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Abstract. Conventional stereo algorithms often fail in accurately re-

constructing a 3D object because the image data do not provide enough

information about the geometry of the object. We propose a way to incor-

porate a priori information in a reconstruction process from a sequence

of calibrated face images. A 3D mesh modeling the face is iteratively

deformed in order to minimize an energy function in a snake-like pro-

cess. Di�erential information about the object shape is used to generate

an anisotropic mesh that can both ful�ll the compacity and the accu-

racy requirements. Moreover, in areas where the stereo information is

not reliable enough to accurately recover the surface shape, because of

inappropriate texture or bad lighting conditions, we propose to incorpo-

rate some geometric constraints related to the di�erential properties of

the surface. These constraints can be intuitive or can refer to some pre-

de�ned geometric properties of the object to be reconstructed. They can

be applied to scalar �elds such as curvature values, or structural features

such as crestlines.

Category: Head and Face Modelling Techniques

1 Introduction

3D face reconstruction is currently receiving a lot of attention in the Computer
Vision and Computer Graphics communities. It is a thriving research �eld with
many applications such as virtual reality, animation, face recognition, etc... In
all these cases, the recovered model must be compact and accurate, especially
around signi�cant areas like the nose, the mouth, the orbits, etc... These ar-
eas can often be characterized in terms of their di�erential properties. Several
attempts to deal with that problem have been made. In [DF94], the di�eren-
tial properties of the surface are inferred from a disparity map and used to
modify the shape of a correlation window. In [LFM96], crest line extraction is
performed on a 3D model and used to improve the reconstruction around sharp
ridges. These methods improve the accuracy of the reconstruction but do not
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su�ce if the initial 3D model is not reliable. For instance, it is well known that
bad lighting conditions or lack of texture can make correlation-based stereo fail.
Consequently, the image information alone is not always su�cient to recover 3D
shape. In [FB96], constraints on the depth of a given set of points on a sur-
face mesh are applied in order to improve terrain reconstruction. In [LMF97],
curvature information and structural features such as crest lines are extracted
from the 3D model or interactively speci�ed in order to generate an anisotropic
surface mesh that re
ects the geometric properties of the object. In this pa-
per, we propose a further step towards incorporating a priori information in
the reconstruction process from sets of sequences of calibrated face images. Dif-
ferential information is used to constrain the topology of a mesh modeling the
surface and the parameters of an analytical surface model, through the speci�-
cation of low(high)-curvature areas, or structural features. Mathematically, this
is achieved by constrained mesh optimization. We show preliminary results of
this ongoing work, whose goal is to build 3D face models using entirely passive
techniques.

2 The reconstruction process

2.1 An energy minimization scheme

Our reconstruction process is based on the iterative deformation of a 3D trian-
gular mesh (i.e. a collection of vertices, triangular faces and edges) modeling the
face in order to minimize an energy function E. The reconstruction process is
thus treated as a snake-like process ([KWT88],[FL95],[LFM96]).
The initial mesh is computed by �tting a generic animation mesh to 3-D points
derived from a correlation-based disparity map ([FM98]). It is then re�ned by
minimizing an energy function that is the weighted sum of two terms: one stereo
term Eext, whose minimization makes the model �t to the image data (see [FL95]
or [LFM96] for more details), and one regularization term Eint. This process is
based on correlation; consequently, in many well-known cases (lack of texture,
lighting problems,...), it will fail in accurately recovering the 3D shape.
This optimization uses a �nite-element scheme. The depth Z of each surface
point is expressed as a piecewise polynomial function of the two other coordi-
nates X and Y . This polynomial is of degree 5, which guarantees that the surface
is piecewise C1 (see [Neuen95], [ZT88]). The parameters of the optimization pro-
cess are the depths of each vertex, as well as the 5 �rst and second-order partial
derivatives of the depth with respect to X and Y . To compute the initial values
of the partial derivatives, we have locally approximated the surface by a quadric
and set the partial derivatives of the surface to the partial derivatives of the
corresponding quadric.

2.2 Adaptive meshes

The computation time can be very high if we keep a very large number of vertices.
Therefore, we have to reduce the number of vertices in featureless areas and to
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keep many points in the most signi�cant areas of the face. Furthermore, this
has to be achieved with as much automation as possible. For instance, we would
like to keep many points in the nose area, the orbits, the mouth, i.e. areas
which are likely to act as landmarks in an animation or a recognition process.
All these areas can be characterized by geometrical properties of the surface,
especially di�erential properties. Indeed, areas like the nose ridge, the orbits,
can be expressed in terms of high curvature areas, or crest lines, whereas the
cheeks, the forehead (where we would like a small number of facets) can be
described as low curvature areas. We have thus chosen to re�ne the 3D model
according to the di�erential properties of the surface that can be easily inferred
from the analytical expression of the surface or estimated by a local quadric
approximation. As described in [LMF97], we generate an adaptive mesh governed
by the principal curvatures and the principal curvature directions of the surface.
Information about the computation of the di�erential properties can be found
in [DoCar76].

The algorithm can be summarized as follows:

{ compute on the initial mesh the principal curvatures kmax and kmin and the
principal curvature directions tmax and tmin.

{ specify for each vertex of the initial mesh the three parameters (two scalar
values h1 and h2 and an angle �) of an ellipse centered on the vertex which
governs the generation of a new mesh.

{ optimize the new mesh by minimizing the energy function E = �extEext +
�intEint.

The algorithm completely remeshes a 2D domain (which is taken here to be
a frontal projection of the face) according to the values of h1, h2 and �. These
values govern the local topology of the new mesh in the vicinity of the old vertex
they are attached to. As shown in �gure 1, the angle � determines in which di-
rection the new facet in the remeshed surface will be \elongated". This direction
will be given by tmin. In other terms, the edges of the new facets will be longer
in the minimum curvature direction than in the maximum curvature direction
(those two directions are orthogonal). This is rather intuitive: for instance, in the
case of the nose ridge, the minimum curvature direction lies along this ridge. We
want to capture as many details as possible in the direction orthogonal to this
ridge, since there is a high curvature variation in that direction. Consequently, it
is natural to generate longer edges in the minimum curvature direction (i.e.along
the ridge) than in the maximum curvature direction (i.e. across the ridge). The
scalar values h1 and h2 determine the average lengths of the edges in those two
directions. They are decreasing functions of kmax and kmin, since we want more
facets in low curvature areas. Typically, they are chosen as inverses of a second
order polynomial function. h1 is determined by the minimum curvature and h2 is
determined by the maximum curvature. This procedure uses a mesh generation
software developed for the Computational Field Simulations ([BCGHM96]). This
scheme can also be used if we want to remesh the surface according to structural
information such as crest lines than can be automatically detected ([LMF97]) or
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h1
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Fig. 1. The ellipse de�ning the local topology of the new mesh.

interactively speci�ed. Let us recall that a crest line is de�ned as a set of zero-
crossings of the derivative of the maximum curvature in the maximum curvature
direction, i.e. the set of points such that dk = rkmax:tmax = 0. A crest line can
thus be composed of maxima or minima of the maximum curvature. We typically
threshold the result of crest line extraction according to the maximum curvature
value in order to only keep signi�cant lines. The angle � is thus determined by
the direction of the crest line, and h1 and h2 are �xed parameters.

Figure 2 shows a stereo pair of a face and the initial model obtained by the
deformation of an animation mask. Our purpose is thus to capture more details
in signi�cant areas of the face, while preserving a reasonable number of vertices.
Figure 3 shows an optimized anisotropic mesh of the face governed by curvature
information. The nose ridge is well recovered since we have extracted high curva-
ture values in this area and the principal curvature directions have oriented the
facets along the ridge. However, the mouth is not very well recovered. Figure 4
shows a map of automatically extracted crest lines and the optimized mesh gov-
erned by crest line information. The crest line extraction algorithm ([LMF97])
ensures that the crest line lies inside a facet. The mesh of the face model has
edges on the nose ridge. This is why this ridge has not been detected at the
exact location by the crest line extraction algorithm. However, the purpose of
this extraction is to specify areas of interest on the face and re�ne them, so
we do not need a very accurate crest line extraction. In the example, we show
the automatic extraction of the nose ridge, orbits, some lines on the lips and
other lines that are not as intuitive but that can also describe the face geometry,
such as cheek or forehead lines. In this case, the mouth is better recovered than
using curvature information. We show in Figure 5 that an interactive outline
of some crests can also help the reconstruction of key areas such as the orbits.
We have shown examples where mesh topologies driven by curvature, automati-
cally extracted crest lines and manually speci�ed crest lines have been generated
separately. An optimal reconstruction algorithm would merge all these kinds of
information. This is part of the software we are currently developing.

Governing the mesh topology by surface di�erential properties and running a
correlation-based optimization algorithm on the adaptive mesh is sometimes not
su�cient to accurately recover 3D shapes. For instance, in the above example,
the shape of the eyes cannot be recovered accurately from stereo information
alone because of specularity (see also �g. 6). Therefore, it seems necessary to
incorporate in the reconstruction process extra information.
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Fig. 2. A stereo pair of a face. The generic animation model �tted to correlation data:

the mesh and a shaded view.

Fig. 3. The reconstructed surface using an anisotropic mesh governed by curvature

information: the mesh and two shaded views.

Fig. 4. Some crest lines automatically detected on the face model, and the recon-

structed surface using an anisotropic mesh governed by crest line information: the

mesh and two shaded views.
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Fig. 5. The reconstructed surface using an anisotropic mesh governed by a priori knowl-

edge about crest lines: the locations of the crest lines have been speci�ed manually.

3 Incorporating a priori knowledge

When reconstructing an object, we have a rough idea about its shape, especially
about typical features like crest lines, or about areas that can be labeled as
\
at", \spherical", \cylindrical", etc... This kind of a priori knowledge can be of
great interest where classical stereo methods fail. The a priori knowledge that a
user can have about the shape he wants to reconstruct can be intuitive (\This
region is 
at, or spherical") or can rely on well-known geometric properties (an-
thropometric in case of face reconstruction). In any case, this a priori knowledge
can very often be expressed in terms of di�erential properties. For instance,
the knowledge \This area is 
at" is obviously \translated" as: at each vertex,
kmax = kmin = 0. \This area is spherical" means: at each vertex, kmax = kmin.

We can also express \structural" knowledge such as \There is a crest line
here", and interactively outline the crest on the surface (or, ideally, on the im-
ages). If we restrict our problem to the crest lines that are sets of maxima of the
maximum curvature in the maximum curvature direction, the corresponding con-
straint can be expressed as: 8i 2 V; kmax(i) � kmax(j) and kmax(i) � kmax(j

0)
where V is the set of vertices lying on the crest line and j and j0 are surface points
such that the directions respectively de�ned by (i; j) and (i; j0) are orthogonal
to the crest line.

Incorporating a priori knowledge in the reconstruction process can be achieved
using constrained optimization, since all the constraints are expressed in terms
of the partial derivatives of the surface, which are the parameters of the opti-
mization process. We use for that purpose a constrained optimization software
especially designed for large systems [LZT96] (which is our case, since we have
6 parameters per vertex).

We have reconstructed one eye of the face shown in the previous section, using
the a priori assumption that the eye is spherical. We �rst constrain the topology
of the mesh by manually outlining the eyelid, therefore generating more facets on
the tip of the eyelid. The initial eye surface is computed by interpolation, since
there is no information on the animation model in this area. We then minimize
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E = �extEext + �intEint under the following constraints:

8i 2 V; kmax(i) = kmin(i) (1)

8(i; j) 2 V 2; kmax(i) = kmax(j) (2)

8(i; j) 2 V 2; kmin(i) = kmin(j): (3)

where i denotes the i-th vertex and V the set of vertices lying on the eye surface.
We show in the results a �ne isotropic mesh of the reconstructed eye surface after
resampling the anisotropic mesh and using the polynomial surface approximation
given by the �nite element scheme. The surface has been rotated for visualization
purposes, thereby inverting the signs of the curvatures.

Fig. 6. The initial eye surface (left) and the reconstructed eye with the classical opti-

mization algorithm (right). This area corresponds to the black spot in the eye in �g.

5.

Fig. 7. The reconstructed eye after incorporating curvature-based constraints (left)

and resampling the anisotropic mesh (right).

4 Conclusion

We have proposed a way of palliating the lack of information extracted from
stereo images during a 3D reconstruction task. We interactively reconstruct from
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stereo a complex 3D object like a face using a priori information about its di�er-
ential properties. Our purpose is to develop an interactive image-based modeling
software that takes into account some a priori knowledge that a user can have
about the di�erential properties of the object to reconstruct.
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