5,288 research outputs found

    The Site Of Quirigua Through Time: The Use of Digital Reconstructions in the Context of a Comarative Photographic Project

    Get PDF
    Over two decades of technological and academic advances, numerous platforms and tools have been developed to help archaeologists visualize traditional data in new ways. The resulting products have ranged from realistic 3D models to virtual reality simulators to geographic information systems. In the field of digital archaeological visualization one of the main areas of development is to address the communication of the level of confidence and uncertainty in certain aspects of the visualizations. Quirigua is an ideal candidate to be used as the subject for the creation of a new digital visualization tool for archaeological sites that is designed to put to use some research materials, such as excavation photographs, largely ignored by digital archaeologists

    Marine Heritage Monitoring with High Resolution Survey Tools: ScapaMAP 2001-2006

    Get PDF
    Archaeologically, marine sites can be just as significant as those on land. Until recently, however, they were not protected in the UK to the same degree, leading to degradation of sites; the difficulty of investigating such sites still makes it problematic and expensive to properly describe, schedule and monitor them. Use of conventional high-resolution survey tools in an archaeological context is changing the economic structure of such investigations however, and it is now possible to remotely but routinely monitor the state of submerged cultural artifacts. Use of such data to optimize expenditure of expensive and rare assets (e.g., divers and on-bottom dive time) is an added bonus. We present here the results of an investigation into methods for monitoring of marine heritage sites, using the remains of the Imperial German Navy (scuttled 1919) in Scapa Flow, Orkney as a case study. Using a baseline bathymetric survey in 2001 and a repeat bathymetric and volumetric survey in 2006, we illustrate the requirements for such surveys over and above normal hydrographic protocols and outline strategies for effective imaging of large wrecks. Suggested methods for manipulation of such data (including processing and visualization) are outlined, and we draw the distinction between products for scientific investigation and those for outreach and education, which have very different requirements. We then describe the use of backscatter and volumetric acoustic data in the investigation of wrecks, focusing on the extra information to be gained from them that is not evident in the traditional bathymetric DTM models or sounding point-cloud representations of data. Finally, we consider the utility of high-resolution survey as part of an integrated site management policy, with particular reference to the economics of marine heritage monitoring and preservation

    From pixel to mesh: accurate and straightforward 3D documentation of cultural heritage from the Cres/LoĆĄinj archipelago

    Get PDF
    Most people like 3D visualizations. Whether it is in movies, holograms or games, 3D (literally) adds an extra dimension to conventional pictures. However, 3D data and their visualizations can also have scientic archaeological benets: they are crucial in removing relief distortions from photographs, facilitate the interpretation of an object or just support the aspiration to document archaeology as exhaustively as possible. Since archaeology is essentially a spatial discipline, the recording of the spatial data component is in most cases of the utmost importance to perform scientic archaeological research. For complex sites and precious artefacts, this can be a di€cult, time-consuming and very expensive operation. In this contribution, it is shown how a straightforward and cost-eective hard- and software combination is used to accurately document and inventory some of the cultural heritage of the Cres/Loơinj archipelago in three or four dimensions. First, standard photographs are acquired from the site or object under study. Secondly, the resulting image collection is processed with some recent advances in computer technology and so-called Structure from Motion (SfM) algorithms, which are known for their ability to reconstruct a sparse point cloud of scenes that were imaged by a series of overlapping photographs. When complemented by multi-view stereo matching algorithms, detailed 3D models can be built from such photo collections in a fully automated way. Moreover, the software packages implementing these tools are available for free or at very low-cost. Using a mixture of archaeological case studies, it will be shown that those computer vision applications produce excellent results from archaeological imagery with little eort needed. Besides serving the purpose of a pleasing 3D visualization for virtual display or publications, the 3D output additionally allows to extract accurate metric information about the archaeology under study (from single artefacts to entire landscapes)

    Alternative Archaeological Representations within Virtual Worlds

    Get PDF
    Traditional VR methods allow the user to tour and view the virtual world from different perspectives. Increasingly, more interactive and adaptive worlds are being generated, potentially allowing the user to interact with and affect objects in the virtual world. We describe and compare four models of operation that allow the publisher to generate views, with the client manipulating and affecting specific objects in the world. We demonstrate these approaches through a problem in archaeological visualization

    A semantic-based platform for the digital analysis of architectural heritage

    Get PDF
    This essay focuses on the fields of architectural documentation and digital representation. We present a research paper concerning the development of an information system at the scale of architecture, taking into account the relationships that can be established between the representation of buildings (shape, dimension, state of conservation, hypothetical restitution) and heterogeneous information about various fields (such as the technical, the documentary or still the historical one). The proposed approach aims to organize multiple representations (and associated information) around a semantic description model with the goal of defining a system for the multi-field analysis of buildings

    Time indeterminacy and spatio-temporal building transformations: an approach for architectural heritage understanding

    Get PDF
    Nowadays most digital reconstructions in architecture and archeology describe buildings heritage as awhole of static and unchangeable entities. However, historical sites can have a rich and complex history, sometimes full of evolutions, sometimes only partially known by means of documentary sources. Various aspects condition the analysis and the interpretation of cultural heritage. First of all, buildings are not inexorably constant in time: creation, destruction, union, division, annexation, partial demolition and change of function are the transformations that buildings can undergo over time. Moreover, other factors sometimes contradictory can condition the knowledge about an historical site, such as historical sources and uncertainty. On one hand, historical documentation concerning past states can be heterogeneous, dubious, incomplete and even contradictory. On the other hand, uncertainty is prevalent in cultural heritage in various forms: sometimes it is impossible to define the dating period, sometimes the building original shape or yet its spatial position. This paper proposes amodeling approach of the geometrical representation of buildings, taking into account the kind of transformations and the notion of temporal indetermination

    Airborne laser bathymetry for documentation of submerged archaeological sites in shallow water

    Get PDF
    Knowledge of underwater topography is essential to the understanding of the organisation and distribution of archaeological sites along and in water bodies. Special attention has to be paid to intertidal and inshore zones where, due to sea-level rise, coastlines have changed and many former coastal sites are now submerged in shallow water. Mapping the detailed inshore topography is therefore important to reconstruct former coastlines, identify sunken archaeological structures and locate potential former harbour sites. However, until recently archaeology has lacked suitable methods to provide the required topographical data of shallow underwater bodies. Our research shows that airborne topo-bathymetric laser scanner systems are able to measure surfaces above and below the water table over large areas in high detail using very short and narrow green laser pulses, even revealing sunken archaeological structures in shallow water. Using an airborne laser scanner operating at a wavelength in the green visible spectrum (532 nm) two case study areas in different environmental settings (Kolone, Croatia, with clear sea water; Lake Keutschach, Austria, with turbid water) were scanned. In both cases, a digital model of the underwater topography with a planimetric resolution of a few decimeters was measured. While in the clear waters of Kolone penetration depth was up to 11 meters, turbid Lake Keutschach allowed only to document the upper 1.6 meters of its underwater topography. Our results demonstrate the potential of this technique to map submerged archaeological structures over large areas in high detail providing the possibility for systematic, large scale archaeological investigation of this environment

    Robots for Exploration, Digital Preservation and Visualization of Archeological Sites

    Get PDF
    Monitoring and conservation of archaeological sites are important activities necessary to prevent damage or to perform restoration on cultural heritage. Standard techniques, like mapping and digitizing, are typically used to document the status of such sites. While these task are normally accomplished manually by humans, this is not possible when dealing with hard-to-access areas. For example, due to the possibility of structural collapses, underground tunnels like catacombs are considered highly unstable environments. Moreover, they are full of radioactive gas radon that limits the presence of people only for few minutes. The progress recently made in the artificial intelligence and robotics field opened new possibilities for mobile robots to be used in locations where humans are not allowed to enter. The ROVINA project aims at developing autonomous mobile robots to make faster, cheaper and safer the monitoring of archaeological sites. ROVINA will be evaluated on the catacombs of Priscilla (in Rome) and S. Gennaro (in Naples)

    Integrated surveying for the archaeological documentation of a neolithic site

    Get PDF
    It has been tested the applicability of integrated surveys (remote sensing, digital photogrammetry and terrestrial laser scanning (TLS)) in order to verify, through gradual and successive steps, how geomatic techniques can get 3D results with metric value combined with a quality content for an archaeological site. In particular, the data have been collected during the excavation campaign of Neolithic archaeological site in Taranto. The possibilities to scan articulated forms, in the presence of curve, concavity and convexity, and jutting parts rotate, characterized by alterations, through the acquisition of a dense points cloud makes the technique TLS needed in archaeology. Through the photogrammetric technique the laser data has been integrated concerning some details found on the site for which it has been required a higher degree of detail. The photogrammetric data has been acquired with the calibrated camera. The processing of the acquired data and their integration has been made possible to study an important archeological site, in its totality, from small scale (general site framework) to large scale (3D model with a high degree of detail) and to structure a multi-temporal database for simplified data management
    • 

    corecore