Several workload-guided policies for

dynamically allocating power under static budgets among node servers have been devel-

oped in the past few years [49]. Furthermore, power-gating and power-shifting techniques

have been extended system wide, resulting in several energy efficiency optimization ap-

proaches, including a just-in-time network power-shifting method [65] that enables power-

shifting from nodes to nodes. Piga et al.[66] developed a Gate & Shifting method that

allows one to mitigate the BSP communication imbalance among nodes. They power-gate

waiting processes and shift the remaining power budget to the processes that are in the

critical execution paths. However, this power-shifting approach requires communication

across the data center system, resulting in significant communication delay. Therefore, it

may not be applied to extra-scale data center systems.

12

CHAPTER 3

EXPERIMENTAL FRAMEWORKS

This chapter presents the experimental frameworks used in this thesis, including a full

system cycle level architecture simulator, and an Intel Haswell 4-core processor. A brief

introduction of 3D architectures is also provided.

3.1 System Architecture of a 3D Multi-core Processor

This work considers a 3D x86 multi-core processor architecture that is composed of a ho-

mogeneous 16 core die, a last level cache (LLC) die and a dynamic random-access memory

(DRAM) die stack together as shown in Figure 3.1. The bottom die of the stack is the cores

modeled at 16nm technology. The cores reflect a typical out-of-order core design with

5 typical partitions (FE: pipeline frontend and L1 instruction cache, SCH: out-of-order

scheduler, DL1: data L1 cache, INT & FPU: integer and floating point unit). The core die

is divided into 4 voltage islands, with 4 cores on each voltage island.

On top of the processor die is LLC stack. In this paper we study the core and cache,

not including the next level memory hierarchy. The cache hierarchy includes a 16 KB pri-

vate L1 data cache and a shared L2 LLC cache residing on the next tier with 16 banks

(2MB each). The hit time for L1 cache is one cycle. The cache coherent protocol is

directory-based MESI co-located in the LLC cache. Memory controllers are integrated in

the DRAM stack. The interconnection network has 128-bit channels comprised of inter-

faces and routers. The routers are connected in a 2D torus, and the network interfaces

connect to the L2 cache banks and memory controllers. On top of the LLC tier is the

DRAM stack, where DRAM layers are stacked. The DRAM die is divided into 16 vertical

vaults, with each vault having one memory controller connected to the DRAM partitions

by a data channel.

13

Core Die
LLC Die

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Voltage island

FE

SCH FPU

DL1

INT

DRAM
A vault

Figure 3.1: 3D Architecture Overview

3.2 A Full System Cycle Level Computer Architecture Simulator: Manifold

In this section, we describe a 3D modern architecture simulator, Manifold [67]. Mani-

fold enables cycle-level full system processor simulation, i.e. application and operating

system binaries driving cycle-level models of cores, coherent caches, on-chip networks,

and the DRAM system. Manifold also supports dynamic voltage frequency scaling and is

coupled to energy and thermal models via the Energy Introspector multi-physics model-

ing library [68], as shown in the flow chart in Figure 3.2. Figure 3.3 shows the Manifold

platform system model. The pipeline execution and cache activity during execution are

recorded by performance counters. Information collected by those counters are sent to the

power libraries (i.e. McPAT [69]) to generate power traces with preset power models and

technology specifications. The thermal distribution across the chip stacks is computed by

the thermal library (i.e. 3D-ICE [70]). Temperature-leakage feedback is used to update the

leakage power of each architecture component with its temperature level. Finally, the sys-

tem monitor collects the processor performance and multi-physics information, and adap-

tively manipulates the operating knobs (i.e. voltage, frequency) according to our control

14

algorithms at runtime.

Cycle-based

Timing Model

Power Library

System Monitor

Thermal Library

Qsim
Perf. cnt

Power

Temperature

throuput, etc.
Update

operating param.

Leakage

feedback

Power

traces

Control Alg.

EI

Technology Node

Circuit Models

Design Param.

Chip Stack

Floorplan Spec.

Therma l Param.

Figure 3.2: Flow Chart of Manifold Simulation

Table 3.1: System Configuration

Parameters Out-of-order Core
Architectural Configuration

ISA x86 IA32
Pipeline Depth 10 stages
Fetch/Decode 4 instructions

Execution 6 Issue ports
Issue Width 4
L1 Cache 8-way 16KB/core
L2 Cache 64-way 2MB/bank, 16 banks

Physical Configuration
Clock Frequency 0.5-5.0GHz
Supply Voltage 0.5-1.2V

Feature Size 16nm

The floor plans are illustrated in Figure 3.4. The 16 out-of-order homogeneous cores

are placed on the bottom die, with 5 typical partitions (FE: pipeline frontend, SCH: out-of-

15

Applications

Linux

Virtual CoreVirtual Core Virtual CoreVirtual Core Virtual CoreVirtual Core Virtual CoreVirtual Core

core

L1

L2

core

L1

L2

core

L1

L2

core

L1

L2

RouterRouter RouterRouter RouterRouter RouterRouter

Memory Memory Memory Memory

Emulation

Core Timing

Model

Memory Stack

Timing Model

Figure 3.3: Manifold Platform Model

order scheduler, DL1: data L1 cache, INT & FPU: integer and floating point unit). These

cores are interconnected by a 2D torus network. On top of the first two tiers are another 8

DRAM dies, with 16 channels, where each channel has 8 ranks (on each die) and 2 banks.

The system simulation model computes the power dissipation and resulting thermal fields

produced by the package. The core configuration is shown in table 3.1.

3.3 A Haswell 4-core Processor

This work also implements the designs in an Intel Haswell 4-core processor. In this sec-

tion, we present the tested Intel CoreT M i7-4770 Haswell processor that has four physical

cores with a clock frequency range from 0.8GHz to 3.4GHz. Since cores on the proces-

sor are residing on one voltage island, all the cores must run at the same voltage. Each

core has a two eight-way 32 KB private L1 cache (separate instruction cache and data

16

Figure 3.4: System Architecture Model

cache), a 256 KB private L2 cache (combined instruction cache and data cache), and an

8 MB shared L3 cache, with 16 GB of physical memory on board [71]. The Haswell

die map is shown in Figure 3.5. Each Haswell core shares its execution resources be-

tween two threads of execution via Intel Hyperthreading [71]. We collect performance

counter values using the PAPI [72] tool. PAPI allows for transparent power and energy

readings via the Intel RAPL (Running Average Power Limit) interface. The through-

put is measured by dividing the total number of instructions processed during one con-

trol cycle by the control cycle duration. The number of instructions proceeded is read

by performance counter ”PAPI TOT INS”.The energy consumed is measured from RAPL

”PP0 Energy:PACKAGE0” [72]. The frequency values are periodically set to the contents

of the file ”/sys/devices/system/cpu/cpu%d/cpufreq/

scaling setspeed”. The operating system in the test processor is Ubuntu 16.04.

17

Figure 3.5: Haswell Die Map [71]

3.4 Linux Governors

The Linux operating system provides support for managing the power states of the pro-

cessor through configurable software modules referred to as governors [73]. There are 5

CPUFreq governors in the tested Ubuntu 14.04 Linux kernel: Performance, PowerSave,

Userspace, Ondemand, and Conservative [74]. The Performance governor sets the CPU

statically to the maximum frequency while Powersave sets the CPU statically to the min-

imum frequency. The Userspace governor runs the CPU at frequencies specified by the

users. The Ondemand governor aggressively makes the frequency jump to the maximum

value when there is any workload and then possibly backs off when idle time increases. The

Conservative governor sets the CPU frequency dynamically based on the current workload.

It is like the Ondemand but differs in behavior in that the Conservative governor gradually

increases or decreases the CPU speed [73]. We use the Userspace governor when imple-

menting our designs in the Intel Haswell Processor.

18

3.5 Benchmarks

In this thesis, we use Splash II [75], Parsec [76], and GraphBig [77] benchmark suits.

Splash II and Parsec are both from SPEC benchmark suits, which are industry standard ap-

plications used to evaluate performance and energy efficiency for computing systems [76].

GraphBig benchmarks are based on IBMs System G framework, a comprehensive set of

industrial graph computing tool, cloud and solutions for Big Data used by commercial

clients [78]. IBM System G can be used in many cases, such as social network analysis,

anomaly detection, smarter commerce, smarter planet, cloud, telecommunication. System

G includes Graph Database, Graph Visualizations, Graph Analytics Library, Graph Mid-

dleware for various hardware and distributed cluster, and Network Science Analytics tools,

including: Cognitive Networks, Cognitive Analytics.

19

CHAPTER 4

THROUGHPUT REGULATION FOR MULTICORE PROCESSORS

This chapter addresses the problem of throughput regulation where the instruction through-

put of a multi-core processor is maintained at a set target by varying core frequencies.

Throughput regulation in processors presents several challenges. The first is the time-

varying instruction level parallelism (ILP) exhibited by applications. Instruction and re-

source dependencies affect instruction flows in out-of-order cores and consequently exe-

cution time can vary significantly within an application and across different applications.

Such variability is amplified in asymmetric multicore architectures comprised of cores that

support varying degrees of issue width and complexity. Furthermore, communication de-

lays between cores and other components, such as caches, DRAM, and SSDs, can rarely be

predicted reliably. Threads executing on distinct cores interfere with each other in shared

caches and on-chip networks introducing dynamically determined delays in instruction ex-

ecution. It is therefore difficult to develop general analytic models that can relate core and

chip instruction throughput to micro-architectural parameters such as frequency. All of this

suggests the merit of dynamic on-line throughput regulation techniques that do not rely on

static analytical models but rather continually adapt to the processors dynamics to regulate

core and processor instruction throughput at set levels.

The main contributions in this chapter are:

• A variable gain controller design for regulating the throughput of modern out-of-

order cores.

• A throughput model based on the on-line sensitivity analysis method that dynami-

cally estimates the analytical relationship of throughput and core frequency.

• An evaluation of the regulator design with a full system, cycle-level multicore simu-

20

lator executing industry standard benchmark applications.

• Implementation and evaluation of the design in an Intel Haswell processor with var-

ious benchmarks.

4.1 A Variable Gain Controller

The purpose of the regulator described in this section is to regulate the instruction-rate of

each core to a given setpoint reference. Each core is a single voltage island with its own

regulator and target reference. Figure 4.1 illustrates the feedback system.

The instruction throughput of a core is measured over continuous time intervals, called

control cycles, denoted by Cn, n = 1,2,3, . . ., and the throughput measured during Cn is

denoted by Tn. Let un denote the clock frequency during Cn. un is assumed to be assigned

by the regulator at the start of Cn and maintain its value throughout that control cycle, while

Tn is assumed to be measured during Cn and be obtained at the end of it. Details about the

measurement of throughput will be introduced in Section 4.3 and Section 4.4. Let r be the

target throughput, and the objective of the regulator is to ensure that Tn approaches r.

Controller Processor
enr un An

+
-

Figure 4.1: The Feedback System

21

The action of the controller is defined by the equation

un+1 = un +An+1en+1, n = 1,2, . . . , (4.1)

where An is its gain during Cn+1. The proposed design is an adaptive gain feedback reg-

ulator where An may change during every control cycle. en+1 is the error signal for cycle

Cn+1, which is the difference between the target and actual throughput at control cycle Cn.

See below:

en+1 = r−Tn. (4.2)

The gain An+1 is defined as [4]:

An+1 = ξ

(dTn

dun

)−1
, (4.3)

where ξ ∈ (0,1) is a given constant determined experimentally to provide maximum

tracking performance. The term dTn
dun

in Equation (4.3) is the sample derivative of the core’s

throughout with respect to clock frequency during Cn. We developed a queueing model

using IPA (see Section 4.2) to obtain An+1. Tn can be simply computed by observing the

number of instructions completed by the core during Cn and dividing it by the duration of

Cn. The term ∂Tn
∂un

is the sample derivative of that sample path. Tn is measured at the end of

Cn, hence it can be used to compute un+1 via Equation (4.1) at the start of Cn+1.

Next, let’s take a look at the co-efficient ξ . For ξ = 1, the control law implements the

Newton-Raphson method for solving the tracking problem. Convergence of the Newton-

Raphson method is known to be robust to variations in that equation as well as to com-

putational errors [79], and therefore we expect the control law to yield tracking regulation

in the stochastic, time-varying setting under consideration. The purpose of using a fac-

tor ξ ∈ (0,1) in Equation (4.3) is to reduce oscillations that are caused by randomness.

Observations about the impact of ξ in the proposed design is presented in section 4.3.

22

4.2 A Throughput Model

This section describes the computation of dTn
dun

by using IPA (Infinitesimal Perturbation

Analysis) approach. IPA is a well-known and well-tested technique for computing sample-

performance derivatives (gradients) in discrete event systems and other event-driven sys-

tems with respect to controlled variables [80] [81]. Its salient feature is in simple rules for

tracking the propagations associated with a gradient along the sample path of a system, by

low-cost algorithms. However, this simplicity may come at the expense of statistical unbi-

asedness of the IPA derivatives. In situations where IPA is biased, alternative perturbation-

analysis techniques have been proposed, but they may require far-larger computing efforts

than the basic IPA (see [80] [81]). For the throughput regulation technique described in this

work, it has been shown that IPA need not be unbiased and, as mentioned earlier, its most

important requirement is low computational complexity [5].

The instruction flow through the core involves six stages : Fetch, Decode, Issue, Exe-

cute, Memory, and Commit. To quantify the throughput, we next derive the equations that

describe the last four steps (see Figure (4.2)).

To start with the Issue step, consider a sequence of instructions, denoted by I1, I2, . . .,

according to their issue order. Let ai denotes the arrival time of instruction Ii to the Reorder

Buffer (ROB) in terms of clock cycles. If the instruction has a data dependency, we use k(i)

to denote the index of the instruction that computes the last operand required for instruction

Ii . Let τ denote the core’s cycle time, and denote by αi the enqueue time of Ii, namely the

time that all the operands of Ii are available and the instruction is ready to be executed.

Then

αi = max{ aiτ , βk(i) }+ τ. (4.4)

23

I-CacheI-Cache
Instruction

Fetch

Instruction

Fetch

ranch

Predictors

Branch

Predictors

nstruction

Predecoder

Instruction

Predecoder

Instruction

Queue

Instruction

Queue

nstruction

Decoder

Instruction

Decoder

Micro-op

Queue

Micro-op

Queue

Micro-op

Scheduler

Micro-op

Scheduler

icro-op

Sequencerq

Micro-op

Sequencer

etworkNetwork

L1 CacheL1 Cache

Load QueueLoad Queue Store QueueStore Queue
Reservation

Station

Reservation

Station
Reorder BufferReorder Buffer

Instruction

Commit

Instruction

Commit

xecution UnitsExecution Units

Figure 4.2: Out-of-order Execution [82]

Therefore, we have

α
′
i (τ) =

ξi +1, if all the operands of

instruction Ii are ready

before Ii arrives at ROB.

β ′k(i)(τ)+1, otherwise.

(4.5)

The Execute stage, assume that the execution time of a non-memory instruction Ii is

approximated by µiτ , where µi is total number of clock cycles it takes the execution unit to

process instruction Ii . Denote by βi the completion time of executing Ii. Then,

βi = αi +µiτ, (4.6)

24

and we note that βi is also the time that the result of instruction Ii becomes available as an

operand for other instructions.

Thirdly, if instruction Ii is a memory instruction, the memory hierarchy is involved in

the process. Let us denote the sequence of instructions Ii that are in the memory path

by Ii(j), j = 1,2, The processing time of instruction Ii(j) in the cache is νi(j)τ , where

νi(j) is the number of clock cycles it takes to proceed the instruction in cache in cache hit

condition. The completion time of executing a cache-hit instruction is the dequeuing time

from cache, that is,

γi(j) = max{ αi(j)+ν j(i)τ, δi(j)−λ }, (4.7)

where λ is the total number of Miss Status Holding Registers (MSHR) entries. We assume

if the number of instructions in MSHR reaches λ , the whole memory system stops process-

ing. The derivative of γi(j) with respect to the clock frequency is given by the following

equation.

γ
′
i(j)(τ) =

α ′i(j)(τ)+νi(j), if Load/Store Unit

does not stop

after processing

instruction Ii(j)−1.

δ ′i(j)−λ
(τ), otherwise.

(4.8)

If instruction Ii(j) is a cache miss then it needs to access other storage devices such as

DRAM. The major part of its latency can be approximated by a term denoted by MEMi(j),

which typically is hundreds of clock cycles and hence one-to-two orders of magnitude

longer than compute instructions. Note that MEMi(j) is independent of τ since the clock

of such memory systems is different from the clock of cores and caches. The completion

time of a cache-miss instruction Ii(j) in Memory stage is its departure time from the MSHR

25

back to execution, and denoting it by δi(j), it can be seen from the above discussion that

δi(j) = max{ γi(j)+Mi(j)τ +MEMi(j) , δi(j)−1}, (4.9)

where Mi(j)τ is the proceeding time in MSHR. We derive δ ′i(j)(τ) as

δ
′
i(j)(τ) =

γ ′i(j)(τ)+Mi(j), if instruction Ii(j)−1

leaves MSHR

before instruction

Ii(j) is completed.

δ ′i(j)−1(τ), if instruction Ii(j)−1

stays in MSHR

when instruction

Ii(j) is completed.

(4.10)

Thus, the completion time of executing instruction Ii is computed as follows:

βi =

αi +µ(i)τ, if instruction Ii is a

non-memory instruction

γi(j), if instruction Ii is a cache

hit memory instruction

δi(j), if instruction Ii is a cache

miss memory instruction.

(4.11)

26

Combine equation (4.8) and equation (4.10), we have

β
′
i (τ) =

α ′i (τ)+µ(i), if instruction Ii

is not a

memory instruction.

γ ′i(j)(τ), if instruction Ii

is a cache hit

memory instruction.

δ ′i(j)(τ), if instruction Ii

is a cache miss

memory instruction.

(4.12)

Finally, let us consider the final stage, Commit. The order of departure of instructions

should be the same as their arrival order. Let di denote the time that instruction Ii in the

ROB is committed (dequeuing time), then we have

di = max{ βi + τ , di−1 + τ }. (4.13)

Therefore, the derivative of dequeuing time for instruction i is

d′i(τ) =

β ′i (τ)+1, if the entry of instruction

Ii is head of the ROB

d′i−1 +1, if the entry of instruction

Ii−1 still remains

in the ROB

(4.14)

This is a recursive equation which gives out d′i(τ) for all i = 1, . . . ,M, and in particular,

27

we can obtain d′M(τ). Considering all of this during a control cycle Cn comprised of M

instructions, the throughput yn is given by

yn =
M
dM

. (4.15)

and hence,

y′(τ) =−M
d′M(τ)

dM(τ)2 . (4.16)

This, in conjunction with equation (4.15), gives

y′(τ) =
1
M

(y
u

)2
d′M(τ). (4.17)

We use the above equations to compute the sample derivatives, dyn
dun

for the control pa-

rameters, the core’s clock frequency.

4.3 Experiments in A Full System Cycle Level Simulator

We simulated two SPLASH-2 benchmarks, Cholesky and Ocean-nc [75] in Manifold.

Cholesky is a computation intensive application while Ocean-nc is a memory intensive

application. Eight cores execute the Cholesky benchmark, and eight cores execute the

Ocean-nc benchmark. Each control cycle consists of 50,000 instructions, chosen to bal-

ance the settling (convergence) time with local high-frequency oscillations of the actual

throughput. The frequency-range of the cores is 0.5 GHz to 5 GHz. These simulations

assume that a continuous range of frequencies are feasible. We set the target throughput of

each core at 4000 MIPS (Million Instruction Per Second) for Cholesky, and 1000 MIPS for

Ocean-nc.

A typical simulation run for the Cholesky benchmark (chosen at random from the eight

cores executing this benchmark) is shown in Figure 4.3, where the horizontal axis indicates

time in ms and the vertical axis indicates instruction throughput for a single core. The

28

value of ξ in Equation 4.3 is ξ = 1. The total run time of 333 ms is the duration of the

Cholesky program. We can see from the graph a fast rise in throughput from an initial

value of 400MIPS to about 4300MIPS in 0.8 ms. Thereafter the throughput stabilizes at

about the target value of 4,000 MIPS except for sporadic variations which are due to vari-

able program workload and other random aspects of the system. However, the controller

seems to compensate for them in short time-frames. Furthermore, the average throughput

computed over the time interval [0.8ms,333ms] (soon after the throughput has reached the

target value) is 3964.4 MIPS, which is quite close to the target throughput of 4,000 MIPS.

Similar results for the Ocean-nc benchmark are shown in Figure 4.4 and Figure 4.5.

Figure 4.4 depicts the graph of the instruction throughput for the first 35 ms of the pro-

gram, while Figure 4.5 shows the throughput for the entire run of 333 ms. The reason for

restricting the results to a subset of the program’s duration is that the graph shows the rapid

convergence of the throughput from its initial value of 600MIPS to about the target value

at time 0.5 ms, which is not visible in Figure 4.5. In both parts of the figure we discern

fluctuations of the throughput from its target value, but the control algorithm stabilizes the

throughput rapidly. These fluctuations (oscillations) are more pronounced than in the re-

sults concerning the Cholesky benchmark; the reason is that Ocean-nc is more memory

intensive than Cholesky, hence it experiences wider load variations. As mentioned earlier,

the parameter ξ ∈ (0,1) in Equation (4.3) can be used to reduce oscillations in the through-

put profile. To test this point we simulated the control algorithm with ξ = 0.2 for both the

Cholesky and Ocean-nc benchmarks. The results, shown in Figure (4.6) and Figure (4.7),

respectively, exhibit fewer and smaller oscillations but larger settling times as compared to

the respective results in Figure (4.3) and Figure (4.4), resp., where ξ = 1.0. This is not

surprising in light of the fact that the controller’s gain is smaller. In fact, the measured av-

erage throughput for Choleaky is 3989.8 MIPS for ξ = 0.2 and 3964.4 MIPS for ξ = 1.0,

whereas for Ocean-nc, it is 1004.6 MIPS for ξ = 0.2 and 1008.9 MIPS for ξ = 1.0.

29

2 4 6 8 10 12

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Time (ms)

T
hr

ou
gh

pu
t (

M
IP

S
)

Figure 4.3: Throughput regulation: Cholesky

5 10 15 20 25 30

600

700

800

900

1000

1100

1200

1300

1400

Time (ms)

T
hr

ou
gh

pu
t (

M
IP

S
)

Figure 4.4: Throughput regulation: Ocean-nc (beginning part)

0 50 100 150 200 250 300 350
600

800

1000

1200

1400

Time (ms)

T
hr

ou
gh

pu
t (

M
IP

S
)

Figure 4.5: Throughput regulation: Ocean-nc (full execution)

30

2 4 6 8 10 12

2000

3000

4000

5000

6000

Time (ms)

T
hr

ou
gh

pu
t (

M
IP

S
)

Figure 4.6: Throughput regulation (modified algorithm): Cholesky

0 5 10 15 20 25 30
500

600

700

800

900

1000

1100

1200

1300

Time (ms)

T
hr

ou
gh

pu
t (

M
IP

S
)

Figure 4.7: Throughput regulation (modified algorithm): Ocean-nc

4.4 Implementataion on an Intel Haswell 4-Core Processor

4.4.1 Modified Regulator

In this section we report on our design implemented in an Intel Haswell processor. We

assume each core can share its execution resources with up to two threads. Therefore, all

threads executing on the processor share the same frequency as the multi-core processor.

The goal of our design is to achieve thread-level throughout regulation as well as processor-

level throughput regulation. Since four cores are residing on one voltage island, they share

the same operating frequency. Hence, for the throughput regulation on Haswell processor,

31

we introduce a centralized regulator that uses the feedback control described in section 4.1.

The control variable in this section is the processor’s operating frequency. The input for

the controller is the target throughput for each thread. More specifically, we assume all

threads have the same target throughput, and this target throughput is the input for the cen-

tralized regulator. The operating frequency is computed based on the average throughout

of executing threads. In other words, if a thread stays idle during certain control cycles,

the thread’s throughput is not taken into account when calculating the average throughput

for those control cycles. The sample path gradient is approximated by the value of average

thread throughput over operating frequency. The flow chart is shown in Figure (4.8).

Core #0

Thread #0

Thread #1

Core #1

Thread #2

Thread #3

Core #2

Thread #4

Thread #5

Core #3

Thread #6

Thread #7

Average Throughput

Feedback Controller

Operating Frequency

C

Figure 4.8: Flow Chart of the implementation in Centralized Controller

The integral gain of the regulator, An+1 in equation 4.1 at control cycle Cn is approxi-

32

mated by

An+1 =
Tn

un
(4.18)

where Tn is the average throughput of running threads at control cycle Cn, and un is

the operating frequency of the processor at control cycle Cn. en in equation 4.2 in this

section is the difference between the average thread throughput and the target thread-level

throughput.

Haswell processors employ 16 discrete frequency levels, ranging from 0.8GHz to 3.4GHz.

Therefore, we map the continuous frequencies computed to discrete frequencies of Haswell

processors. The mapping table is shown in Table (4.1). In control cycle Cn, the controller

completes the follow steps.

1. Collect throughput of each executing thread.

2. Compute the average throughput of all the executing threads, denoted as yn−1.

3. Compute the adaptive gain An by the approximation An =
yn−1
un−1

.

4. Apply the feedback control law and achieve the frequency un by equation 4.1.

5. Choose the actual operating frequency for control cycle Cn by the mapping table 4.1.

Table 4.1: Continuous-Discrete Frequency Mapping Table

Frequency
Computed (GHz)

Frequency
Set (GHz)

Frequency
Computed (GHz)

Frequency
Set (GHz)

<0.9 0.8 2.1 - 2.3 2.2
0.9 - 1.05 1.0 2.3 - 2.45 2.4
1.05 - 1.2 1.1 2.45 - 2.6 2.5
1.2 - 1.4 1.3 2.6 - 2.8 2.7
1.4 - 1.6 1.5 2.8 - 3.0 2.9
1.6 - 1.75 1.7 3.0 - 3.15 3.1
1.75 - 1.9 1.8 3.15 - 3.3 3.2
1.9 - 2.1 2.0 >3.3 3.4

33

4.4.2 Experimental Results

We first test Barnes benchmark from Splash-II benchmark suits. For the throughput target

of 1,200 MIPS, the results are shown in Figure 4.9, where the horizontal axis indicates time

in ms and the vertical axis indicates instruction throughput. The total run time is 100 ms,

and it corresponds to about 1,000 control cycles. The throughput rises from an initial value

of 739.2 MIPS to the target level of 1,200 MIPS in about 1.3 ms, or 13 control cycles.

The average throughput computed over the time interval [13ms,100ms] (soon after the

throughput has reached the target value) is 1,166.5 MIPS, which is 33.5 MIPS off the target

level of 1,200 MIPS. The graph of the frequencies is shown in Figure 4.10, and it indicates

no saturation throughout the program. We partly attribute the gap to the quantization error

due to the rounding off of the frequencies to their nearest values in W, which is evident

from Figure 4.10.

Time (ms)
0 10 20 30 40 50 60 70 80 90 100

T
hr

ou
gh

pu
t (

M
IP

S
)

600

800

1000

1200

1400

1600

1800

Figure 4.9: Barnes: throughput vs. time, target = 1,200 MIPS

For the target level of 1,000 MIPS, see Figure 4.11 and Figure 4.12 the throughput

climbs from its initial value of 633.2 MIPS to its target level in 1.5ms, or 15 control cy-

cles. There was no frequency saturation, and the average throughput in the [1.5ms, 330ms]

interval is 990.6, which means an offset of 9.4MIPS from the target level of 1,000 MIPS.

For the target level of 800 MIPS, see Figure 4.13 and Figure 4.14 the throughput climbs

34

Time (ms)
0 10 20 30 40 50 60 70 80 90 100

F
re

qu
en

cy
 (

K
H

z)

×10 6

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

Figure 4.10: Barnes: frequency vs. time, target = 1,200 MIPS

Time (ms)
0 10 20 30 40 50 60 70 80 90 100

T
hr

ou
gh

pu
t (

M
IP

S
)

600

700

800

900

1000

1100

1200

1300

Figure 4.11: Barnes: throughput vs. time, target = 1,000 MIPS

from its initial value of 763.1 to the target level in 1.0 ms, or 10 control cycles. There was

no frequency saturation, and the average throughput is 829.7 MIPS, which is 29.7 MIPS

off the target level of 800 MIPS.

Recall that we proposed a way to reduce the throughput oscillations and frequency

saturation by modifying the control algorithm, by replacing ξ in Equation 4.3 with 0.2.

Although this worked well for the Manifold simulation with the throughput target of 1,200

MIPS, it yielded poor results for the Haswell implementation. After a few iterations the

35

Time (ms)
0 10 20 30 40 50 60 70 80 90 100

T
hr

ou
gh

pu
t (

M
IP

S
)

×10 6

1

1.5

2

2.5

3

Figure 4.12: Barnes: frequency vs. time, target = 1,000 MIPS

processor frequency was trapped at a value. The reason is in the quantization error inherent

in the algorithm, which is due to the rounding off of the computed control variable. The

step size for modifying the control variable is insufficient to take that variable out of its

current value.

Time (ms)
0 10 20 30 40 50 60 70 80 90 100

T
hr

ou
gh

pu
t (

M
IP

S
)

0

500

1000

1500

2000

2500

Figure 4.13: Barnes: throughput vs. time, target = 800 MIPS

We also chose two applications: Depth-First Search (DFS) and Connected Compo-

nent from the GraphBig suite of benchmarks [77]. DFS is a fundamental graph analysis

primitive in many graph analytics applications, containing tree searching and graph data-

36

Time (ms)
0 10 20 30 40 50 60 70 80 90 100

F
re

qu
en

cy
 (

K
H

z)

×10 6

1.6

1.8

2

2.2

2.4

2.6

Figure 4.14: Barnes: frequency vs. time, target = 800 MIPS

structure search algorithms. Connected Component is a graph topology analysis tool also

found in many high level graph analytics applications. A complete implementation of

these programs typically has two major elements: data generation associated with an ap-

plication, and the computations on those data. In a benchmark evaluation, the element that

generates the data may itself require considerable computing times impacting the overall

performance. We present the results for first 600ms. Each control cycle of the regulation

algorithm lasts 0.1 ms, hence the various graphs depict the systems response for 6,000

cycles. Recall that the Haswell machine by which we execute the regulation technique

has a discrete set of 16 frequencies in the range 0.8 GHz to 3.4 GHz. Whenever the con-

troller attempts to assign a frequency outside that range when saturation occurs. As the fact

that we consider cloud computing applications, the GraphBig programs are more memory-

intensive than the Splash 2 programs, and they also make memory calls throughout their

duration and not only at their initial stages. For these reasons we expect longer throughput

rise times and larger oscillations. However, we do not attempt to test the effects of satu-

ration. Rather, we test the control technique at a range of throughput setpoints where no

saturation occurs, and as a result, obtain better average tracking than those presented for

the Splash-2 programs.

37

Target value of 1200 MIPS The results for throughput regulation of the DFS bench-

mark are shown in Figure 4.15. The throughput rises from an initial value of 794.51 MIPS

to the target level of 1,200 MIPS in about 19 ms. The average throughput computed over the

time interval [19ms, 600ms] is 1,219 MIPS, which is 19 MIPS more than the target level of

1,200 MIPS. The graph of the frequencies are shown in Fig 4.16, and they indicate consid-

erable saturation at the lower frequency of 0.8 Ghz. In spite of that, the average-throughput

offset from its target level is quite small, and symptomatic of experiments without fre-

quency saturation. For the Connected Component benchmark, the graph of the throughput

is shown in Figure 4.17. The throughput rises from an initial value of 876.39 MIPS to its

target value of 1,200 MIPS in about 19 ms. The frequency-graph, shown in Figure 4.18,

indicates some saturation at the lower boundary 0.8 GHz. The average throughput in the

interval [19ms, 600ms] is 1211.4 MIPS, which is 11.4 MIPS over the target level of 1,200

MIPS. Frequency saturation has provided the main argument for explaining large track-

ing errors, and hence we presented the frequency graphs obtained from the experiments

described thus far. The forthcoming experiments incurred no frequency saturation and

therefore, and in order to limit the length of the paper, we omit the frequency graphs.

0 100 200 300 400 500 600
500

1000

1500

2000

2500

3000
DFS: Target throughput=1200MIPS Average throughput=1219MIPS Control cycle=1ms

Time(ms)

T
hr

ou
gh

pu
t(

M
IP

S
)

Figure 4.15: DFS: throughput vs. time, target = 1,200 MIPS

Target value of 1500 MIPS For the DFS benchmark, the graph of the throughput is

depicted in Figure 4.19. The throughput rises from its initial value of 808.493 MIPS to the

38

0 100 200 300 400 500 600
0

0.5

1

1.5

2

2.5

3

x 10
6

Time (ms)

F
re

qu
en

cy
 (

K
H

z)

DFS: Target throughput=1200MIPS Control cycle=1ms Average frequency=0.90567GHz

Figure 4.16: DFS: frequency vs. time, target = 1,200 MIPS

0 100 200 300 400 500 600
500

1000

1500

2000

2500

3000

3500

Time (ms)

T
hr

ou
gh

pu
t (

M
IP

S
)

Figure 4.17: Connected Component: throughput vs. time, target = 1,200 MIPS

target level of 1,500 MIPS in 17 ms, or 170 control cycles. The frequency-graph, shown

in Figure 4.20, indicates saturation only at three points, which is negligible. The average

throughput is 1545.5 MIPS, which is 45.5 MIPS more than the target level of 1,500 MIPS.

For Connected Component, the throughput graph is depicted in Figure 4.21, while the

graph of frequency shown in Figure 4.22, indicates no saturation. The throughput rises

from an initial value of 1073.18 MIPS to its target level in 16 ms, or 160 control cycles.

The average throughput is 1486.2 MIPS, which is 13.8 MIPS below its target level.

Target value of 1900 MIPS For the DFS benchmark, the graph of the throughput is

39

0 100 200 300 400 500 600
0.5

1

1.5

2

2.5

3
x 10

6

Time (ms)

F
re

qu
en

cy
 (

K
H

z)

Figure 4.18: Connected Component: frequency vs. time, target = 1,200 MIPS

0 100 200 300 400 500 600
500

1000

1500

2000

2500

3000

3500

Time (ms)

T
hr

ou
gh

pu
t (

M
IP

S
)

Figure 4.19: DFS: throughput vs. time, target = 1,500 MIPS

shown in Figure 4.23. The throughput rises from its initial value of 1286.04 MIPS to the

target level of 1,900MIPS in 11 ms, or 110 control cycles. There is no frequency saturation,

and the average throughput is 1918.6 MIPS, which is 18.6 MIPS over than the target level

of 1,900 MIPS.

For the Connected Component benchmark, the graph of the throughput is shown in

Figure 4.24. The throughput rises from an initial value of 901.288 MIPS to its target value

of 1,900 MIPS in about 18 ms, or 180 control cycles. The is no saturation except at a single

point. The average throughput in the interval [18ms,600ms] is 1892.0 MIPS, which is 8.0

40

0 100 200 300 400 500 600
0.5

1

1.5

2

2.5

3

3.5
x 10

6

Time (ms)

F
re

qu
en

cy
 (

K
H

z)

Figure 4.20: DFS: frequency vs. time, target = 1,500 MIPS

0 100 200 300 400 500 600
500

1000

1500

2000

2500

3000

Time (ms)

T
hr

ou
gh

pu
t (

M
IP

S
)

Figure 4.21: Connected Component: throughput vs. time, target = 1,500 MIPS

MIPS off the target level of 1,900 MIPS.

In addition to the reasons mentioned above, there are several other factors that may

induces tracking errors. On observation that the big sparks in throughput appears peri-

odically implies that system calls from the operating system interrupts the tracking. We

can also observe that the fluctuation in the throughput of GraphBig benchmarks are big-

ger in the beginning part of execution compared to the rest of the execution. A complete

implementation of GraphBig programs typically has two major phases: data generation as-

sociated with an application, and the computations on those data. During the first phase,

41

0 100 200 300 400 500 600
0.5

1

1.5

2

2.5

3

3.5
x 10

6

Time (ms)

F
re

qu
en

cy
 (

K
H

z)

Figure 4.22: Connected Component: frequency vs. time, target = 1,500 MIPS

0 100 200 300 400 500 600
500

1000

1500

2000

2500

3000

3500

Time (ms)

T
hr

ou
gh

pu
t (

M
IP

S
)

Figure 4.23: DFS: throughput vs. time, target = 1,900 MIPS

there are more memory participation compared to the second phases, which explains bigger

fluctuation in the beginning of the program execution.

4.5 Concluding Remarks

This section describes the design and test of a technique for regulating instruction through-

put in computer processors by adjusting the clock frequencies at the cores as well as the

processor. The tests, applied to several industry-benchmark programs, were performed in a

full system cycle level simulator as well as an Intel 4-core Haswell processor. The regulator

42

0 100 200 300 400 500 600
500

1000

1500

2000

2500

3000

3500

Time (ms)

T
hr

ou
gh

pu
t (

M
IP

S
)

Figure 4.24: Connected Component: throughput vs. time, target = 1,500 MIPS

is based on a standalone integrator with a variable gain, adjusted in real time by estimat-

ing the IPA derivative of the plant function. The tracking convergence of the closed loop

system is robust with respect to computational errors, which suggests that the precision of

computations in the loop may be reduced in order to speed up their rates. The regulation

technique performs well in various industry benchmarks, especially in cloud computing ap-

plications which include significant memory instructions and therefore are generally hard

to control.

43

CHAPTER 5

POWER REGULATION FOR MULTICORE PROCESSORS

This chapter addresses the problem of power regulation where the power consumption of

a multi-core processor is maintained at a set target by varying processor frequencies. In

multi-core processors, the relationships between workloads, power dissipation, resulting

thermal fields, and their interactions with the leakage current are complex. For example,

application workloads exhibit time-varying computation and memory access behaviors re-

sulting in spatially and temporally varying power dissipation and non-uniform thermal

fields. The cross-chip variations in temperature coupling with circuit leakage and delay

increases full-chip leakage power. As a result, the peak throughput is decreased and chip

reliability is degraded. Thus, effective control of power dissipation is critical to the reliable

and high performance operation of multi-core processors.

A general technique for controlling power and temperature is based on setting the ap-

propriate power state of voltage islands, which is Dynamic Voltage Frequency Scaling

(DVFS). The development of effective controls based on DVFS faces several challenges.

First, the relationship between the clock frequency and core power is complicated by other

factors such as the coupling between temperature and leakage power. Second, application

workloads have time varying compute and memory system behaviors requiring a robust and

adaptive control strategy to manage power dissipation. Third, distinct cores in a voltage is-

land execute distinct instruction streams with distinct behaviors but may share a common

clock frequency. For example, the Intel Haswell processor tested in this work has four

cores sharing a single voltage island and executing eight threads at the same voltage and

frequency [71]. This chapter presents a feedback power regulator using an on-line model

for estimating power-frequency relationship by a least-square system identification method.

The main contributions in this chapter are:

44

• A novel adaptive gain feedback regulator for power regulation in multi-core proces-

sors by DVFS with accuracy and stability. The regulator does not depend on the

application and can dynamically adjust to various workloads.

• A power model based on system identification methods for estimating frequency and

power relationship.

• An implementation and testing of the design on an Intel Haswell 4-core processor

with industry standard benchmarks as well as cloud computing benchmarks.

5.1 A Power Model and a Power Regulator

In this section, we adapt the feedback control law presented in Chapter 4 to regulate the

power of the multicore processors. The An+1 in Equation 4.1 becomes the gradient of

power with respective to processor frequency in this Chapter. In this section, we develop a

dynamic power model using system identification techniques to obtain the value of An+1.

Consider a processor driven by a supply voltage V and operating at a frequency u, the

total power Ptotal dissipated is composed of static power Pstatic and dynamic power Pdynamic

as shown in equation 5.1

Ptotal = Pdynamic + pstatic (5.1)

Dynamic power depends on supply voltage and clock frequency of the processor, while

static power depends on supply voltage, temperature, and manufacturing technology pa-

rameters, see [82]. The dynamic power has the following form

Pdynamic = α ∗C ∗V 2 ∗u (5.2)

where α is a time-varying workload parameter representing the switching activity of

the transistor gates, and C is the switching capacitance of the processors. The static power

45

depends on the supply voltage and temperature, on the other hand the temperature depends

on the total power [82]. For the experimented processor, the Intel Haswell processor, the

supply voltage V cannot be measured directly. Furthermore, we can only measure total

power consumption, not static power and dynamic power separately. In other words, we

can measure the operating frequency and total power of the processor but not the supply vo

ltage. Therefore, we developed a power model using system identification approaches to

describe the relationship between power and frequency without knowing the supply voltage

and manufacturing factors. In our case, the power consumption of the controlled processor

varies during the program run depending on the program workload. Therefore, dynamically

adjusting the model according to the runtime information is essential in order to keep online

tracking of the target power. On the other hand, rapid response of the system is required

for real time tracking, which means the complexity of the model should be designed to

guarantee limited computation time. Otherwise the delay caused by computing the model

will affect tracking accuracy. Therefore, we apply the system identification approach to dy-

namically model the relationship between power and frequency of the controlled processor.

We estimate the power and frequency relationship as a third-order polynomial. A sim-

ilar third-order polynomial model has been explored by researchers to predict processor

power [83]. Next, we use system identification techniques to demonstrate the model on-

line.

The clock frequency of the processor in control cycle cn, n = 1,2, . . ., is denoted as

un, and the power consumption of the processor is denoted as pn. Hence, the relationship

between power and frequency can be modeled as the polynomial shown in equation 5.3 [3].

pn = an ·u3
n +bn ·u2 + cn ·u+dn (5.3)

where an, bn, cn, dn are parameters that is determined by runtime workload, tempera-

ture, leakage current and manufacturing factors.

46

Let’s define

xi =

[
(ui)

3 (ui)
2 ui 1

]

wn =

[
an bn cn dn

]
Hence,

pn = wn · xT
n (5.4)

Applying least square method, the W matrix is updated in each control cycle by the

following equation:

W = (XT X)−1 ·XT ·P (5.5)

However, the complexity to solve equation 5.5 is O(n3). The long time it takes for the

processor to complete computation will cause delay in real time tracking system. To re-

duce the complexity, we use recursive least square method with statistical learning models,

where the data samples are assumed to be independent and identically distributed random

variables. Since we assume noise is iid (independently identically distributed), with zero

mean, Gaussion distribution, the covariance matrix is identity. Hence, we have:

zn = xn · xT
n (5.6)

z0 = I4∗4 (5.7)

zn = zn−1−
zn−1 · xn · xn

T · zn−1

1+ xnT · zn−1 · xn
(5.8)

Remember X is n ∗ 4, and W is 4 ∗ 1. The parameters are computed by the following

47

recursive equation,

wn = wn−1− zn · xn · (xT
n ·wn−1− pn) (5.9)

The complexity is now reduced to O(n2). For implementation on Intel Haswell ma-

chine, we only need to store the value of zn and update it at each control cycle.

According to the power-frequency relationship, we can compute the derivative of power

with respect to frequency as follows,

d pn

du
= 3 ·an−1 ·u2

n−1 +2 ·bn−1 ·un−1 + cn−1 (5.10)

5.2 Implementation in an Intel Haswell 4-core Processor

We implement our design in the Intel Haswell processor introduced in Chapter 3. We

test the proposed power regulator with Splash II [75] benchmarks and GraphBig bench-

marks [77]. In this section, we present online power tracking results for Barnes and Tri-

angle Count. The energy consumed during control cycle is measured by from RAPL

”PP0 Energy:PACKAGE0” [72]. The unit for energy is J. We obtain the power by di-

viding total energy consumed by the whole voltage island during the control cycle by the

control cycle duration time. The per-core power is obtained by dividing the power by the

number of cores.

Barnes experiments The power-target value for Barnes is 10W . For the control cycle

of 10 ms the results are shown in Figure 5.1. The horizontal axis indicates time in ms and

the vertical axis indicates power. The total run time is around 10000 ms, corresponding

to about 1000 control cycles. The power rises from an initial value of 1.48634 W, and

following a period of transient behavior lasting 780ms, taking 78 control cycles, it settles

into an oscillatory behavior about the target value of 10 W. The average power computed

over the interval [780ms to 10,000ms] (after the power has settled for the first time) is

48

9.986 W, which is 0.014 W below the target level of 10 W. The graph of the frequencies

are shown in Figure 5.3. Throughout most of the first half of the run we notice frequency

oscillations between 1.7KHz, 1.8KHz, and 2.0KHz, while throughout most of the second

half, the oscillations are between 1.7Khz and 1.8Khz. These oscillations are due in part to

the fact that the frequency-set is finite, they induce (in part) the power oscillations shown

in Figure 5.1. The larger oscillations in the first half likely are due to the fact that early

in the program there are more memory instructions than in the second half, where most

instructions are computational. Memory instructions can take one-to-two orders more time

than computational instructions, and hence having more memory instructions is associated

with greater variability in in the program workload and hence in larger changes in both

the control variable (frequency) and the controlled variable (power). To show the initial

transient in greater detail, we depict the graph of power vs. time only for the first 1,000ms

in Figure 5.2.

Time (ms)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

P
ow

er
 (

W
)

0

5

10

15

20

25

Figure 5.1: Barnes: power vs. time, target = 10 W, control cycle = 10 ms

For the control cycle of 20ms, the graphs of power vs. time is depicted in in Figure 5.4,

while the frequency graph is similar to that shown in Figure 3 for the 10ms-cycle, hence

not shown. The power rises from an initial value of 6.5511 W towards its its target value of

10 W, about which it settles in an oscillatory behavior after 860 ms, or 43 control cycles.

49

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

Time (ms)

P
ow

er
 (

W
)

Figure 5.2: Barnes: power vs. time, target = 10 W, control cycle = 10 ms, first 1000 ms

Time (ms)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

F
re

qu
en

cy
 (

K
H

z)

×10 6

1

1.5

2

2.5

3

3.5

Figure 5.3: Barnes: clock frequency vs. time, target = 10 W, control cycle = 10 ms

The average power in the interval [860ms to 10,000ms] is 10.0715 W, which is 0.0715 W

over the target target level of 10 W. The average frequency is 1.8291 GHz.

For the control cycle of 30ms, the graph of power vs. time is depicted in in Figure 5.5.

The power rises from an initial value of 2.62598 W, and after 930ms (or 21 control cycles)

it settles around the target value of 10 W. Its average in the interval [930,10,000] ms is

10.1821 W, which is 0.1821 W over the target level of 10 W. The average frequency is

1.8595 GHz.

In addition to the factors mentioned above, runtime errors are introduces by other re-

50

Time (ms)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

P
ow

er
 (

W
)

0

5

10

15

20

25

30

Figure 5.4: Barnes: power vs. time, target = 10 W, control cycle = 20 ms

Time (ms)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

P
ow

er
 (

W
)

0

5

10

15

20

25

30

Figure 5.5: Barnes: power vs. time, target = 10 W, control cycle = 30 ms

sources during the power regulation process. We observe that in the power figures, there are

big spark (sudden power consumption jump) appear periodically throughout the program

run. One possible cause of that is the system calls from operating system. The operating

system interrupts CPU periodically. Those system calls introduces errors in the power reg-

ulation. Furthermore, the power consumption of hardware execution units is unpredictable.

Even the same kind of instructions may consume different power in the same compute

units. Those various power changes introduce uncertainties in the power regulation.

Table 5.1 summarizes the time it takes the power to settle about its target value for

51

the first time, as well as the absolute value of the error between the average power and

the btarget value, for the three control cycles of 10ms, 20ms, and 30ms. It is evident that

smaller control cycles yield better results, but the differences between the results for 10ms

and 30ms are minor. In all cases the regulation algorithm provides tracking in short times.

Table 5.1: Barnes: average power at different control cycles

Control Cycle (ms) 10 20 30
Error (W) 0.014 0.0715 0.1821
Settling Time (ms) 780 860 930

Triangle Count Experiments The target-power level for Triangle Count is 5 W. Note

that it is lower than the target for Barnes, and the reason is that Triangle Count has con-

siderably more memory access than Barnes, which tend to be low-frequency, low-power

operations.

For a 10ms control cycle, the results are shown in Figure 5.6 and 5.7. The power vs

time graph is depicted in Figure 5.6. The power starts at the initial value of 6.5131 W, and

following an initial transients lasting 80 ms (or 8 control cycles) it settles about the target

value of 5 W. The average power in the interval [80,3,500] ms is 4.9947 W, which is 0.0053

MIPS less than the target level of 5 W. The frequency graph is depicted in Figure 5.7.

Time (ms)
0 500 1000 1500 2000 2500 3000 3500

P
ow

er
 (

W
)

1

2

3

4

5

6

7

8

9

10

Figure 5.6: Triangle Count: power vs. time, target = 5 W, control cycle = 10 ms

52

Time (ms)
0 500 1000 1500 2000 2500 3000 3500

F
re

qu
en

cy
 (

K
H

z)

×10 6

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

Figure 5.7: Triangle Count: clock frequency vs. time, target = 5 W, control cycle = 10 ms

For 20ms control cycles the power graph is shown in Figure 5.8, and the frequency is

depicted in Figure 5.9. The power starts at 14.0043 W and after a transient period of 120

ms (or 60 control cycles) it settles in a band around 5 W. The average power in the interval

[120ms, 3500ms] is 5.1280 W, which is 0.1280 MIPS over the target level of 5 W.

Time (ms)
0 500 1000 1500 2000 2500 3000 3500

P
ow

er
 (

W
)

0

5

10

15

20

25

30

Figure 5.8: Triangle Count: power vs. time, target = 5 W, control cycle = 20 ms

For 30ms control cycles, the power and frequency graphs are shown in Figure 5.10 and

Figure 5.11, respectively. The power starts at the value of 14.8422 W, and after a transient

period of 150 ms (or 50 control cycles), it settles in a band around 5 W. Its average in the

53

Time (ms)
0 500 1000 1500 2000 2500 3000 3500

F
re

qu
en

cy
 (

K
H

z)

×10 6

2.2

2.4

2.6

2.8

3

3.2

3.4

Figure 5.9: Triangle Count: clock frequency vs. time, target = 5 W, control cycle = 20 ms

interval [150ms, 3400ms] is 5.1116 W, which is 0.1116 MIPS more than the target level of

5 W.

Time (ms)
0 500 1000 1500 2000 2500 3000 3500

P
ow

er
 (

W
)

0

5

10

15

20

25

30

Figure 5.10: Triangle Count: power vs. time, target = 5 W, control cycle = 30 ms

Compared to 30ms control cycle, 10ms shows more oscillations. But the power varia-

tion range is the same for the three tested control cycles. The reason for that is for a smaller

control cycles, the regulation is conducted more frequently resulting in more frequent op-

erating frequency changes.

The settling time and error for Triangle Count with control cycle 10ms, 20ms, 30ms are

54

Time (ms)
0 500 1000 1500 2000 2500 3000 3500

F
re

qu
en

cy
 (

K
H

z)

×10 6

2.2

2.4

2.6

2.8

3

3.2

3.4

Figure 5.11: Triangle Count: clock frequency vs. time, target = 5 W, control cycle = 30 ms

shown in Table 5.2 respectively. For longer control cycle, the tracking error and the settling

time generally increases. However, the fluctuation decreases as we can see in the power

figures. Triangle Count has less settling time and error compared to Barnes. That indicates

our power regulator can achieve the same good tracking, or even better in cloud computing

applications as general industry standard benchmarks. Power and energy consumption are

major concerns in data centers. Therefore, Triangle Count as a data center application is

designed with improved power distribution balance.

Table 5.2: Triangle Count: average power at different control cycles

Control Cycle (ms) 10 20 30
Error (W) 0.0053 0.1280 0.1116
Settling Time (ms) 80 120 150

5.3 Concluding Remarks

In this chapter we proposed an on-line adaptive gain regulator that can precisely control the

power of multi-core processors to the desired set point under various program workload. A

real time power model is developed to demonstrate runtime frequency - power relationship

for control accuracy and system stability. The regulator has the form of an integrator with

55

adjustable gain, designed for effective regulation. The gain is adjusted in real time by

simple computations in the feedback loop system. Furthermore, the regulation algorithm

is obtain expected power tracking in the presence of system uncertainties and computing

errors in the loop. We implemented the regulator in an Intel Haswell processor in order

to test it on various industry benchmarks. Due to the lack of adequate models for power

evaluation of these systems, we performed a system identification algorithm that is executed

in real time. We described the main technical challenges associated with implementations

of the regulator. Results of the experiments are presented and discussed in detail, and they

exhibit fast and effective convergence.

56

CHAPTER 6

POWER EFFICIENCY OPTIMIZATION FOR MULTICORE PROCESSORS

This chapter addresses the problem of optimizing power efficiency for cores as well as

for single voltage island processors. In modern computing systems from edge devices to

data centers, power consumption has been steadily increasing due to new technology trends

as well as emerging data intensive applications. Exponential growth in data sets requires

exponential growth in compute capacity but with limited growth in per processor power ca-

pacity. As a consequence, this growth in computational demand must be met by increased

power efficiency of processor cores. Modern data centers use general purpose multi-core

processors that are equipped with several power savings features including dynamic volt-

age and frequency scaling (DVFS). This chapter addresses the challenge of improving the

power efficiency of those general purpose multi-core processors. In particular, we are moti-

vated to develop an approach that is application independent. Towards this end, this chapter

presents a new DVFS controller for optimizing the power efficiency of multi-core proces-

sors. The optimization controller is associated with each core or each voltage island in a

multi-core processor and makes the voltage island operate at the most efficient power state

with minimal compromises in performance as measured by instruction throughput.

The main contributions in this chapter are:

• A core-level adaptive gain feedback controller for increasing performance and de-

creasing power consumption of cores in multicore processors using stochastic ap-

proximation.

• A processor-level optimization controller for multicore processors to balance through-

put and power for optimizing power efficiency of a voltage island shared by one or

more cores.

57

• The optimization controller is implemented as a user space governor for a Linux OS

in a Haswell 4-core processor. The performance is evaluated against the default and

alternative governors with a wide range of benchmark applications.

6.1 Core-level Power Efficiency Optimization

The goal of our on-line controller design is to select the operating frequency for each core

so as to achieve the maximum power efficiency. Figure 6.1 shows the architecture of the

studied processor. Each cluster is comprised of a set of homogeneous general purpose cores

whose voltage-frequency can be independently controlled. Four homogeneous cores that

share a last level cache are grouped as a single cluster. Other components such as the GPU,

memory controller, and network interface reside in distinct voltage islands. Each core is en-

visioned to have a distinct optimization controller and therefore we note that our approach

is applicable to other server processor architectures with different organizations of cores.

The optimization controllers of multiple cores operate independently and coordinated con-

trol among different voltage islands is not considered in this section. The optimization

controller is invoked periodically at a fixed time interval referred to as the control interval

to set the operating voltage and frequency for the next control interval. Each optimization

controller is comprised of 3 components - i) a performance monitor which measures the

collective throughput of the controlled core, ii) implementation of the optimization algo-

rithm to compute the operating frequency for the next control interval, and iii) a power

monitor which measures the collective power of the controlled core.

6.1.1 A Stochastic Approximation Approach

First, we need to find an objective function for our problem. Our goal is to improve through-

put while reducing the power. Therefore, our objective function should maximize through-

put while minimizing power. We define the objective function as Equation 6.1, where un,

Tn and Pn are the operating frequency at control cycle cn, throughput, and power for the

58

Power Monitor

Performance
Monitor

Stochastic
Approximation
Optimization

Throughput
Measurement

Power
Measurement

Frequency
Setting

Core

Core Core

Core

LLC

Cluster

Optimization Controller

Cluster Cluster

Cluster Cluster

Interconnect

NIC

GPU

M
e

m
o

ry
C

o
n

tro
lle

r

Figure 6.1: The Optimization System

controlled core at control cycle cn.

maximize
un

T 3
n

Pn

sub ject to un ∈U, Pn ∈ Powerrange

(6.1)

The reason for choosing T 3
n instead of Tn is to balance the impact of frequency on

power and throughput as described in [84]. The dynamic power and frequency relationship

is given by Pdynamic(f ,V, t) = k(t)CV 2 f where k(t) is a time-varying workload parameter

representing the switching activity, V is the supply voltage, C is the capacitance, and f

is the frequency. While throughput is proportional to frequency, power is proportional to

the product of the square of the voltage and frequency. The proposed objective function

59

represents a balance of changes in power vs. throughput as a function of frequency.

The challenge in designing such an optimization algorithm is that the optimization

model must be solved on-line with low computation complexity. A simple but efficient

design is required. Stochastic approximation has low computing costs and high tolerance

to errors[85] . Therefore, we use a stochastic approximation approachto solve the maxi-

mum problem above efficiently and accurately.

Our on-line optimization algorithm is illustrated in Figure 6.2. We start running the

application with an initial frequency and collect the performance and power statistics at

every control cycle. At control cycle cn, the optimized working frequency un is given by,

un+1 = un +αn ·
∂ (

T 3
n

Pn
)

∂un
(6.2)

where αn is the step size, which is generally a monotone-decreasing sequence changing

with time [86]. αn must meet two requirements: 1) ∑
∞
n=1 αn = ∞; and 2) ∑

∞
n=1 α2

n < ∞. We

set αn as follows to balance the response time and accuracy (see [85]).

αn = 0.8 · 1
n0.6 . (6.3)

Hence we have

∂ (
T 3

n
Pn
)

∂un
=

1
Pn

(
3PnT 2

n
∂Tn

∂un
−T 3

n
∂Pn

∂un

)
.

The quantities Tn and Pn are measured on-line. However, the terms ∂Tn)
∂un

is estimated by

the throughput model described in Section 4.2; and ∂Pn
∂un

is estimated by the power model as

described in Section 5.1.

60

Start running application with an initial frequency

Collect throughput and power statistics at the end of every control cycle

End of execution

Apply on-line optimization algorithm to compute optimized frequency for next
control cycle

Set frequency at the beginning of next control cycle

Program ends?
No

Yes

Figure 6.2: Flowchart for the On-line Optimization Algorithm

6.1.2 Experiments in a Full System Cycle Level Simulator

We use Manifold to test the proposed power efficiency optimization technique. We test

our optimization controller with Splash II benchmarks: Water-ns, Barnes, Lu-c, Cholesky,

Radiosity and Ocean-nc, with frequency range between 0.5GHz to 5GHz. First, we execute

all benchmarks with constant frequencies, which are the highest frequency 5GHz and the

lowest frequency 0.5GHz in the frequency range. The average power efficiency of each

benchmark with constant frequencies are described in Table 6.1 and Table 6.2.

Table 6.1: Power Efficiency for 0.5GHz Constant Frequency

Benchmark Power (W) Power Efficiency: *e27
Barnes 1.12 1.4465
Lu-c 0.78 0.3897
Radiosity 0.97 1.6616
Water-ns 0.83 1.4629
Ocean-nc 0.95 3.8907
cholesky 1.36 1.2652

Next, we run all benchmarks with the proposed design with per-core power efficiency

61

optimization controllers. The power efficiency results are show in table 6.3.

Power efficiency with constant frequency is much lower than those with our optimiza-

tion technique. Table 6.3 also shows the average power of the tested benchmarks when

using power efficiency optimization technique. Further, we also compare the optimization

design with power regulation. We use the power regulator presented in Chapter 5. We

use the average power in power efficiency optimization experiments shown in Table 6.3

as the target power for the regulator. In other words, we compare the power efficiency

of those benchmarks with power efficiency controllers against those with power tracking

controllers. The results are shown in Figure 6.3. As we can see, there is an average im-

provement of 38% power efficiency in the processor that implemented our optimization

controller.

In order to test our design in ultra low-power system such as portable devices, we

test our optimization controller with a frequency range between 0.2GHz to 1GHz. The

results are shown in Table 6.4. The power efficiency for power efficiency optimization and

Table 6.2: Power Efficiency for 5GHz Constant Frequency

Benchmark Power (W) Power Efficiency: *e27
Barnes 12.318 8.1942
Lu-c 6.4557 1.8747
Radiosity 8.6659 4.8383
Water-ns 6.6251 5.1096
Ocean-nc 11.1452 17.450
cholesky 9.893 17.336

Table 6.3: Power Efficiency Using The Optimization Controller With Frequency Range
0.5GHz to 5GHz

Benchmark
Power
Efficiency (*e27)

Average
Power(W)

Average
Frequency (GHz)

Barnes 49.475 5.3183 3.0480
Radiosity 37.189 7.4449 4.8201
Water-ns 68.83 7.74 4.3485
Ocean-nc 54.067 7.4631 3.7660
Cholesky 82.803 5.6527 2.8137
Lu-c 16.616 6.9929 4.7312

62

0

10

20

30

40

50

60

70

80

90

Barnes Radiosity Water-ns Ocean-nc cholesky lu-c

Po
w

er
 E

ff
ic

ie
n

cy

(*
e2

7
 M

IP
S3

/
W

)

Benchmarks

Optimization Power Regulation

Figure 6.3: Normalized Power Efficiency (with frequency range between 0.5GHZ to
5GHz)

power regulation are shown in Figure 6.4. The average improvement of power efficiency

for processor frequency range between 0.2GHz to 1GHz is 30.3%. The average power

efficiency of each benchmark with constant frequency 0.2GHz is over 50% lower than

those with the optimization controller as shown in Table 6.5.

Table 6.4: Power Efficiency Optimization Controller With Frequency Range From 0.2GHz
to 1GHz

Benchmark
Power
Efficiency (*e27)

Average
Power(W)

Average
Frequency (GHz)

Barnes 49.741 5.6819 3.2373
Radiosity 55.556 5.6732 4.1681
Water-ns 42.405 5.4150 4.1681
Ocean-nc 53.44 5.7023 2.0769
cholesky 69.781 5.6527 2.8973
Lu-c 17.166 6.1480 4.682

63

0

0.05

0.1

0.15

0.2

0.25

0.3

Barnes Radiosity Water-ns Ocean-nc cholesky lu-c

Po
w

er
 E

ff
ic

ie
n

cy

(*
e2

7
 M

IP
S3

/
W

)

Benchmarks

Optimization Power Regulation

Figure 6.4: Normalized Power Efficiency (with frequency range between 0.2GHZ to
1GHz)

6.2 A Processor-level Power Efficiency Optimization Controller

In this section, we implemented our power efficiency optimization controller in the Haswell

processor that was introduced in Chapter 3. As explained in Chapter 3, cores on the tested

processor reside in a single voltage island, where we can only set one frequency via the

Userspace governor. Let’s denote the average core throughput on the voltage island at

control cycle cn as Tn. Tn is calculated by measuring throughput from all four cores and

dividing the total throughput by 4 to get average per-core throughout. The average per-core

Table 6.5: Power Efficiency for 0.2GHz Constant Frequency

Benchmark Power (W) Power Efficiency: *e27
Barnes 1.12 1.4465
Lu-c 0.78 0.3897
Radiosity 0.97 1.6616
Water-ns 0.83 1.4629
Ocean-nc 0.95 3.8907
cholesky 1.36 1.2652

64

power consumption is Pn. The technique can be extended to multiple voltage islands cases

by simply assigning optimization controllers to each voltage island.

The main objective of optimization is to provide the operating frequency for solving

the optimization problem in Equation 7.1. In addition, the operating frequency must be a

practical frequency in the set of Frequency-sets described in 4.4. Our algorithm is executed

iteratively. At control cycle n, the optimization algorithm execute the following steps.

1. Measurement actions: Measure core throughput and power for the voltage island by

performance counters.

2. Computation: Compute the clock frequency based on throughput and power infor-

mation collected. The frequency is computed by Equation 6.2

3. Set frequency: Set the new clock frequency for the voltage island. The operating

frequency computed by solving the on-line optimization problem (Equation 7.1) as-

sumes a continuous frequency setting. However, in real systems, processors have

limited discrete frequency levels. Therefore, we need to map the computed frequency

to a practical operating frequency in the implemented system using Table 4.1, and set

the frequency for the processor in next control cycle.

Figure 6.5 summarizes the operational implementation of the power efficiency opti-

mization design.

6.3 Implementation in a Haswell 4-core Processor

6.3.1 Comparison With Linux Governors

We compare our design with Linux governors described in Chapter 3, i.e PowerSave,

Userspace, Ondemand, and Conservative [74]. We use the Userspace governor when im-

plementing our optimization algorithm.

65

Optimization

Set
Frequency

Update α

Power Gradient
Estimation

Mapping Computed Frequency to Available
Frequency

Read
Performance

Counters

Throughout Gradient
Estimation

Figure 6.5: Overview of the Operation of the Power Efficiency Optimization

Figure 6.7 illustrates the execution time for several GraphBig [77] applications. As can

be seen in Figure 6.7, the application run time with the Powersave governor is much more

than other governors. The reason for that is the Powersave governor makes the processor

always execute at the lowest frequency. This is very inefficient. Cloud computing systems

require high performance to satisfy QoS requirements. So in the following analysis, we are

not going to consider the Powersave governor. Since the Ondemand governor is the default

governor, we compare the total energy consumption of other governors and the Userspace

governor with the optimization controller to the Ondemand governor. Figure 6.8 shows the

energy improvement running GraphBig benchmarks. The Conservative governor consumes

less energy compared to the Ondemand governor, but the Performance governor does not

gain such good energy saving. Our design consumes provides competitive energy savings

in those benchmarks.

In addition to energy and power, performance is also a major concern in modern data

centers. Hence, we need to compare both power and performance among those gover-

nors. EDP (Energy Delay Product) Takes into account that one can trade higher energy for

66

reduced delay. Hence, we present EDP improvement against the Ondemand governor in

Figure 6.6. Since the Performance governor prioritizes performance over power, its EDP

presents better results than the energy metric. Our design consume less energy while the

execution times remain comparable as shown in Figure 6.7. The reason for better energy

saving with the optimization controller is discussed in the next subsection.

-10.00%

-5.00%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

Connected
Component

Betweenness
Centrality

Shortest Path K-core
decomposition

Triangle Count

ED
P

 Im
p

ro
ve

m
e

n
t

GraphBig Benchmarks

Performance Conservative POEM

Figure 6.6: EDP Improvement Compared to Ondemand Governor

6.3.2 Experimental Results

Evaluation Metrics There are several evaluation metrics for processor designs. In par-

ticular, traditional hardware efficiency evaluation metrics are performance-per-Watt, EDP,

ED2P and so one. Since the purpose of the design presented in this paper is to optimize

power efficiency in multi-core processors, where both performance and power are major

concerns, we use throughput-per-watt and total energy saving as two basic power efficiency

metrics for comparing the optimization design with baseline in the power-performance

space.

All the experimental results for the proposed optimization technique have taken over-

67

0

50

100

150

200

250

Connected
Component

Betweenness
Centrality

Shortest Path K-core
decomposition

Triangle Count

Ti
m

e
 (

m
s)

GraphBig Benchmarks

Ondemand Performance Powersave Conservative POEM

Figure 6.7: Application run time with the optimization controller and Other Linux Gover-
nors

-10.00%

-5.00%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

Connected
Component

Betweenness
Centrality

Shortest Path K-core
decomposition

Triangle Count

En
e

rg
y

Sa
vi

n
g

GraphBig Benchmarks

Performance Conservative POEM

Figure 6.8: Energy Saving Compared to Ondemand Governor

head into account. The comparison baseline is to run the program with ”conservative”

governor. For Splash-II benchmarks, the power efficiency (measured by throughput-per-

watt), and the percentage of energy saved by running the optimization method are shown

68

in Figure 6.9 and Figure 6.10 respectively.

Barnes Fmm Lu-c Ocean-nc Radiosity

Optimization 15.16% 3.07% 2.69% 15.91% 0.22%

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

P
o

w
e

r
Ef

fi
ci

e
n

cy
 Im

p
ro

ve
m

e
n

t

Splash-II Benchmarks

Figure 6.9: Power Efficiency (Throughput-per-Watt) Improvement for Splash-II Bench-
marks

Barnes Fmm Lu-c Ocean-nc Radiosity

Optimization 13.57% 3.02% 2.59% 13.76% 13.36%

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

En
e

rg
y

Sa
vi

n
g

Splash-2 Benchmarks

Figure 6.10: Energy Saving for Splash-II Benchmark

The power efficiency is improved up to 15.16%; while the total energy is saved up

69

to 13.76%. Radiosity has little throughput-per-watt improvement. That is because of the

prediction error. The workload phase changes rapidly throughout the program run. How-

ever, the optimization algorithm determines operating clock frequency based on workload

performance information in the previous control cycle.

Connected
Component

Betweenness
Centrality

Shortest Path
K-core

decomposition
Triangle Count

Optimization 11.47% 3.90% 6.24% 4.68% 3.84%

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

P
o

w
e

r
Ef

fi
ci

e
n

cy
 Im

p
ro

b
e

m
e

n
t

GraphBig Benchmarks

Figure 6.11: Power Efficiency (Throughput-per-Watt) Improvement for GraphBig Bench-
mark

For GraphBig benchmarks, the power efficiency (measured by throughput-per-watt),

and the percentage of energy saved by running the optimization method are shown in Fig-

ure 6.11 and Figure 6.12 respectively. The power efficiency is improved up to 11.47%;

while the total energy is saved up to 15.07%. To understand the factors contributing to

power efficiency improvement in our design, we plot the throughput and power at the same

figure when running the benchmark under optimization design (see Figure 6.15) and the

conservative governor, which is the baseline (see Figure 6.16). The power variation ap-

pears different trend in the baseline case and optimization design. The optimization design

reduces power consumption when the throughput is low, where the workload is mostly

memory bounded. Because in memory phase the throughput mostly depends on memory

70

Connected
Component

Betweenness
Centrality

Shortest Path
K-core

decomposition
Triangle Count

Optimization 15.07% 4.84% 6.80% 7.32% 5.34%

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

En
e

rg
y

Sa
vi

n
g

GraphBig Benchmarks

Figure 6.12: Energy Saving for GraphBig Benchmarks

execution, decreasing CPU power usage leads to little performance loss. Hence, decreasing

frequency saves power and energy with marginal performance loss. The optimization de-

sign consumes more power during high throughout part of execution, where the workload

is computation bounded. Increasing CPU power usage will lead to performance improve-

ment for computation application. Hence, the optimization design gain better throughput.

The throughput and power for baseline execution and optimization execution of Connected

Component benchmark are shown in Figure 6.13 and Figure 6.14 respectively.

In conclusion, in comparison to the conservative governor, the optimization design re-

duces more power consumption during memory intensive applications, and increases more

power during computation intensive applications. Therefore, the overall throughput is im-

proved while power and energy consumption is reduced.

Similar to section 6.1.2, we also compare the power efficiency optimization design

with the power regulation design. We use the power regulator described in Chapter 5 to

achieve power tracking. The results for Graphbig benchmarks are shown in Figure 6.17 and

Figure 6.18, and those for Splash-II benchmarks are shown in Figure 6.19 and Figure 6.19.

71

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Ti
m

e
 (

m
s)

2
7

0

5
4

0

8
1

0

1
0

8
0

1
3

5
0

1
6

2
0

1
8

9
0

2
1

6
0

2
4

3
0

2
7

0
0

2
9

7
0

3
2

4
0

3
5

1
0

3
7

8
0

4
0

5
0

4
3

2
0

4
5

9
0

4
8

6
0

5
1

3
0

5
4

0
0

5
6

7
0

5
9

4
0

6
2

1
0

6
4

8
0

6
7

5
0

7
0

2
0

7
2

9
0

7
5

6
0

Th
ro

u
gh

p
u

t
(M

IP
S)

Time (ms)
Optimization Linux Conservative Governor

Figure 6.13: Throughput for ”Connected Component” Using the Optimization Controller
and the Conservative Governor

0

5

10

15

20

25

30

Ti
m

e
 (

m
s)

3
0

0

6
0

0

9
0

0

1
2

0
0

1
5

0
0

1
8

0
0

2
1

0
0

2
4

0
0

2
7

0
0

3
0

0
0

3
3

0
0

3
6

0
0

3
9

0
0

4
2

0
0

4
5

0
0

4
8

0
0

5
1

0
0

5
4

0
0

5
7

0
0

6
0

0
0

6
3

0
0

6
6

0
0

6
9

0
0

7
2

0
0

7
5

0
0

P
o

w
e

r
(W

)

Time (ms)
Optimization

Figure 6.14: Power for ”Connected Component” Using the Optimization Controller and
the Conservative Governor

Scalability analysis: Our design is a decentralized design. Each voltage island is as-

signed an optimization agent. Hence, it is possible to extend the proposed design to large

72

0

5

10

15

20

25

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

Ti
m

e
 (

m
s)

3
9

0

7
8

0

1
1

7
0

1
5

6
0

1
9

5
0

2
3

4
0

2
7

3
0

3
1

2
0

3
5

1
0

3
9

0
0

4
2

9
0

4
6

8
0

5
0

7
0

5
4

6
0

5
8

5
0

6
2

4
0

6
6

3
0

7
0

2
0

7
4

1
0

P
o

w
e

r
(W

)

Th
ro

u
gh

p
u

t
(M

IP
S)

Time (ms)

Throughput (MIPS) Power (W)

Figure 6.15: Throughput and Power for ”Connected Component” Using the Optimization
Controller

0

5

10

15

20

25

30

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Ti
m

e
 (

m
s)

3
6

0

7
2

0

1
0

8
0

1
4

4
0

1
8

0
0

2
1

6
0

2
5

2
0

2
8

8
0

3
2

4
0

3
6

0
0

3
9

6
0

4
3

2
0

4
6

8
0

5
0

4
0

5
4

0
0

5
7

6
0

6
1

2
0

6
4

8
0

6
8

4
0

7
2

0
0

7
5

6
0

P
o

w
e

r
(W

)

Th
ro

u
gh

p
u

t
(M

IP
S)

Time (ms)

Throughput (MIPS) Power (W)

Figure 6.16: Throughput and Power for ”Connected Component” Using the Conservative
Governor

data center systems, where there are large numbers of voltage islands. Implementation re-

sults from GraphBig benchmarks demonstrate that this technique can help improve power

73

Connected
Component

Betweenness
Centrality

Shortest Path
K-core

decomposition
Triangle Count

Optimization 11.47% 3.90% 6.24% 4.68% 3.84%

Regulation 25.60% 4.76% 17.60% 16.12% 8.34%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

P
o

w
e

r
Ef

fi
ci

e
n

cy
 Im

p
ro

ve
m

e
n

t

GraphBig Benchmarks

Figure 6.17: Graphbig: Power Efficiency (Throughput-per-Watt) Improvement Compari-
son

Connected
Component

Betweenness
Centrality

Shortest Path
K-core

decomposition
Triangle Count

Optimization 15.07% 4.84% 6.80% 7.32% 5.34%

Regulation 23.02% 5.91% 16.13% 16.75% 13.14%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

En
er

gy
 S

av
in

g

GraphBig Benchmarks

Figure 6.18: Graphbig: Energy Saving Comparison

efficiency in data center applications. The overhead in implementing the proposed opti-

mization technique is dominated three factors: 1) optimization algorithm computation, 2)

frequency setting overhead, 3) performance counters reading overhead. Those overheads

74

Barnes Fmm Lu-c Ocean-nc Radiosity

Optimization 15.16% 3.07% 2.69% 15.91% 0.22%

Regulation 0.90% -7.20% -8.57% 7.26% 18.61%

-10.00%

-5.00%

0.00%

5.00%

10.00%

15.00%

20.00%

P
o

w
e

r
Ef

fi
ci

e
n

cy
 Im

p
ro

ve
m

e
n

t

Splash-II Benchmarks
Optimization Regulation

Figure 6.19: Splash-II: Power Efficiency (Throughput-per-Watt) Improvement Comparison

Barnes Fmm Lu-c Ocean-nc Radiosity

Optimization 13.57% 3.02% 2.59% 13.76% 13.36%

Regulation 5.55% -3.72% -3.86% 12.85% 34.73%

-10.00%

-5.00%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

En
er

gy
 S

av
in

g

Splash-2 Benchmarks

Optimization Regulation

Figure 6.20: Splash-II: Energy Saving Comparison

can be controlled to desired range by properly setting control cycle time.

Error tolerance analysis : There are three main sources of errors: 1) the estimation

error in the performance derivative; 2) the granularity of power model; 3) system delay.

75

In this we leverage on a certain robustness of stochastic approximation techniques with

respect to those errors [87]. The stochastic approximation approaches have high tolerance

of errors, thus is robust to errors.

6.3.3 Overhead Analysis

The presented implementation uses a control cycle of 30ms. The control cycle must be

selected based on the computation overhead and control accuracy. In this subsection, we

show the impact of control cycle duration in computation overhead and power efficiency

improvement. The majority overhead comes from the computation of the optimization

algorithm, and setting frequency. Since we change frequencies by setting system CPU

frequency file via the Userspace governor, it takes more time and energy to complete DVFS

changes compared to other Linux governors, where frequency changing is integrated with

the linux kernel. We use the Conservative governor as the baseline in this section. We

calculate the computation overhead by measuring the total number of instruction proceeded

during benchmark execution in our design using the Userspace governor compared with

the baseline. The overhead is quantified by the extra number of instructions exceeded.

Figure 6.21 shows the factors leading to the optimization system overhead. To set the

frequencies, we need to write system file. There is cost in Virtual File System (VFS)

writing. The time and power it takes from changing the frequency to it actually taking

action is unavailable to be measured. Finally, the proposed optimization algorithm also

takes time and power to be computed.

To understand the influence of control cycle length on the overall system overhead,

we execute the Shortest Path benchmark from GraphBig benchmark suite with a dataset

size of 100K, and the control cycle duration ranging from 5ms to 100ms. We collect the

total number instructions proceeded in both executions. The cumulative number of extra

instructions in our design executed is expressed as a percentage of the number of instruc-

tions exceeding the baseline is illustrated in Figure 6.22. The y-axis is the percentage of

76

Read
Performance

Counters

Executing the
Optimization

Algorithm

Set
Frequency in
System Files

Driver
Changes CPU

Frequency

CPU
Frequency
Changes

Figure 6.21: Overhead Factors

overhead compared to the baseline. As we can see, the overhead decreases as the control

cycle increases. This is because the total number of control cycles decreases as the control

cycle duration increases.

Next, we measure the total energy used in running ”Shortest path” (dataset size = 100K)

with different control cycles for both the baseline (i.e. using ”conservative” governor), and

the proposed optimization controller. The total energy saved by using our design is shown

in Figure 6.23. Similar graphs were obtained from other tested benchmarks. Remember,

those results have already taken the overhead into account. In other words, the presented

energy saving equals the total energy consumption difference between running the program

by ”Conservative” governor and with the proposed optimization technique by ”Userspace”

governor. According to the results, the energy saving increases when control cycle time

increases, but decreases after reaches a peak. The design consumes more energy than

77

38.67%

30.89%

25.06%

15.10%
15.62%

6.35%
5.28%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

5ms 10ms 20ms 30ms 40ms 50ms 100ms

O
ve

rh
e

ad

Control Interval Duration

Figure 6.22: Overhead vs Control Cycle Duration

the baseline when the control cycle is too long or too short. This is because the overhead

exceeds the energy saving benefit. When running the algorithm too frequently, the overhead

outweighs the energy saving benefit from optimization. When the control cycle is too long,

the algorithm cannot provide enough energy saving to compensate for the overhead. The

principle for picking the control cycle duration is based on maximization of energy saving

and minimization of computation overhead. Therefore, we choose 30ms as the control

cycle time in the optimization design.

6.4 Concluding Remarks

In this section, we presented a simple and efficient power efficiency optimization technique

for multicore processors. The optimization controller can be independently implemented

78

-4.35%

3.97%

9.31% 9.74%

2.20%
3.38%

-6.95%-8.00%

-6.00%

-4.00%

-2.00%

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

5ms 10ms 20ms 30ms 40ms 50ms 100ms

En
e

rg
y

Sa
vi

n
g

Control Cycle Duration

Figure 6.23: Energy Saving vs Control Cycle Duration

in a voltage domain. It is tested and simulated on Manifold simulator. We also evaluated

a software implementation of the controller implemented as a Linux governor in a 4-core

Intel processor using the Splash-II, Parsec, and GraphBig benchmarks. Compared to Linux

Conservative governor, we show that this approach improves the power efficiency (mea-

sured as Throughout-per-Watt) up to 15.91% and the total energy saved is up to 15.07%.

This combination of simplicity and robustness makes our design a good candidate for de-

ployment in data center processors.

79

CHAPTER 7

POWER EFFICIENCY OPTIMIZATION UNDER POWER CAPS FOR

MULTICORE PROCESSORS

This chapter addresses the problem of optimizing power efficiency and performance un-

der power caps for multi-core processors that are composed of multiple voltage islands.

Modern multi-core processors are organized into several voltage islands where each island

contains one or more processing cores. Each voltage island can operate at one of several

discrete power states that are defined by an operational voltage-frequency pair. Determina-

tion of the most power efficient state of a voltage island depends on many factors such as

frequency, voltage, instruction stream characteristics, temperature, power and application

behaviors. Our goal is to develop an on-line solution that is applicable to various appli-

cations, especially those that exhibit irregular memory reference patterns, low arithmetic

density, and are often memory bound. This is challenging because the effect of operating

frequencies of each voltage island on power efficiency of the processor is indirectly affected

by many factors, including workload variation and the memory system behavior. Accord-

ing to the trade off between throughput and power in processors, two intuitive methods to

improve power efficiency are: increasing performance under power caps, and decreasing

power consumption under fixed throughput. In this work, we use the first method. Our

objective is to improve the performance of processors by developing a controller that can

improve power efficiency effectively without violating power budgets. The controller oper-

ates to balance throughput consequences and power consequences of power state transitions

to obtain improved power efficiency with minimal compromises in instruction throughput.

Furthermore, such a controller must operate on-line, have low overhead, adapt to time-

varying application behaviors, and be portable in installations.

The main contributions in this chapter are:

80

• An on-line optimization technique for optimizing power efficiency as well as perfor-

mance in a power capped processor that is composed of multiple voltage islands

• A dynamic power regulator to leverage power across multiple voltage islands in a

multi-core processor.

• An evaluation of the proposed techniques with various applications.

7.1 A Power Efficiency Optimization Technique

In this section, we present an on-line optimization technique for improving power efficiency

under a power budget. First we provide an overview of the optimization framework. The

optimization system has a structure as shown in Figure 7.1. Modern processors consists of

multiple voltage islands, and each voltage island is composed of multiple cores. Our idea

is to assign a centralized optimization controller that dynamically changes the operating

frequencies of voltage islands to optimize power efficiency. The centralized optimization

controller is composed of 3 components: 1) power monitor, which collects the total power

consumption of the four voltage islands; 2) optimization component, which provides op-

erating frequencies for voltage islands by solving the optimization problem presented in

subsection 7.1; 3) throughput monitor, which collects the throughput of all cores.

The optimization algorithm is conducted iteratively. At each iteration, namely control

cycle, the optimization controller collects throughput and power information, computes the

operating frequencies for each voltage island in the next control cycle, and then sets new

frequencies.

The total power consumption of the processor is limited but the power for voltage is-

lands can vary. Our design is to determine operating frequencies for each single voltage

island in order to achieve best performance and power efficiency under power caps. A

power cap is a power budget, which is the power limitation for the controlled processor.

There is a trade-off between throughput and power. Increasing frequency will poten-

81

Power And Gradient
Estimation

Performance
Monitor

Optimization

Optimization Agent

Power
Measurement

Target of Power Efficiency
Optimization

Cluster

Voltage
Island

Voltage
Island

Voltage
Island

Voltage
Island

Throughput
Measurement

Frequency
Setting

Figure 7.1: Optimization System Overview

tially improve performance, but will also increase power consumption. Therefore, we need

to find the operating frequency that can leverage power for best performance. The op-

timization system implemented here is for four voltage islands with each voltage island

composed of four cores. This technique can be extended to more voltage islands cases by

simply adding more throughput and power vectors to the optimization algorithm, see sec-

tion 7.1.1. The objective function is defined as maximizing the sum of the throughput of

each voltage island. Furthermore, the total power consumption of the voltage islands must

82

be less than the power cap. Hence, we formulate the following optimization problem:

maximize
ui(n)

n

∑
i=0

T hroughputi(n)

sub ject to
n

∑
i=0

Poweri(n)≤ PowerCap
(7.1)

n = 1,2,3 . . . , denotes the control cycle, and i = 0,1,2,3 . . . denotes the ith voltage

island. In this thesis, we consider i= 0,1,2,3 since the studied optimization system consists

of four voltage islands. ui(n) is the operating frequency of voltage island i at control cycle

n. Poweri(n) is the power consumption of cores and L1 cache on voltage island i at control

cycle n.

Solving the optimization problem must be at low computation cost. A simple but effi-

ciency design is required. Stochastic approximation has low computing costs and is robust

to errors [86]. Therefore, we use a stochastic approximation approach to solve the maxi-

mum problem presented here.

The main objective of optimization is to provide operating frequencies for voltage is-

lands. At each control cycle, the optimization algorithm conducts the following steps.

1. Collecting: Collecting throughput and power of all voltage islands, and computing

total throughput and power of the processor.

2. Computation: Computing the clock frequencies for voltage islands based on through-

put and power information collected. Details will be presented in section 7.1.1.

3. Update frequency: Setting the clock frequency for each voltage island.

The control cycle time must be selected based on the computation overhead and control

accuracy. A small control cycle provides operating frequencies that are sufficiently close to

the optimal solution of Equation 7.1, but will result in larger computation overhead since

83

we compute the algorithm very frequently. In this paper we choose control cycle time as

0.1ms to balance the speed of convergence and optimization accuracy.

7.1.1 Computing Operating Frequencies

Equation 7.1 is an optimization problem has boundary conditions. In addition to the Power

Cap, we also set a power lower limit (PLL), which is usually around 10% lower than Power

Budget. We divide the power consumption behavior over time into three regions, 1) less

than PLL, 2) between PLL and Power Cap, 3) Over Power Cap, as illustrated in figure 7.2.

Region I

Region II

Region III

Throughput

Power Lower Limit
(PLL)

Power Cap

Time

Figure 7.2: Optimization Regions

Let’s define the throughput of the processor at control cycle n as Tn, which is a four

dimension vector with each dimension representing one voltage island. ti(n) is the total

throughput of the four cores residing on voltage island i at control cycle n.

T (n) =
[

t1(n) t2(n) t3(n) t4(n)

]
A power vector P(n), and frequency vector U(n) are similarly defined. pi(n) is the

power of voltage island i at control cycle n, which is the total power of all four cores and

84

their L1 cache residing in voltage island i, and ui(n) is the frequency of voltage island i at

control cycle n.

P(n) =
[

p1(n) p2(n) p3(n) p4(n)

]

U(n) =
[

u1(n) u2(n) u3(n) u4(n)

]
The derivative of power with respect to frequency is denoted as δPn, and the derivative

of throughput with respect to frequency is δTn.

δP(n) =
[

δ p1(n) δ p2(n) δ p3(n) δ p4(n)

]

δT (n) =
[

δ t1(n) δ t2(n) δ t3(n) δ t4(n)

]
The computation of gradients, δPn and δTn, will be presented in the next subsection.

Region I:
3
∑

i=0
Poweri(n)≤ PLL

First, when the power consumption of the processor is less than PLL, p1(n)+ p2(n)+

p3(n)+ p4(n)≤PLL, our objective is to leverage frequency for maximum throughput with-

out worrying about power. In that case, the trend of frequency change is to increase the

throughput as fast as possible, which is to follow the derivative of the throughput with re-

spect to frequency, i.e. δ ti(n). So the operating frequencies for voltage islands at control

cycle n+1 is:

Un+1 =Un +αnδTn. (7.2)

where αn is the step size, which is generally a coefficient that changes with time [85].

From [86], αn must meet two requirements: 1) ∑
∞
n=1 αn = ∞; and 2) ∑

∞
n=1 α2

n < ∞. Accord-

ing to the basic principles in choosing αn (see [85] for details), in this paper we pick αn as

85

follows, (Remember αn is a value that apply to all voltage islands, not a vector).

αn = 0.8 · 1
n0.6 . (7.3)

Remember the derivative of ti(n) with respect to frequency is equal to zero for all volt-

age islands except voltage island i. The computation of such gradient is introduced in

Chapter 3.

u1(n+1)

u2(n+1)

u3(n+1)

u4(n+1)

=

u1(n)

u2(n)

u3(n)

u4(n)

+αn

δ t1(n)

δ t2(n)

δ t3(n)

δ t4(n)

(7.4)

Region II: PLL <
3
∑

i=0
Poweri(n)< PowerBudget

Secondly, when the total power consumption of the processor is between PLL and

Power Cap,

PLL< p1(n)+ p2(n)+ p3(n)+ p4(n)<PowerBudget, our objective is to improve through-

put but at the same time maintain the power consumption within Power Budget. Here we

need to coordinate among voltage islands in order not to exceed the Power Cap, but at

the same time leverage frequency of each single voltage island for throughput. Hence, the

operating frequencies are determined by:

Un+1 =Un +αnδMn. (7.5)

u1(n+1)

u2(n+1)

u3(n+1)

u4(n+1)

=

u1(n)

u2(n)

u3(n)

u4(n)

+αn

δm1(n)

δm2(n)

δm3(n)

δm4(n)

(7.6)

86

where δMn is a four dimension vector that is dominated by the gradient of both through-

put and power.

Mn is defined as:

δMn = δT −δT T
n

δPn

||δPn||
δPn

||δPn||
. (7.7)

δm1(n)

δm2(n)

δm3(n)

δm4(n)

=

δ t1(n)

δ t2(n)

δ t3(n)

δ t4(n)

−

δ t1(n)

δ t2(n)

δ t3(n)

δ t4(n)

·

[
δ p1(n) δ p2(n) δ p3(n) δ p4(n)

]
∥∥∥∥δ p1(n) δ p2(n) δ p3(n) δ p4(n)

∥∥∥∥ ·[
δ p1(n) δ p2(n) δ p3(n) δ p4(n)

]
∥∥∥∥δ p1(n) δ p2(n) δ p3(n) δ p4(n)

∥∥∥∥ .

We use the method introduced in Chapter 4 to compute the gradient of power.

Region III:
3
∑

i=0
Poweri(n)> PowerBudget

Finally, if the power consumption has already reached or exceeded the Power Cap,

p1(n)+ p2(n)+ p3(n)+ p4(n) > PowerBudget, our objective is to reduce the power con-

sumption in order to keep the total power within Power Cap. In that case, the focus of

the proposed design is to reduce power using the most expedient way even at the cost of

performance loss. So the operating frequencies must follow the opposite trend of power

gradient:

Un+1 =Un−δPn (7.8)

87

u1(n+1)

u2(n+1)

u3(n+1)

u4(n+1)

=

u1(n)

u2(n)

u3(n)

u4(n)

−

δ p1(n)

δ p2(n)

δ p3(n)

δ p4(n)

(7.9)

7.2 Dynamic Power Tracking

The baseline model uses the same target power for all voltage islands regardless of the

application running on the cores. Performance and power is closely related to the execut-

ing applications. For example, if a processor is executing a compute intensive application,

increasing the clock frequency will potentially increase the performance even though it

comes with power cost. However, if a processor is executing a memory intensive applica-

tion, increasing frequency may not necessarily increase the performance but still cost more

in power consumption. In that case, we may reduce the frequency to save power without

performance loss. Hence, we propose a dynamic power tracking technique that dynami-

cally set power target for voltage islands based on their runtime information. The target for

each regulator is changed at each control cycle.

Therefore we assign different target power to voltage islands based on their running

application while keep the total power of the processors under Power Budget. More specif-

ically, the target power is determined by the percentage of memory access in the running

applications. We use bytes per op (B/O) as the metric for measuring application memory

access intensity. In order to detect memory access rate of each core, we use performance

counters to collect L1 cache miss instructions. Since we can measure total number of

instructions executed during each control cycle, we can calculate B/O for each voltage is-

land. A higher B/O value indicates more memory access compared to those with lower

B/O value. Hence, instead of giving each voltage island the same target power, we set the

dynamic target power for voltage islands that is updated at each control cycle in proportion

88

to B/O counters. For voltage islands on the same processor, we assign less power to those

voltage islands with higher B/O and more power to those voltage islands with lower B/O

value. The performance of high B/O voltage islands is dominated by memory not core.

Therefore, the target power of voltage island i, i = 0,1,2,3, i.e. T Pi(n+1) at control cycle

n+1 is given by:

T Pi(n+1) =
1

Oi(n)
· 1

3
∑

i=0

1
Oi(n)

·PowerBudget (7.10)

where Oi(n) is bytes-per-op of voltage island i at control cycle n.

7.2.1 Baseline Model

Since the goal is to improve performance under the condition that power must below the

power cap, one intuitive solution is to make full use of the power budget but does not exceed

it. In other words, processor power consumption should be maintained at the power cap. A

simple power regulator presented in Chapter 4 as well as Ref [3] can achieve such desired

power tracking. Hence, we use this power regulation technique as the baseline model for

comparison.

The power regulator works at a voltage island level not at the processor level. So each

voltage island is assigned an adaptive gain integral controller, which keeps the power con-

sumption of the voltage island at the target power, which is the power cap in this scenario.

Since there are four voltage islands in the tested processor, we implemented four power

regulators. First, we set a target power for each voltage island, where the voltage islands

track the target power by dynamically adjusting operating frequencies. Since there are four

voltage islands residing on the processor, the target power for each voltage island is simply

the Power Budget divided by four.

89

7.3 Experiments in a Full System Cycle Level Simulator

We implement the proposed design in Manifold. There are four clock frequency domains

in the simulated processor, with a range from 0.3GHz to 1.5GHz. We assume a continuous

frequency settings. The operating system we use is Ubuntu 14.04. In this section, we com-

pare the experimental results of the optimization technique, dynamic power regulation, and

power regulation by running Splash-II [75], Parsec [76], and GraphBig [77] Benchmarks.

Evaluation Metrics Since the purpose of the design presented here is to optimize per-

formance under power budget in multi-core processors, where both performance and power

are major concerns, we use throughput-per-watt as the basic power efficiency metrics for

comparing the optimization design in the power-performance space.

The comparison baseline is to run the program with power regulator presented in Ref [3].

We compare the experiment results from the optimization technique introduced in sec-

tion 7.1.1 and the dynamic power regulator presented in section 7.2. The Power Budget

for the processor is set as 15W . We tested our design in both continuous frequency set-

ting and discrete frequency setting. The frequency range for continuous frequency is from

0.2GHz to 1.5GHz. To simulate the actual frequency settings in real computer proces-

sors, we also tested our design in discrete frequency setting. The frequency range is from

0.2GHz to 2.0GHz, with 8 discrete frequency levels, (0.2GHz, 0.5GHz, 0.8GHz, 1.0GHz,

1.2GHz, 1.5GHz, 1.8GHz, 2.0GHz). The MIPS-per-Watt results are shown in Figure 7.3

and Figure 7.4 respectively. For Graphbig benchmarks, i.e. DC, TC, Kcore and Pagerank,

as well as memory intensive splash-II benchmark Lu-nc, optimization technique provides

best power efficiency, while for pure compute bound benchmark, i.e. Blackschores, power

regulation provides best power efficiency. The optimization design shows better power ef-

ficiency improvement in data center applications and memory bounded applications. This

is because it coordinates power among voltage islands based on their runtime information.

Given a power budget, the optimization controller may assign more power to those voltage

90

islands that are executing compute applications than those voltage islands that are execut-

ing memory bounded applications. Furthermore, the optimization design can adapt the

power budget for the voltage island to their executing application characteristics. However,

power regulation set the power target at the beginning at the program execution and can-

not exploit changes in runtime power and performance information. For compute intensive

applications, the power regulation presents same or even better power efficiency compared

to the other two techniques. Compute intensive applications have little variation during

program execution, so tracking a pre-set power target is practical. Unlike the optimization

technique, and the dynamic regulation technique has to re-set the power targets at each

control cycle. Hence the power regulation technique can also benefit from the computation

overhead saving.

Degree
Centrality

Triangle
Count

K-core
Decompositio

n
Pagerank Fmm Lu-nc Blackscholes

Optimization 168.8643738 280.1635992 184.2105263 256.916996 1157.495256 343.5166327 1229.153799

Dynamic Regulation 157.5682382 200 174.0506329 188.8604353 1154.979375 347.9827089 963.070239

Regulation 150.4531722 280.6804374 164.7486372 183.4034877 1180.389367 329.7059205 1303.808055

0

200

400

600

800

1000

1200

1400

Throughput / Power (MIPS/W)

Optimization Dynamic Regulation Regulation

Figure 7.3: Throughput over power (MIPS per W) with 15W Power Budget

In addition to power efficiency improvement, keeping the total power consumption un-

der Power Budget is another important issue in the proposed design. Hence, we presented

the total power consumption of all three techniques in Figure 7.5 and Figure 7.6. As we can

see, the optimization technique achieves the best power capping control. This is because

91

Degree
Centrality

Triangle
Count

K-core
Decompositio

n
Pagerank Fmm Lu-nc Blackscholes

Optimization 168.495114 267.4735356 162.8742893 187.9375 1097.119342 345.890785 1215.302013

Dynamic Regulation 157.966522 200.2680747 160.9079445 185.5712452 1062.711864 347.7897768 1011.088154

Regulation 144.3557169 177.0030211 140.4116223 167.4082983 1182.176471 324.4905905 1289.756368

0

200

400

600

800

1000

1200

1400

Po
w

er
 E

ff
ic

ie
n

cy
 (

M
IP

S/
W

)

Benchmarks

Optimization Dynamic Regulation Regulation

Figure 7.4: Throughput over power (MIPS per W) with 15W Power Budget under discrete
frequencies

the optimization technique uses coordinated control, where power of all voltage islands are

managed by the centralized controller. For power regulation and dynamic power regula-

tion, each voltage island is managed by their own regulation controller. As a result, the

regulation errors from all controllers are added together resulting in the processor power

regulation errors.

In conclusion, the optimization design provides best performance and power efficiency

when the workload varies widely throughout program execution. It also keeps power con-

sumption of the processor within power budget most effectively. The dynamic power reg-

ulation presents comparatively better power efficiency in memory intensive applications

than power regulation. The power regulation technique shows best power efficiency in the

pure compute bound applications.

92

Degree
Centrality

Triangle
Count

K-core
Decompositi

on
Pagerank Fmm Lu-nc Blackscholes

Optimization 15.41 14.67 15.2 15.18 15.81 14.73 16.19

Dynamic Regulation 16.12 12.3 15.8 15.62 16.97 13.88 13.81

Regulation 16.55 16.46 16.51 16.63 18.5532 15.438 19.2513

0

5

10

15

20

25

Power (W)

Optimization Dynamic Regulation Regulation

Figure 7.5: Processor power (W) with 15W Power Budget

Degree
Centrality

Triangle
Count

K-core
Decomposit

ion
Pagerank Fmm Lu-nc

Blackschole
s

Optimization 15.35 14.17 15.83 16 14.58 14.65 14.9

Dynamic Regulation 16.13 12.31 15.86 15.58 17.7 13.89 14.52

Regulation 16.53 16.55 16.52 16.63 17 15.41 18.06

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Po
w

er
 (

W
)

Benchmarks

Optimization Dynamic Regulation Regulation

Figure 7.6: Processor power (W) with 16W Power Budget under discrete frequencies

7.4 Concluding Remarks

This chapter addresses the problem of power efficiency optimization under a power budget

for multi-core processors that are composed of multiple voltage islands. We presented two

93

approaches and compared them with the regulation technique presented in Chapter 5. The

first one is a centralized optimization controller to maximize performance within power

budgets. The second one is a dynamic power regulator that re-distributes power budgets

of voltage islands based on their runtime memory access information. The optimization

technique is best for applications that exhibit irregular memory reference patterns, low

arithmetic density, and rapid changing behaviors. The power regulation technique works

best on pure compute intensive applications. Furthermore, the optimization design strictly

maintains the power consumption under power caps. Hence if restricting power is the major

concern in addition to power efficiency improvement, the optimization technique is the best

choice.

94

CHAPTER 8

ENERGY EFFICIENCY OPTIMIZATION UNDER POWER BUDGETS FOR

CLOUD SYSTEMS

This chapter addresses the problem of optimizing energy efficiency as well as performance

for cloud computing systems. Performance variation is one of the main obstacles for ef-

ficient power usage in large scale cloud systems [88]. Bulk Synchronous Parallel (BSP)

application is one of the most frequently used applications in modern cloud systems. A

BSP is composed of parallel computations on each node, communication among nodes,

and barrier synchronizations. The application behaviors vary significantly across nodes.

Synchronization and Communication happen frequently among processors in Bulk Syn-

chronous Parallel (BSP) applications. The nodes that arrive at the barrier first must spend

idle time waiting for other nodes to arrive at the barrier. The performance is limited by

the slowest node since the other nodes have to wait on barrier synchronization. This idle

waiting consumes power but produces no effective throughput - thus it is a major source

of inefficiency. Many other factors such as resource contention [89] and operating system

(OS) interference [90] also induce the performance variation. To address the problem of

efficient power usage in BSP applications, we adapt power usage to the runtime character-

istics for BSP applications. We introduce a Hierarchical Power Gating and Power Shifting

(HPGPS) technique that dynamically improves energy efficiency in cloud systems without

interrupting runtime execution.

The main contributions in this chapter are:

• The design of a hierarchical power gating and power shifting technique (HPGPS) for

improving energy efficiency and performance in large scale cloud systems.

• Evaluation of the proposed power management technique with real world application

95

traces.

8.1 A Hierarchical Power Gating and Power Shifting Technique

A cloud system is composed of a certain number of nodes, and each node is composed of

a certain number of processors. HPGPS assumes node level power gating, which means

all the processors belonging to the same node can either be all power gated, or none of

them are power gated. The cloud system is assigned a power budget, and each node is also

assigned a node power budget. In the beginning of execution, we distribute power budget

evenly to all nodes. Hence, the node power budget is equal to the cloud power budget

divided by the number of nodes.

In a barrier synchronization, nodes arriving at the barrier can not process further execu-

tion until all nodes arrive at the barrier, see Figure 8.1. This waiting consumes power but

produces no performance. Hence, we can power gate those nodes that have arrived at the

barrier (fast nodes), and shift the power budgets for fast nodes to other nodes that are still

under execution (slow nodes). The extra power will speed up the execution of slow nodes,

thus slows nodes will arrive at the barrier earlier than otherwise, see Figure 8.2. Hence

the barrier waiting time is reduced. As a result, the total execution time for the program is

reduced. Since the power budget remains the same, less execution time saves energy. With

less time for program execution, the performance is also improved. This is the centralized

power shifting and power gating technique presented in [66]. This technique works well

in small data center systems. However in large cloud systems which contain thousands

of nodes, this technique cannot be applied due to large delay in network communication.

When the cluster size is large enough, even one time power shifting communication delay

will be longer than the application execution. In order to apply power shifting and power

gating technique in large scale data center systems, we developed HPGPS that can tolerate

the large communication latency in cloud systems. HPGPS divides nodes in the cloud into

separate groups with adaptive group size (the number of nodes in a group). A centralized

96

controller is used to determine group size. Each group has a group controller to conduct

power gating and power shifting within the group. Figure 8.3 illustrates the hierarchical

power management scheme.
Tim

e

A
 Th

re
ad

A
 Th

re
ad

A
 Th

re
ad

A
 Th

re
ad

A Barrier

Figure 8.1: Barrier Synchronization

Tim
e

A
 Th

re
ad

A
 Th

re
ad

A
 Th

re
ad

A
 Th

re
ad

A Barrier

Before Power Shifting & Power Gating

After Power Shifting & Power Gating

Figure 8.2: Barrier Synchronization After Power Shifting & Power Gating

97

Centralized Controller

A Cloud System

Node

Core Core

Core Core

Node

Core Core

Core Core

Node

Core Core

Core Core

Group
Controller

Node

Core Core

Core Core

Node

Core Core

Core Core

Node

Core Core

Core Core

Node

Core Core

Core Core

Node

Core Core

Core Core

Node

Core Core

Core Core

Power shifting

Group
Controller

Group
Controller

Figure 8.3: HPGPS Power Management

HPGPS works as follows:

• Grouping. The centralized controller divides nodes into groups, each group has fixed

number of nodes. A group controller is assigned to each group.

• Power gating and shifting. Once a node reaches a barrier, the group controller power

gates the node, and shifts the power budget from this node to other active nodes in

the same group.

• Group size Computing. The group size is computed based on the power shifting

communication delay, workload and the possibility to find a node in the power gat-

ing state. The power shifting communication delay means the time for nodes to com-

municate node status for power shifting, not the communication in the applications.

The group controller compute group size is based on runtime information within the

group and report that to the centralized controller. The new group size will be used

for the next barrier.

We made three assumptions to simplify the HPGPS design:

98

Assumption 1 The group size is define ata the beginning of execution and remains un-

changed until nodes are synchronized at a barrier. After that, the group size may be rede-

fined by the centralized controller. In other words, group size can only be re-defined once

the program execution reaches a barrier.

Assumption 2 Nodes at the same router should be put into the same group.

Assumption 3 Group size among all groups should be the same, except one group that

may contain less nodes due to division remainder.

There are two main factors in making decision on group size.

• The power shifting communication delay within the group. Increasing group size

leads to longer power shifting communication delay, while reducing group size will

reduce power shifting communication time among nodes within the group.

• The probability to shift power among nodes. As presented in section 8.1, nodes are

power gated after they arrive at the barrier. Power can be shifted only if the node is

power gated. Hence, increasing group size will increasing the probability for power

shifting since there are more nodes in the group.

Therefore, we need balance the trade-off between power shifting communication delay

and power shifting probability. We model an on-line optimization problem to determine

the group size based on runtime information, such as workload and network delay and use

a stochastic approximation approach to solve the problem. The data are collected from real

MPI traces and hardware measured power data is from a cloud system at AMD. Experi-

ments are tested on an in house simulator at AMD [66].

In order to understand the impact of communication in HPGPS design, we tested

HPGPS under 3 kinds of network delay and present the results in Figure 8.5. For a group

with 100 nodes, the group delay is 0.0139ms, 0.9ms, and 5ms for those 3 cluster systems.

For the same application, HPGPS computed group size for each system. We compare the

performance speedup of HPGPS against the baseline execution and the power shifting and

99

power gating design. The baseline here is to execute the applications without power gating

and power shifting techniques using the same computing resources. All results are normal-

ized to the baseline. The speedup from power shifting and power gating design initially

increases as system increases, but decreases after certain system size. When there are more

nodes in the system, there is higher possibility to find nodes in power gate status. This

increased power shifting contributes to the initial speedup increase. However, when the

system size reaches some point, the power shifting communication delay among nodes is

too large to compensate for the power shifting speedup. Those facts are illustrated in Fig-

ure 8.4. In fact, the power shifting communication delay can be even longer than the barrier

execution. In that case, there is no chance to do any power shifting. However, HPGPS still

achieves speedup in spite of large system size because of the hierarchical and grouping de-

sign. Nodes communicate for power shifting within the group instead of across the whole

network.

NodeNode Node

NodeNode Node

NodeNode Node

Node Node

Node Node

Node Node

Decreasing Group Size

Increasing Probability For Power Shifting

Increasing Communication Delay For Power Shifting

Increasing Group Size

Decreasing Communication Delay For Power Shifting

Decreasing Probability For Power Shifting

Figure 8.4: Probability vs Delay

Next we are going to use on-line optimization to determine the group size for HPGPS.

Let’s denote the group size for barrier i as ζi. The total number of nodes in the cloud system

100

0.9

0.95

1

1.05

1.1

1.15

1.2

1000 2000 3000 5000 10000

Sp
ee

d
u

p

Number of Nodes

Original Centralized Grouping

0.9

0.95

1

1.05

1.1

1.15

1.2

1000 2000 3000 5000 10000

Sp
ee

d
u

p

Number of Nodes

OriginalNorm CentralizedNorm GroupingNorm

0.9

0.95

1

1.05

1.1

1.15

1.2

1000 2000 3000 5000 10000
Sp

ee
d

u
p

Number of Nodes

OriginalNorm CentralizedNorm GroupingNorm

0.0139 ms delay for 100 nodes
Group size = 1000

0.9 ms delay for 100 nodes
Group size = 937

5 ms delay for 100 nodes
Group size = 135

Figure 8.5: HPGPS Speedup vs Group Delay

is n. The power shifting communication delay within the group is defined as αi, while the

probability of one or more nodes complete execution during time interval αi is defined as

βi, which is calculated from a distribution model obtained from regression analysis of the

data at AMD. The node execution status are monitored on-line, with sampling interval αi,

which is the same as one time communication delay within the group. Let’s define the time

window αi from the beginning of barrier i execution as k, k = 1,2,3, Therefore, we

formulate the following optimization model.

max
1≤ζi≤n

βi

αi
(8.1)

We use online optimization algorithm to compute the optimal group size at each control

cycle. For control cycle k, the group size is denoted as σk. Let’s define

Lk =
βk

αk
(8.2)

101

So the group size at control cycle k+1 is computed by the following equation:

σk+1 = σk +θk ∗dLk (8.3)

where

θk =
1

k0.6 (8.4)

8.2 Experimental Results

We tested HPGPS using traces for three applications AMR Miniapp, FillBoundary, and

MultiGrid [91]. The AMR Miniapp is a compact proxy for octree-based AMR [92]. Fill

Boundary is a proxy for evaluating communication patterns. MultiGrid is a proxy applica-

tion for a solver. AMR Miniapp trace has 1728 nodes. Fill Boundary and Multigrid around

10,000. Figure 8.6, Figure 8.7, and Figure 8.8 shows the results for these three applica-

tions at different power budgets levels under 3 different network delays. The comparison

baseline here is the original power shifting and power gating technique presented in [66].

Remember the maximum possible improvement, which reduce the barrier synchronization

time to 0 is 12%. This is because our design migrates power only during synchronization

in parallel program execution, not throughout the whole execution time. The portion of

barrier synchronization in the tested programs is less than 12%. AMR and MultiGrid the

centralized and the hierarchical power management mechanism delivers relative the same

amount of performance. This is because for these applications there are just a small number

of critical paths (the slowest processing threads in barrier synchronization). These nodes

end up with extra power budget, but they cannot use it because the node frequencies reach

the maximum point preventing further speedups.

The situation is different for FillBoundary, which has more critical paths (the slowest

processing threads in barrier synchronization) and the distribution of the barrier arrival time

102

is more spread out. In this situation, HPGPS takes more time to react and shift the power

reducing the opportunities for speedup. On the other hand, the hierarchical controller has

more opportunities to shift the power within a group and this can be done much faster than

the centralized, improving power shifting benefits and consequently performance.

There are two main advantages of HPGPS:

1. Scalable property. HPGPS depends on adaptive group size and can be applied to

many could systems, regardless of system size. The original power shifting and

power gating technique as [66] is not able to take action due to the communication

delay. A single time node status communication throughout the supercomputer can

be larger than the total barrier execution time when the system has larger number of

nodes.

2. Efficient Power Shifting HPGPS shifts power more frequently than the original

power gating and power shifting technique, leading to better performance and power

efficiency in some applications. This advantage is due to the reduced communication

delay within the group compared to the whole cloud system.

8.3 Concluding Remarks

This chapter presents HPGPS, a power management scheme to improve energy efficiency

as well as performance for data centers. Compared to other related techniques [66], our

design achieves up to 1.5% more energy saving. Furthermore, due to the hierarchical man-

agement, the design is also applicable to exascale cloud system.

103

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

50% 65% 50% 65% 50% 65%

AMR Miniapp FillBoundary MultiGrid

Sp
ee

d
u

p
 (

%
)

Benchmark

Centralized

Grouping

Figure 8.6: HPGPS Speedup vs Group Delay: Small Network Delay

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

50% 65% 50% 65% 50% 65%

AMR Miniapp FillBoundary MultiGrid

Sp
ee

d
u

p

Benchmark

Centralized

Grouping

Figure 8.7: HPGPS Speedup vs Group Delay: Medium Network Delay

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

50% 65% 50% 65% 50% 65%

AMR Miniapp FillBoundary MultiGrid

Sp
ee

d
u

p

Benchmark

Centralized

Grouping

Figure 8.8: HPGPS Speedup vs Group Delay: Large Network Delay

104

CHAPTER 9

CONCLUSION

This dissertation addresses the problem of power and performance management for various

computing systems, from single voltage island multicore processors to power-constrained

extreme scale cloud systems. Balancing power and performance in modern computing

systems is a complex optimization problem. This challenge is addressed by the statement of

this thesis: Improving performance and power consumption in modern computing systems

will require new techniques, and the body of control theories can provide the basis for such

solutions. This thesis addresses this problem through three main contributions:

• Effective and efficient power & performance management techniques in a single volt-

age island multi-core processor.

• Maximizing power efficiency under a power cap in a multi-core processor that is

composed of several voltage islands.

• A hierarchical power management technique to improve performance and energy

efficiency under power budgets in a cloud system.

The processor level power and performance management is achieved by the design of

adaptive gain feedback controllers. On the other hand, cloud level energy and performance

management is obtained by hierarchical power-gating and power-shifting (HPGPS) using

a stochastic approximation approach.

The first topic is comprised of 1) throughput regulation, 2) power regulation, and 3)

power efficiency optimization, for single voltage island multicore processors. A throughput-

frequency model is obtained by IPA analysis, while a power-frequency model is obtained by

a system identification approach. Those models are generic that can be applied to various

applications. They provide a foundation for the on-line optimization of power efficiency in

105

multicore processors. The power and throughput tracking controllers are general purpose

regulators that are application independent, and the feedback gain is updated dynamically

adapting to the workload.

The second topic addresses the problem of optimizing power efficiency in a many-core

processor under power caps, such as those servers in the nodes of cloud computing systems.

Given a power budget, we provide two techniques for improving the power efficiency: 1)

an on-line optimization technique for maximizing throughput, 2) a dynamic power regula-

tion technique that dynamically distributes power across the processor based on workload

variation, which is an extension of the power regulation technique in the first topic. While

those techniques have been studied individually, no significant efforts have been made to

combine them, which could potentially be a future area of interest.

Finally the third topic addresses the problem of performance and energy efficiency im-

provement for cloud systems when there is a power cap. This work presents a hierarchical

power gating & power shifting (HPGPS) technique for bulk synchronous parallel applica-

tions in cloud computing systems. Nodes that are otherwise waiting to be synchronized

are power gated and their power budgets are redistributed to other high workload nodes,

thus reducing the penalty of workload imbalances across the system. This technique is

demonstrated to increase performance and decrease energy consumption in power con-

strained cloud systems. This hierarchical power management scheme is scalable to extreme

scale cloud computing systems. A potential future research topic could be to combine the

HPGPS with critical path predictions that can determine in advance which nodes will be

power gated.

By examining these topics, this thesis provides power and performance management

techniques for computing systems for single voltage island processors, multiple voltage

islands servers, and cloud systems. The optimization techniques presented within this work

help guide the power efficiency improvement of all kinds of computing systems.

This dissertation opens the door to future work in increasing power efficiency as well as

106

performance in various scales of computing systems, from portable devices to data centers.

A future area of potential research could be combining the processor level optimization

with HPGPS in data centers. The nodes can be implemented with the processor level

optimization techniques proposed in this thesis, and the cloud system can be managed by

HPGPS. Hopefully the work in this thesis helps to lay the foundation for these types of

studies.

107

REFERENCES

[1] A Shehabi, S. Smith, N Horner, I Azevedo, R Brown, J Koomey, E Masanet, D
Sartor, M Herrlin, and W Lintner, “United states data center energy usage report,”
Lawrence Berkeley National Laboratory, Berkeley, California. LBNL-1005775 Page,
vol. 4, 2016.

[2] X. Chen, Y. Wardi, and S. Yalamanchili, “Instruction-throughput regulation in com-
puter processors with data-center applications,” Discrete Event Dynamic Systems,
pp. 1–32, 2017.

[3] X Chen, Y Wardi, and S Yalamanchili, “Power regulation in high performance mul-
ticore processors,” arXiv preprint arXiv:1709.04859, 2017.

[4] X. Chen, Y. Wardi, and S. Yalamanchili, “Ipa in the loop: Control design for through-
put regulation in computer processors,” in Discrete Event Systems (WODES), 2016
13th International Workshop on, IEEE, 2016, pp. 141–146.

[5] Y. Wardi, C. Seatzu, X. Chen, and S. Yalamanchili, “Performance regulation of
event-driven dynamical systems using infinitesimal perturbation analysis,” Nonlin-
ear Analysis: Hybrid Systems, vol. 22, pp. 116–136, 2016.

[6] X Chen, H Xiao, Y. Wardi, and S. Yalamanchili, “Throughput regulation in shared
memory multicore processors,” in High Performance Computing (HiPC), 2015 IEEE
22nd International Conference on, IEEE, 2015, pp. 12–20.

[7] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi, “An analysis
of efficient multi-core global power management policies: Maximizing performance
for a given power budget,” in Proceedings of the 39th annual IEEE/ACM interna-
tional symposium on microarchitecture, IEEE Computer Society, 2006, pp. 347–358.

[8] R. Teodorescu and J. Torrellas, “Variation-aware application scheduling and power
management for chip multiprocessors,” in Computer Architecture, 2008. ISCA’08.
35th International Symposium on, IEEE, 2008, pp. 363–374.

[9] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, Feedback control of com-
puting systems. John Wiley & Sons, 2004.

[10] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and X. Zhu, “No power strug-
gles: Coordinated multi-level power management for the data center,” in ACM SIGARCH
Computer Architecture News, ACM, vol. 36, 2008, pp. 48–59.

108

[11] A. K. Mishra, S. Srikantaiah, M. Kandemir, and C. R. Das, “Cpm in cmps: Co-
ordinated power management in chip-multiprocessors,” in Proceedings of the 2010
ACM/IEEE International Conference for High Performance Computing, Network-
ing, Storage and Analysis, IEEE Computer Society, 2010, pp. 1–12.

[12] N. Almoosa, W. Song, Y. Wardi, and S. Yalamanchili, “A power capping controller
for multicore processors,” in American Control Conference (ACC), 2012, IEEE,
2012, pp. 4709–4714.

[13] V. Krishnaswamy, J. Brooks, G. Konstadinidis, C. McAllister, H. Pham, S. Turullols,
J. L. Shin, Y. YangGong, and H. Zhang, “4.3 fine-grained adaptive power manage-
ment of the sparc m7 processor,” in Solid-State Circuits Conference-(ISSCC), 2015
IEEE International, IEEE, 2015, pp. 1–3.

[14] A. Deval, A. Ananthakrishnan, and C. Forbell, “Power management on 14 nm intel R©
core- m processor,” in Low-Power and High-Speed Chips (COOL CHIPS XVIII),
2015 IEEE Symposium in, IEEE, 2015, pp. 1–3.

[15] X. Wang, K. Ma, and Y. Wang, “Adaptive power control with online model esti-
mation for chip multiprocessors,” IEEE Transactions on parallel and Distributed
Systems, vol. 22, no. 10, pp. 1681–1696, 2011.

[16] Y. Yao and Z. Lu, “Fuzzy flow regulation for network-on-chip based chip multipro-
cessors systems,” in Design Automation Conference (ASP-DAC), 2014 19th Asia and
South Pacific, IEEE, 2014, pp. 343–348.

[17] G. M. Almeida, R. Busseuil, L. Ost, F. Bruguier, G. Sassatelli, P. Benoit, L. Tor-
res, and M. Robert, “Pi and pid regulation approaches for performance-constrained
adaptive multiprocessor system-on-chip,” IEEE Embedded Systems Letters, vol. 3,
no. 3, pp. 77–80, 2011.

[18] U. Brinkschulte and M. Pacher, “A theoretical examination of a self-adaptation ap-
proach to improve the real-time capabilities in multi-threaded microprocessors,” in
Self-Adaptive and Self-Organizing Systems, 2009. SASO’09. Third IEEE Interna-
tional Conference on, IEEE, 2009, pp. 136–143.

[19] N. Almoosa, W Song, S. Yalamanchili, and Y. Wardi, “Throughput regulation in
multicore processors via ipa,” in Decision and Control (CDC), 2012 IEEE 51st An-
nual Conference on, IEEE, 2012, pp. 7267–7272.

[20] V. Hanumaiah and S. Vrudhula, “Energy-efficient operation of multicore processors
by dvfs, task migration, and active cooling,” IEEE Transactions on Computers, vol.
63, no. 2, pp. 349–360, 2014.

109

[21] X. Lin, Y. Xue, P. Bogdan, Y. Wang, S. Garg, and M. Pedram, “Power-aware vir-
tual machine mapping in the data-center-on-a-chip paradigm,” in Computer Design
(ICCD), 2016 IEEE 34th International Conference on, IEEE, 2016, pp. 241–248.

[22] V. Hanumaiah, S. Vrudhula, and K. S. Chatha, “Performance optimal online dvfs and
task migration techniques for thermally constrained multi-core processors,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.
30, no. 11, pp. 1677–1690, 2011.

[23] M. Becchi and P. Crowley, “Dynamic thread assignment on heterogeneous multipro-
cessor architectures,” in Proceedings of the 3rd conference on Computing frontiers,
ACM, 2006, pp. 29–40.

[24] S. Kawaguchi and T. Yachi, “Adaptive power efficiency control by computer power
consumption prediction using performance counters,” IEEE Transactions on Indus-
try Applications, vol. 52, no. 1, pp. 407–413, 2016.

[25] J. Meng, K. Kawakami, and A. K. Coskun, “Optimizing energy efficiency of 3-d
multicore systems with stacked dram under power and thermal constraints,” in Pro-
ceedings of the 49th Annual Design Automation Conference, ACM, 2012, pp. 648–
655.

[26] H. Jung and M. Pedram, “Supervised learning based power management for multi-
core processors,” IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, vol. 29, no. 9, pp. 1395–1408, 2010.

[27] Q. Wu, P. Juang, M. Martonosi, and D. W. Clark, “Voltage and frequency control
with adaptive reaction time in multiple-clock-domain processors,” in High-Performance
Computer Architecture, 2005. HPCA-11. 11th International Symposium on, IEEE,
2005, pp. 178–189.

[28] Y. Hotta, M. Sato, H. Kimura, S. Matsuoka, T. Boku, and D. Takahashi, “Profile-
based optimization of power performance by using dynamic voltage scaling on a
pc cluster,” in Parallel and Distributed Processing Symposium, 2006. IPDPS 2006.
20th International, IEEE, 2006, 8–pp.

[29] B. Mochocki, D. Rajan, X. S. Hu, C. Poellabauer, K. Otten, and T. Chantem, “Network-
aware dynamic voltage and frequency scaling,” in Real Time and Embedded Technol-
ogy and Applications Symposium, 2007. RTAS’07. 13th IEEE, IEEE, 2007, pp. 215–
224.

[30] M. Y. Lim, V. W. Freeh, and D. K. Lowenthal, “Adaptive, transparent frequency and
voltage scaling of communication phases in mpi programs,” in SC 2006 conference,
proceedings of the ACM/IEEE, IEEE, 2006, pp. 14–14.

110

[31] Y.-H. Lu, L. Benini, and G. De Micheli, “Operating-system directed power reduc-
tion,” in Proceedings of the 2000 international symposium on Low power electronics
and design, ACM, 2000, pp. 37–42.

[32] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat, “Ecosystem: Managing energy as
a first class operating system resource,” in ACM SIGPLAN Notices, ACM, vol. 37,
2002, pp. 123–132.

[33] H. Li, C.-Y. Cher, T. Vijaykumar, and K. Roy, “Vsv: L2-miss-driven variable supply-
voltage scaling for low power,” in Microarchitecture, 2003. MICRO-36. Proceed-
ings. 36th Annual IEEE/ACM International Symposium on, IEEE, 2003, pp. 19–28.

[34] C. Isci, G. Contreras, and M. Martonosi, “Live, runtime phase monitoring and pre-
diction on real systems with application to dynamic power management,” in Pro-
ceedings of the 39th Annual IEEE/ACM International Symposium on Microarchitec-
ture, IEEE Computer Society, 2006, pp. 359–370.

[35] R. Bianchini and R. Rajamony, “Power and energy management for server systems,”
Computer, vol. 37, no. 11, pp. 68–76, 2004.

[36] C. Isci and M. Martonosi, “Runtime power monitoring in high-end processors: Method-
ology and empirical data,” in Proceedings of the 36th annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, IEEE Computer Society, 2003, p. 93.

[37] X. Fan, W.-D. Weber, and L. A. Barroso, “Power provisioning for a warehouse-
sized computer,” in ACM SIGARCH Computer Architecture News, ACM, vol. 35,
2007, pp. 13–23.

[38] S. Rivoire, P. Ranganathan, and C. Kozyrakis, “A comparison of high-level full-
system power models.,” HotPower, vol. 8, pp. 3–3, 2008.

[39] S. Srikantaiah, A. Kansal, and F. Zhao, “Energy aware consolidation for cloud com-
puting,” in Proceedings of the 2008 conference on Power aware computing and sys-
tems, USENIX Association, 2008, pp. 10–10.

[40] S. Garg, D. Marculescu, and R. Marculescu, “Custom feedback control: Enabling
truly scalable on-chip power management for mpsocs,” in Low-Power Electronics
and Design (ISLPED), 2010 ACM/IEEE International Symposium on, IEEE, 2010,
pp. 425–430.

[41] U. Y. Ogras, R. Marculescu, D. Marculescu, and E. G. Jung, “Design and manage-
ment of voltage-frequency island partitioned networks-on-chip,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 17, no. 3, pp. 330–341, 2009.

111

[42] P. Bogdan, R. Marculescu, S. Jain, and R. T. Gavila, “An optimal control approach
to power management for multi-voltage and frequency islands multiprocessor plat-
forms under highly variable workloads,” in Networks on Chip (NoCS), 2012 Sixth
IEEE/ACM International Symposium on, IEEE, 2012, pp. 35–42.

[43] Q. Wu, P. Juang, M. Martonosi, L.-S. Peh, and D. W. Clark, “Formal control tech-
niques for power-performance management,” IEEE micro, vol. 25, no. 5, pp. 52–62,
2005.

[44] P. Bogdan and Y. Xue, “Mathematical models and control algorithms for dynamic
optimization of multicore platforms: A complex dynamics approach,” in Proceed-
ings of the IEEE/ACM International Conference on Computer-Aided Design, IEEE
Press, 2015, pp. 170–175.

[45] A. Bartolini, M. Cacciari, A. Tilli, and L. Benini, “Thermal and energy management
of high-performance multicores: Distributed and self-calibrating model-predictive
controller,” IEEE Transactions on Parallel and Distributed Systems, vol. 24, no. 1,
pp. 170–183, 2013.

[46] S. Hemmert, “Green hpc: From nice to necessity,” Computing in Science & Engi-
neering, vol. 12, no. 6, pp. 8–10, 2010.

[47] D. Dharwar, S. S. Bhat, V. Srinivasan, D. Sarma, and P. K. Banerjee, “Approaches
towards energy-efficiency in the cloud for emerging markets,” in Cloud Computing
in Emerging Markets (CCEM), 2012 IEEE International Conference on, IEEE, 2012,
pp. 1–6.

[48] H. Yuan, C.-C. J. Kuo, and I. Ahmad, “Energy efficiency in data centers and cloud-
based multimedia services: An overview and future directions,” in Green Computing
Conference, 2010 International, IEEE, 2010, pp. 375–382.

[49] W. Felter, K. Rajamani, T. Keller, and C. Rusu, “A performance-conserving ap-
proach for reducing peak power consumption in server systems,” in Proceedings of
the 19th annual international conference on Supercomputing, ACM, 2005, pp. 293–
302.

[50] M. Etinski, J. Corbalan, J. Labarta, and M. Valero, “Optimizing job performance
under a given power constraint in hpc centers,” in Green Computing Conference,
2010 International, IEEE, 2010, pp. 257–267.

[51] B. Rountree, D. K. Lownenthal, B. R. De Supinski, M. Schulz, V. W. Freeh, and T.
Bletsch, “Adagio: Making dvs practical for complex hpc applications,” in Proceed-
ings of the 23rd international conference on Supercomputing, ACM, 2009, pp. 460–
469.

112

[52] D. J. Kerbyson, A. Vishnu, and K. J. Barker, “Energy templates: Exploiting appli-
cation information to save energy,” in Cluster Computing (CLUSTER), 2011 IEEE
International Conference on, IEEE, 2011, pp. 225–233.

[53] M. Etinski, J. Corbalan, J. Labarta, and M. Valero, “Parallel job scheduling for power
constrained hpc systems,” Parallel Computing, vol. 38, no. 12, pp. 615–630, 2012.

[54] D. Li, B. R. De Supinski, M. Schulz, K. Cameron, and D. S. Nikolopoulos, “Hy-
brid mpi/openmp power-aware computing,” in Parallel & Distributed Processing
(IPDPS), 2010 IEEE International Symposium on, IEEE, 2010, pp. 1–12.

[55] C.-h. Hsu and W.-c. Feng, “A power-aware run-time system for high-performance
computing,” in Proceedings of the 2005 ACM/IEEE conference on Supercomputing,
IEEE Computer Society, 2005, p. 1.

[56] V. W. Freeh, N. Kappiah, D. K. Lowenthal, and T. K. Bletsch, “Just-in-time dynamic
voltage scaling: Exploiting inter-node slack to save energy in mpi programs,” Jour-
nal of Parallel and Distributed Computing, vol. 68, no. 9, pp. 1175–1185, 2008.

[57] C. Liu, A. Sivasubramaniam, M. Kandemir, and M. J. Irwin, “Exploiting barriers
to optimize power consumption of cmps,” in Parallel and Distributed Processing
Symposium, 2005. Proceedings. 19th IEEE International, IEEE, 2005, 10–pp.

[58] K. Kandalla, E. P. Mancini, S. Sur, and D. K. Panda, “Designing power-aware col-
lective communication algorithms for infiniband clusters,” in Parallel Processing
(ICPP), 2010 39th International Conference on, IEEE, 2010, pp. 218–227.

[59] V. W. Freeh, F. Pan, N. Kappiah, D. K. Lowenthal, and R. Springer, “Exploring
the energy-time tradeoff in mpi programs on a power-scalable cluster,” in Paral-
lel and Distributed Processing Symposium, 2005. Proceedings. 19th IEEE Interna-
tional, IEEE, 2005, 10–pp.

[60] R. Ge, X. Feng, and K. W. Cameron, “Modeling and evaluating energy-performance
efficiency of parallel processing on multicore based power aware systems,” in Par-
allel & Distributed Processing, 2009. IPDPS 2009. IEEE International Symposium
on, IEEE, 2009, pp. 1–8.

[61] K. Agarwal, K. Nowka, H. Deogun, and D. Sylvester, “Power gating with multiple
sleep modes,” in Proceedings of the 7th International Symposium on Quality Elec-
tronic Design, IEEE Computer Society, 2006, pp. 633–637.

[62] J. Leverich, M. Monchiero, V. Talwar, P. Ranganathan, and C. Kozyrakis, “Power
management of datacenter workloads using per-core power gating,” IEEE Computer
Architecture Letters, vol. 8, no. 2, pp. 48–51, 2009.

113

[63] T. N. Miller, X. Pan, R. Thomas, N. Sedaghati, and R. Teodorescu, “Booster: Re-
active core acceleration for mitigating the effects of process variation and applica-
tion imbalance in low-voltage chips,” in High Performance Computer Architecture
(HPCA), 2012 IEEE 18th International Symposium on, IEEE, 2012, pp. 1–12.

[64] F. N. Tan, S. G. Pang, L. K. Yong, and C. S. Lee, “Power gating techniques on plat-
form controller hub,” in Electronic Manufacturing Technology Symposium (IEMT),
2010 34th IEEE/CPMT International, IEEE, 2010, pp. 1–7.

[65] L. Jian et al., “Power shifting in thrifty interconnection network,” in Proc. High
Performance Computer Architecture (HPCA), 2011.

[66] L. Piga, I. Paul, and W. Huang, “Performance boosting opportunities under com-
munication imbalance in power-constrained hpc clusters,” in Parallel Processing
(ICPP), 2016 45th International Conference on, IEEE, 2016, pp. 31–40.

[67] J. Wang, J. Beu, R. Bheda, T. Conte, Z. Dong, C. Kersey, M. Rasquinha, G. Riley,
W. Song, H. Xiao, et al., “Manifold: A parallel simulation framework for multicore
systems,” in Performance Analysis of Systems and Software (ISPASS), 2014 IEEE
International Symposium on, IEEE, 2014, pp. 106–115.

[68] W. J. Song, S. Mukhopadhyay, and S. Yalamanchili, “Energy introspector: A par-
allel, composable framework for integrated power-reliability-thermal modeling for
multicore architectures,” in Performance Analysis of Systems and Software (ISPASS),
2014 IEEE International Symposium on, IEEE, 2014, pp. 143–144.

[69] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi,
“Mcpat: An integrated power, area, and timing modeling framework for multicore
and manycore architectures,” in Microarchitecture, 2009. MICRO-42. 42nd Annual
IEEE/ACM International Symposium on, IEEE, 2009, pp. 469–480.

[70] A. Sridhar, A. Vincenzi, M. Ruggiero, T. Brunschwiler, and D. Atienza, “3d-ice:
Fast compact transient thermal modeling for 3d ics with inter-tier liquid cooling,”
in Proceedings of the International Conference on Computer-Aided Design, IEEE
Press, 2010, pp. 463–470.

[71] P. Hammarlund, A. J. Martinez, A. A. Bajwa, D. L. Hill, E. Hallnor, H. Jiang, M.
Dixon, M. Derr, M. Hunsaker, R. Kumar, et al., “Haswell: The fourth-generation
intel core processor,” IEEE Micro, vol. 34, no. 2, pp. 6–20, 2014.

[72] V. M. Weaver, M. Johnson, K. Kasichayanula, J. Ralph, P. Luszczek, D. Terpstra, and
S. Moore, “Measuring energy and power with papi,” in Parallel Processing Work-
shops (ICPPW), 2012 41st International Conference on, IEEE, 2012, pp. 262–268.

[73] (). Https://wiki.archlinux.org/index.php/cpu frequency scaling.

114

[74] (). Https://www.kernel.org/doc/documentation/cpu-freq/governors.txt.

[75] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The splash-2 pro-
grams: Characterization and methodological considerations,” in Computer Architec-
ture, 1995. Proceedings., 22nd Annual International Symposium on, IEEE, 1995,
pp. 24–36.

[76] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite: Character-
ization and architectural implications,” in Proceedings of the 17th international con-
ference on Parallel architectures and compilation techniques, ACM, 2008, pp. 72–
81.

[77] L. Nai, Y. Xia, I. G. Tanase, H. Kim, and C.-Y. Lin, “Graphbig: Understanding graph
computing in the context of industrial solutions,” in High Performance Computing,
Networking, Storage and Analysis, 2015 SC-International Conference for, IEEE,
2015, pp. 1–12.

[78] I. Tanase, Y. Xia, L. Nai, Y. Liu, W. Tan, J. Crawford, and C.-Y. Lin, “A highly
efficient runtime and graph library for large scale graph analytics,” in Proceedings
of Workshop on GRAph Data management Experiences and Systems, ACM, 2014,
pp. 1–6.

[79] P. Lancaster, “Error analysis for the newton-raphson method,” Numerische Mathe-
matik, vol. 9, no. 1, pp. 55–68, 1966.

[80] Y.-C. L. Ho and X.-R. Cao, Perturbation analysis of discrete event dynamic systems.
Springer Science & Business Media, 2012, vol. 145.

[81] C. G. Cassandras and S. Lafortune, Introduction to discrete event systems. Springer
Science & Business Media, 2009.

[82] J. L. Hennessy and D. A. Patterson, Computer architecture: A quantitative approach.
Elsevier, 2011.

[83] B. Goel and S. A. McKee, “A methodology for modeling dynamic and static power
consumption for multicore processors,” in Parallel and Distributed Processing Sym-
posium, 2016 IEEE International, IEEE, 2016, pp. 273–282.

[84] V. Srinivasan, D. Brooks, M. Gschwind, P. Bose, V. Zyuban, P. N. Strenski, and P. G.
Emma, “Optimizing pipelines for power and performance,” in Microarchitecture,
2002.(MICRO-35). Proceedings. 35th Annual IEEE/ACM International Symposium
on, IEEE, 2002, pp. 333–344.

115

[85] G. Sun, C. G. Cassandras, Y. Wardi, C. G. Panayiotou, and G. F. Riley, “Perturba-
tion analysis and optimization of stochastic flow networks,” IEEE Transactions on
Automatic Control, vol. 49, no. 12, pp. 2143–2159, 2004.

[86] D. Clark and H. J. Kushner, Stochastic approximation for constrained and uncon-
strained systems, 1978.

[87] C. G. Cassandras, Y. Wardi, C. G. Panayiotou, and C. Yao, “Perturbation analysis
and optimization of stochastic hybrid systems,” European Journal of Control, vol.
16, no. 6, pp. 642–661, 2010.

[88] A. Iosup, S. Ostermann, M. N. Yigitbasi, R. Prodan, T. Fahringer, and D. Epema,
“Performance analysis of cloud computing services for many-tasks scientific com-
puting,” IEEE Transactions on Parallel and Distributed systems, vol. 22, no. 6,
pp. 931–945, 2011.

[89] A. Bhatele, K. Mohror, S. H. Langer, and K. E. Isaacs, “There goes the neighbor-
hood: Performance degradation due to nearby jobs,” in Proceedings of the Interna-
tional Conference on High Performance Computing, Networking, Storage and Anal-
ysis, ACM, 2013, p. 41.

[90] G. Shipman, P. McCormick, K. Pedretti, S. L. Olivier, K. B. Ferreira, R. Sankaran,
S. Treichler, A. Aiken, and M. Bauer, “Analysis of application sensitivity to system
performance variability in a dynamic task based runtime.,” Sandia National Labora-
tories (SNL-NM), Albuquerque, NM (United States), Tech. Rep., 2016.

[91] U. DOE, “Characterization of the doe mini-apps,” Retrieved July, vol. 14, 2016.

[92] A. Sasidharan and M. Snir, “Miniamr-a miniapp for adaptive mesh refinement,”
Tech. Rep., 2016.

116

	Title Page
	Acknowledgments
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Contributions
	Organization

	Literature Review
	Power Regulation For Multi-core Processors
	Throughput Regulation For Multi-core Processors
	Optimizing Power Efficiency For Multi-core Processors
	Optimizing Energy Efficiency Under Power Budgets in Data Center Systems

	Experimental Frameworks
	System Architecture of a 3D Multi-core Processor
	A Full System Cycle Level Computer Architecture Simulator: Manifold
	A Haswell 4-core Processor
	Linux Governors
	Benchmarks

	Throughput Regulation for Multicore Processors
	A Variable Gain Controller
	A Throughput Model
	Experiments in A Full System Cycle Level Simulator
	Implementataion on an Intel Haswell 4-Core Processor
	Modified Regulator
	Experimental Results

	Concluding Remarks

	Power Regulation For Multicore Processors
	A Power Model and a Power Regulator
	Implementation in an Intel Haswell 4-core Processor
	Concluding Remarks

	Power Efficiency Optimization for Multicore Processors
	Core-level Power Efficiency Optimization
	A Stochastic Approximation Approach
	Experiments in a Full System Cycle Level Simulator

	A Processor-level Power Efficiency Optimization Controller
	Implementation in a Haswell 4-core Processor
	Comparison With Linux Governors
	Experimental Results
	Overhead Analysis

	Concluding Remarks

	Power Efficiency Optimization Under Power Caps For Multicore Processors
	A Power Efficiency Optimization Technique
	Computing Operating Frequencies

	Dynamic Power Tracking
	Baseline Model

	Experiments in a Full System Cycle Level Simulator
	Concluding Remarks

	Energy Efficiency Optimization Under Power Budgets For Cloud Systems
	A Hierarchical Power Gating and Power Shifting Technique
	Experimental Results
	Concluding Remarks

	Conclusion
	References

