2 research outputs found

    Application of the Fundamental Solution Method to object recognition in the pictures

    Get PDF
    Recognition of objects in pictures and movies requires the use of techniques, such as filtering, segmentation and classification. Image filtering is required to remove all artifacts that hinder the unequivocal identification and sharpen interesting objects. Segmentation refers to finding areas of images respected to individual objects. For the selected areas corresponding to objects in the selected picture, the classification of objects finally gives information about the type of object which orientation is made. This paper presents a method for the classification of objects from drawings as a bitmap using the method of fundamental solutions (MFS). The MFS was tested on the selected bitmap depicting simple geometric shapes. The correlations between errors occurring on the boundary for particular shapes are used for the selection of geometric shape figures. Due to this correlation, it is possible to recognize the shape of the image appearing on the drawing by an analysis consisting of the comparison of recognized points describing the shape of contour to a database containing solutions of boundary value problems for the selected shape. In one way, the comparison of the pattern can determine which shape from database it is most similar to in terms of contour. This article appear that this approach is very simple and clearly. In result, this method can be used to recognition of the objects in the systems of real-time processing

    3D object retrieval and segmentation: various approaches including 2D poisson histograms and 3D electrical charge distributions.

    Get PDF
    Nowadays 3D models play an important role in many applications: viz. games, cultural heritage, medical imaging etc. Due to the fast growth in the number of available 3D models, understanding, searching and retrieving such models have become interesting fields within computer vision. In order to search and retrieve 3D models, we present two different approaches: one is based on solving the Poisson Equation over 2D silhouettes of the models. This method uses 60 different silhouettes, which are automatically extracted from different viewangles. Solving the Poisson equation for each silhouette assigns a number to each pixel as its signature. Accumulating these signatures generates a final histogram-based descriptor for each silhouette, which we call a SilPH (Silhouette Poisson Histogram). For the second approach, we propose two new robust shape descriptors based on the distribution of charge density on the surface of a 3D model. The Finite Element Method is used to calculate the charge density on each triangular face of each model as a local feature. Then we utilize the Bag-of-Features and concentric sphere frameworks to perform global matching using these local features. In addition to examining the retrieval accuracy of the descriptors in comparison to the state-of-the-art approaches, the retrieval speeds as well as robustness to noise and deformation on different datasets are investigated. On the other hand, to understand new complex models, we have also utilized distribution of electrical charge for proposing a system to decompose models into meaningful parts. Our robust, efficient and fully-automatic segmentation approach is able to specify the segments attached to the main part of a model as well as locating the boundary parts of the segments. The segmentation ability of the proposed system is examined on the standard datasets and its timing and accuracy are compared with the existing state-of-the-art approaches
    corecore