5 research outputs found

    3D Stereo Reconstruction of Human Faces driven by Differential Constraints

    Get PDF
    Conventional stereo algorithms often fail in accurately reconstructing a 3D object because the image data do not provide enough information about the geometry of the object. We propose a way to incorporate a priori information in a reconstruction process from a sequence of calibrated face images. A 3D mesh modeling the face is iteratively deformed in order to minimize an energy function. Differential information extracted from the object shape is used to generate an adaptive mesh. We also propose to explicitly incorporate a priori constraints related to the differential properties of the surface where the image information cannot yield an accurate shape recovery. 1 Introduction 3D face reconstruction is currently receiving a lot of attention in the Computer Vision and Computer Graphics communities. It is a thriving research field with many applications such as virtual reality, animation, face recognition, etc... In all these cases, the recovered model must be compact and accurate, es..

    3D Stereo Reconstruction of Human Faces driven by Differential Constraints

    No full text
    Conventional stereo algorithms often fail in accurately reconstructing a 3D object because the image data do not provide enough information about the geometry of the object. We propose a way to incorporate a priori information in a reconstruction process from a sequence of calibrated face images. A 3D mesh modeling the face is iteratively deformed in order to minimize an energy function. Differential information extracted from the object shape is used to generate an adaptive mesh. We also propose to explicitly incorporate a priori constraints related to the differential properties of the surface where the image information cannot yield an accurate shape recovery

    Automatic face recognition using stereo images

    Get PDF
    Face recognition is an important pattern recognition problem, in the study of both natural and artificial learning problems. Compaxed to other biometrics, it is non-intrusive, non- invasive and requires no paxticipation from the subjects. As a result, it has many applications varying from human-computer-interaction to access control and law-enforcement to crowd surveillance. In typical optical image based face recognition systems, the systematic vaxiability arising from representing the three-dimensional (3D) shape of a face by a two-dimensional (21)) illumination intensity matrix is treated as random vaxiability. Multiple examples of the face displaying vaxying pose and expressions axe captured in different imaging conditions. The imaging environment, pose and expressions are strictly controlled and the images undergo rigorous normalisation and pre-processing. This may be implemented in a paxtially or a fully automated system. Although these systems report high classification accuracies (>90%), they lack versatility and tend to fail when deployed outside laboratory conditions. Recently, more sophisticated 3D face recognition systems haxnessing the depth information have emerged. These systems usually employ specialist equipment such as laser scanners and structured light projectors. Although more accurate than 2D optical image based recognition, these systems are equally difficult to implement in a non-co-operative environment. Existing face recognition systems, both 2D and 3D, detract from the main advantages of face recognition and fail to fully exploit its non-intrusive capacity. This is either because they rely too much on subject co-operation, which is not always available, or because they cannot cope with noisy data. The main objective of this work was to investigate the role of depth information in face recognition in a noisy environment. A stereo-based system, inspired by the human binocular vision, was devised using a pair of manually calibrated digital off-the-shelf cameras in a stereo setup to compute depth information. Depth values extracted from 2D intensity images using stereoscopy are extremely noisy, and as a result this approach for face recognition is rare. This was cofirmed by the results of our experimental work. Noise in the set of correspondences, camera calibration and triangulation led to inaccurate depth reconstruction, which in turn led to poor classifier accuracy for both 3D surface matching and 211) 2 depth maps. Recognition experiments axe performed on the Sheffield Dataset, consisting 692 images of 22 individuals with varying pose, illumination and expressions
    corecore