14,871 research outputs found

    Technologies for 3D Heterogeneous Integration

    Full text link
    3D-Integration is a promising technology towards higher interconnect densities and shorter wiring lengths between multiple chip stacks, thus achieving a very high performance level combined with low power consumption. This technology also offers the possibility to build up systems with high complexity just by combining devices of different technologies. For ultra thin silicon is the base of this integration technology, the fundamental processing steps will be described, as well as appropriate handling concepts. Three main concepts for 3D integration have been developed at IZM. The approach with the greatest flexibility called Inter Chip Via - Solid Liquid Interdiffusion (ICV-SLID) is introduced. This is a chip-to-wafer stacking technology which combines the advantages of the Inter Chip Via (ICV) process and the solid-liquid-interdiffusion technique (SLID) of copper and tin. The fully modular ICV-SLID concept allows the formation of multiple device stacks. A test chip was designed and the total process sequence of the ICV-SLID technology for the realization of a three-layer chip-to-wafer stack was demonstrated. The proposed wafer-level 3D integration concept has the potential for low cost fabrication of multi-layer high-performance 3D-SoCs and is well suited as a replacement for embedded technologies based on monolithic integration. To address yield issues a wafer-level chip-scale handling is presented as well, to select known-good dies and work on them with wafer-level process sequences before joining them to integrated stacks.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/16838

    High yield fabrication process for 3D-stacked ultra-thin chip packages using photo-definable polyimide and symmetry in packages

    Get PDF
    Getting output of multiple chips within the volume of a single chip is the driving force behind development of this novel 3D integration technology, which has a broad range of industrial and medical electronic applications. This goal is achieved in a two-step approach. At first thinned dies are embedded in a polyimide interposer with a fine-pitch metal fan-out resulting Ultra-Thin Chip Packages (UTCP), next these UTCPs are stacked by lamination. Step height at the chip edge of these UTCPs is the major reason of die cracking during the lamination. This paper contains an approach to solve this issue by introduction of an additional layer of interposer which makes it flat at the chip edge and thus the whole packages is named as “Flat-UTCP”. In addition to that, randomness in non-functional package positions per panel reduces the overall yield of the whole process up to certain extent. A detailed analysis on these two issues to improve the process yield is presented in this paper. 3D-stacked memory module composed of 4 EEPROM dies was processed and tested to demonstrate this new concept for enhancing the fabrication yield

    Interface hole-doping in cuprate-titanate superlattices

    Full text link
    The electronic structure of interfaces between YBa2_2Cu3_3O6_6 and SrTiO3_3 is studied using local spin density approximation (LSDA) with intra-atomic Coulomb repulsion (LSDA+U). We find a metallic state in cuprate/titanate heterostructures with the hole carriers concentrated substantially in the CuO2_2-layers and in the first interface TiO2_2 and SrO planes. This effective interface doping appears due to the polarity of interfaces, caused by the first incomplete copper oxide unit cell. Interface-induced high pre-doping of CuO2_2-layers is a key mechanism controlling the superconducting properties in engineered field-effect devices realized on the basis of cuprate/titanate superlattices.Comment: 5 pages, 5 figure

    A review of advances in pixel detectors for experiments with high rate and radiation

    Full text link
    The Large Hadron Collider (LHC) experiments ATLAS and CMS have established hybrid pixel detectors as the instrument of choice for particle tracking and vertexing in high rate and radiation environments, as they operate close to the LHC interaction points. With the High Luminosity-LHC upgrade now in sight, for which the tracking detectors will be completely replaced, new generations of pixel detectors are being devised. They have to address enormous challenges in terms of data throughput and radiation levels, ionizing and non-ionizing, that harm the sensing and readout parts of pixel detectors alike. Advances in microelectronics and microprocessing technologies now enable large scale detector designs with unprecedented performance in measurement precision (space and time), radiation hard sensors and readout chips, hybridization techniques, lightweight supports, and fully monolithic approaches to meet these challenges. This paper reviews the world-wide effort on these developments.Comment: 84 pages with 46 figures. Review article.For submission to Rep. Prog. Phy

    Two-dimensional amine and hydroxy functionalized fused aromatic covalent organic framework

    Get PDF
    Ordered two-dimensional covalent organic frameworks (COFs) have generally been synthesized using reversible reactions. It has been difficult to synthesize a similar degree of ordered COFs using irreversible reactions. Developing COFs with a fused aromatic ring system via an irreversible reaction is highly desirable but has remained a significant challenge. Here we demonstrate a COF that can be synthesized from organic building blocks via irreversible condensation (aromatization). The as-synthesized robust fused aromatic COF (F-COF) exhibits high crystallinity. Its lattice structure is characterized by scanning tunneling microscopy and X-ray diffraction pattern. Because of its fused aromatic ring system, the F-COF structure possesses high physiochemical stability, due to the absence of hydrolysable weak covalent bonds

    AA-cation control of magnetoelectric quadrupole order in AA(TiO)Cu4_4(PO4_4)4_4 (AA = Ba, Sr, and Pb)

    Full text link
    Ferroic magnetic quadrupole order exhibiting macroscopic magnetoelectric activity is discovered in the novel compound AA(TiO)Cu4_4(PO4_4)4_4 with AA = Pb, which is in contrast with antiferroic quadrupole order observed in the isostructural compounds with AA = Ba and Sr. Unlike the famous lone-pair stereochemical activity which often triggers ferroelectricity as in PbTiO3_3, the Pb2+^{2+} cation in Pb(TiO)Cu4_4(PO4_4)4_4 is stereochemically inactive but dramatically alters specific magnetic interactions and consequently switches the quadrupole order from antiferroic to ferroic. Our first-principles calculations uncover a positive correlation between the degree of AA-O bond covalency and a stability of the ferroic quadrupole order.Comment: 7 pages, 4 figure
    corecore